JPH0789512B2 - Far infrared heater - Google Patents
Far infrared heaterInfo
- Publication number
- JPH0789512B2 JPH0789512B2 JP60090464A JP9046485A JPH0789512B2 JP H0789512 B2 JPH0789512 B2 JP H0789512B2 JP 60090464 A JP60090464 A JP 60090464A JP 9046485 A JP9046485 A JP 9046485A JP H0789512 B2 JPH0789512 B2 JP H0789512B2
- Authority
- JP
- Japan
- Prior art keywords
- far
- infrared radiation
- porcelain body
- ptc
- radiation layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Control Of Resistance Heating (AREA)
- Resistance Heating (AREA)
Description
【発明の詳細な説明】 <産業上の利用分野> 本発明は、乾燥器用発熱体、室内暖房用パネルヒータ、
サウナ用発熱体等の各種の発熱体として使用される遠赤
外線ヒータに関する。DETAILED DESCRIPTION OF THE INVENTION <Field of Industrial Application> The present invention relates to a heating element for a dryer, a panel heater for indoor heating,
The present invention relates to a far infrared heater used as various heating elements such as a heating element for a sauna.
<従来の技術> 従来の遠赤外線ヒータは、発熱体としてニクロム抵抗体
を用い、これをマイカ等の耐熱性絶縁材によって絶縁処
理し、更にこの耐熱絶縁材の表面に遠赤外線放射層を形
成する構造となっていた。例えば特開昭59−189576号公
報に開示された遠赤外線ヒータを例にとると、第3図及
び第4図に示すように、マイカ板1−2の間にニクロム
抵抗体3を蛇行状に埋設すると共に、ニクロム抵抗体3
の両端を端子4及び5によって外部に引出し、更にマイ
カ2の表面に膜厚50〜100μm程度の高純度白アルミナ
による遠赤外線放射層6を形成してあった。<Prior Art> A conventional far-infrared heater uses a nichrome resistor as a heating element, insulates it with a heat-resistant insulating material such as mica, and further forms a far-infrared radiation layer on the surface of this heat-resistant insulating material. It was structured. Taking the far infrared heater disclosed in Japanese Patent Laid-Open No. 59-189576 as an example, as shown in FIGS. 3 and 4, the nichrome resistor 3 is formed in a meandering shape between the mica plates 1-2. Buried and nichrome resistor 3
Both ends were drawn out by terminals 4 and 5, and a far-infrared radiation layer 6 of high-purity white alumina having a film thickness of about 50 to 100 μm was formed on the surface of the mica 2.
上記遠赤外線ヒータにおいて、ニクロム抵抗体3に電流
を流し、遠赤外線放射層6をマイカ板2を介して250℃
程度の表面温度となるように加熱保持すると、波長が6
μm以上の遠赤外線が得られる旨述べられている。In the far-infrared heater, an electric current is passed through the nichrome resistor 3 so that the far-infrared radiation layer 6 passes through the mica plate 2 at 250 ° C.
When heated and held to a surface temperature of approx.
It is stated that far infrared rays of μm or more can be obtained.
<発明が解決しようとする課題> 上述のように、従来の遠赤外線ヒータは、発熱体として
ニクロム抵抗体を用い、これをマイカ等の耐熱性絶縁材
によって絶縁処理し、更にこの耐熱絶縁材の表面に遠赤
外線放射層を形成する構造となっていたため、次のよう
な問題点があった。<Problems to be Solved by the Invention> As described above, the conventional far-infrared heater uses a nichrome resistor as a heating element, which is insulated with a heat-resistant insulating material such as mica. Since the structure has a far infrared radiation layer formed on the surface, there are the following problems.
(イ)ニクロム抵抗体をマイカ等の耐熱絶縁材中に埋設
する等の絶縁処理が必要で、製造が面倒になる。(B) Insulation treatment such as burying the nichrome resistor in a heat-resistant insulating material such as mica is required, which makes manufacturing difficult.
(ロ)ニクロム抵抗体を埋設する耐熱絶縁材がマイカで
形成されているのに対し、遠赤外線放射層がこれとは異
なるセラミックでなるため、線赤外線放射層を形成する
に当り、ニクロム抵抗体を埋設したマイカ表面に、前処
理として、プラズマアルミメタリコン処理等が施さなけ
ればならず、これも製造工程が複雑になる要因となって
いる。(B) While the heat-resistant insulating material for embedding the nichrome resistor is made of mica, the far-infrared radiation layer is made of a ceramic different from this, so when forming the linear infrared radiation layer, the nichrome resistor is used. As a pretreatment, plasma aluminum metallikon treatment or the like must be applied to the surface of the mica in which the burial is embedded, which also causes a complicated manufacturing process.
(ハ)ニクロム抵抗体に発生した熱がマイカを通して遠
赤外線放射層に伝達されるため、熱効率、熱応答性が悪
くなる。(C) Since the heat generated in the nichrome resistor is transferred to the far-infrared radiation layer through the mica, the thermal efficiency and thermal responsiveness deteriorate.
(ニ)ニクロム抵抗体を用いているので、加熱温度が一
定せず、遠赤外線放射動作が不安定になる。(D) Since a nichrome resistor is used, the heating temperature is not constant and the far infrared radiation operation becomes unstable.
(ホ)加熱温度を安定化して遠赤外線放射動作が安定化
させようとすれば、温度制御回路が必要になり、部品点
数の増大、大型化、コストアップ等を招く。(E) If the heating temperature is stabilized to stabilize the far-infrared radiation operation, a temperature control circuit is required, which leads to an increase in the number of parts, an increase in size, and an increase in cost.
本発明の課題は、製造の簡単な遠赤外線ヒータを提供す
ることである。An object of the present invention is to provide a far infrared heater which is easy to manufacture.
本発明のもう一つの課題は、温度制御回路等を必要とす
ることなく、遠赤外線放射動作を安定化させ得る遠赤外
線ヒータを提供することである。Another object of the present invention is to provide a far infrared heater capable of stabilizing the far infrared radiation operation without requiring a temperature control circuit or the like.
本発明の更にもう一つの課題は、熱効率及び熱応答性を
向上させた遠赤外線ヒータを提供することである。Still another object of the present invention is to provide a far infrared heater having improved thermal efficiency and thermal response.
<課題を解決するための手段> 上述した課題を解決するため、本発明に係る遠赤外線ヒ
ータは、正特性サーミスタの表面に遠赤外線放射層を形
成してなる。前記正特性サーミスタは、正特性磁器素体
と、一対の電極とを含んでおり、前記正特性磁器素体は
所定の厚みを有する平板状に形成されている。前記電極
は、前記正特性磁器素体の厚み方向の両面の内の少なく
とも前記表面及び前記正特性磁器素体の側端面に被着さ
れ、前記正特性磁器素体とオーム性接触を形成してい
る。前記遠赤外線放射層は、セラミック材料でなり、前
記電極の面を含む正特性サーミスタの前記表面のほぼ全
面に、遠赤外線放射物質を塗布して形成されている。<Means for Solving the Problems> In order to solve the problems described above, the far infrared heater according to the present invention has a far infrared radiation layer formed on the surface of a positive temperature coefficient thermistor. The PTC thermistor includes a PTC element body and a pair of electrodes, and the PTC element body is formed in a flat plate shape having a predetermined thickness. The electrode is adhered to at least the surface and the side end surface of the PTC porcelain body on both sides in the thickness direction of the PTC porcelain body to form ohmic contact with the PTC porcelain body. There is. The far-infrared radiation layer is made of a ceramic material, and is formed by coating a far-infrared radiation substance on substantially the entire surface of the PTC thermistor including the surface of the electrode.
<作用> 上記構成の遠赤外線ヒータは、正特性サーミスタに対し
て、同様のセラミック材料でなる遠赤外線放射層を形成
するだけで良いので、製造組立が簡単化される。<Operation> In the far infrared heater having the above-described configuration, the far infrared radiation layer made of the same ceramic material may be formed on the positive temperature coefficient thermistor, so that the manufacturing and assembling is simplified.
しかも、正特性サーミスタは、周知のように、ある特定
温度で抵抗値に急激に増大し、自己の発熱温度を自動的
に制御する自己温度制御機能を有するから、遠赤外線放
射層に対して、正特性サーミスタ自体の定温発熱動作に
より、温度制御回路等を必要とすることなく定温加熱を
与え、遠赤外線放射動作を安定化できる。Moreover, as is well known, the positive temperature coefficient thermistor has a self-temperature control function of rapidly increasing the resistance value at a certain specific temperature and automatically controlling the heat generation temperature of the self, so that for the far infrared radiation layer, By the constant temperature heat generation operation of the positive temperature coefficient thermistor itself, constant temperature heating can be provided without the need for a temperature control circuit and the far infrared radiation operation can be stabilized.
また、正特性サーミスタと遠赤外線放射層は、共に、セ
ラミック材料でなるので、両者間に熱歪による剥離等を
生じることがない。このため、両者間の熱伝導が長期に
わたって安定に維持される。Further, since both the positive temperature coefficient thermistor and the far infrared ray emitting layer are made of a ceramic material, peeling or the like due to thermal strain does not occur between them. For this reason, heat conduction between the two is stably maintained for a long period of time.
電極は、正特性磁器素体の厚み方向の両面に被着形成さ
れ、しかも、正特性磁器素体の側端面に導出されている
から、正特性磁器素体と電極との接合面が3カ所にな
り、電極密着面積が増え、電極強度が高くなる。Since the electrodes are formed on both sides of the PTC porcelain body in the thickness direction and are led to the side end faces of the PTC porcelain body, there are three bonding surfaces between the PTC porcelain body and the electrodes. As a result, the electrode contact area is increased and the electrode strength is increased.
また、遠赤外線放射層は、正特性磁器素体の表面に、遠
赤外線放射物質を塗布して形成されているので、遠赤外
線放射層は、正特性磁器素体との間に隙間を生じること
なく、密着する。このため、正特性サーミスタに発生し
た熱を、遠赤外線放射層に対して直接的に伝達し、熱伝
導効率及び熱応答性を向上させることができる。また電
極が存在するにもかかわらず、その電極厚み差を、遠赤
外線放射物質を塗布することによって埋め、遠赤外線放
射層を、正特性磁器素体との間に隙間を生じさせること
なく、密着させることができる。このため、正特性サー
ミスタに発生した熱を、遠赤外線放射層に対して直接的
に伝達し、熱伝導効率及び熱応答性を向上させることが
できる。Further, since the far-infrared radiation layer is formed by coating the surface of the PTC porcelain body with the far-infrared radiation substance, the far-infrared radiation layer may form a gap with the PTC porcelain body. No, but close contact. Therefore, the heat generated in the positive temperature coefficient thermistor can be directly transferred to the far-infrared radiation layer, and the heat conduction efficiency and the thermal response can be improved. In addition, despite the existence of the electrode, the difference in the electrode thickness is filled by applying the far-infrared radiation substance, and the far-infrared radiation layer is adhered to the positive characteristic porcelain body without forming a gap. Can be made. Therefore, the heat generated in the positive temperature coefficient thermistor can be directly transferred to the far-infrared radiation layer, and the heat conduction efficiency and the thermal response can be improved.
遠赤外線放射物質は、正特性磁器素体の厚み方向の両面
に延長して被着形成された電極の面を含む正特性磁器素
体の表面に塗布されているので、遠赤外線放射層が電極
に対する保護層となり、電極の耐久性が向上する。Since the far-infrared radiation substance is applied to the surface of the positive-characteristics ceramic body including the surfaces of the electrodes formed by being extended to both sides in the thickness direction of the positive-characteristics ceramic body, the far-infrared radiation layer is used as an electrode. It becomes a protective layer against the above, and the durability of the electrode is improved.
しかも、電極は、正特性磁器素体の長さ方向の両端に、
電極間にある表面のほぼ全面が発熱面を構成するよう
に、その全幅にわたって被着形成され、遠赤外線放射層
は正特性サーミスタの表面上のほぼ全面に塗布されてい
る。このため、正特性サーミスタの表面の全面に熱を発
生させると共に、全面に発生した熱のほぼ全てを、遠赤
外線放射層に直接的に伝導できる。これにより、正特性
サーミスタの表面を、発熱面として最大限利用すると共
に、このようにして発生した熱を、遠赤外線放射層に高
効率で伝導できる。Moreover, the electrodes are at both ends in the length direction of the PTC porcelain body,
The far-infrared radiation layer is applied to almost the entire surface of the positive temperature coefficient thermistor by depositing it over the entire width so that almost the entire surface between the electrodes constitutes a heating surface. Therefore, heat can be generated on the entire surface of the PTC thermistor, and almost all of the heat generated on the entire surface can be directly conducted to the far infrared radiation layer. As a result, the surface of the positive temperature coefficient thermistor can be maximally utilized as a heat generating surface, and the heat thus generated can be conducted to the far infrared radiation layer with high efficiency.
遠赤外線放射物質は、正特性磁器素体の厚み方向の面に
被着された電極の面を含む正特性磁器素体の表面に塗布
されているので、遠赤外線放射層が電極に対する保護層
となり、電極の耐久性が向上する。この結果、この結
果、正特性磁器素体と電極との間のオーム性接触特性が
長期にわたって安定に維持され、安定した遠赤外線放射
動作が確保される。Since the far-infrared radiation substance is applied to the surface of the PTC porcelain body including the surface of the electrode adhered to the surface in the thickness direction of the PTC porcelain body, the far-infrared radiation layer serves as a protective layer for the electrodes. , The durability of the electrode is improved. As a result, as a result, the ohmic contact characteristics between the PTC porcelain body and the electrodes are stably maintained for a long period of time, and stable far-infrared radiation operation is ensured.
しかも、正特性磁器素体の側端面に導出されているか
ら、正特性サーミスタの表面上のほぼ全面に、遠赤外線
放射層を塗布し、発熱量増大及び熱伝導効率の向上を図
った構造において、この構造に何等の悪影響を与えるこ
となく、正特性磁器素体の側端面に導出されている電極
の部分を通して、正特性サーミスタに給電することがで
きる。Moreover, since it is led out to the side end surface of the PTC porcelain body, a far infrared radiation layer is applied to almost the entire surface of the PTC thermistor to increase the heat generation amount and the heat transfer efficiency. It is possible to supply power to the positive temperature coefficient thermistor through the electrode portion led out to the side end surface of the positive temperature coefficient ceramic body without adversely affecting the structure.
<実施例> 第1図は本発明に係る遠赤外線ヒータの斜視図、第2図
は同じくその断面図である。7は正特性サーミスタであ
り、平板状に形成された正特性磁器素体71の長さ方向の
両端にオーム性接触の一対の電極72、73を被着形成した
構造となっている。この構造により、電極72−73間にお
いて露出する表面のほぼ全面が発熱面として動作する。
電極72、73は正特性磁器素体71の厚み方向の両面に被着
形成され、しかも、正特性磁器素体71の側端面に導出さ
れている。<Example> FIG. 1 is a perspective view of a far infrared heater according to the present invention, and FIG. 2 is a sectional view thereof. Reference numeral 7 denotes a PTC thermistor, which has a structure in which a pair of electrodes 72 and 73 in ohmic contact are adhered to both ends of a PTC porcelain body 71 formed in a flat plate shape in the longitudinal direction. With this structure, almost the entire surface exposed between the electrodes 72 and 73 operates as a heat generating surface.
The electrodes 72 and 73 are formed on both sides of the PTC porcelain body 71 in the thickness direction, and are led out to the side end faces of the PTC porcelain body 71.
8はこの正特性サーミスタ7の厚み方向の一面上に被着
形成された遠赤外線放射層である。実施例に示す遠赤外
線放射層8は、遠赤外線放射物質を正特性サーミスタ7
の表面に直接塗布して形成してある。9は電源である。Reference numeral 8 denotes a far infrared radiation layer deposited and formed on one surface of the positive temperature coefficient thermistor 7 in the thickness direction. The far-infrared radiation layer 8 shown in the embodiment includes a far-infrared radiation substance as a positive temperature coefficient thermistor 7.
It is formed by directly applying to the surface of. 9 is a power supply.
上記構成の遠赤外線ヒータは、正特性サーミスタ7に対
して、同様のセラミック材料でなる遠赤外線放射層8を
形成するだけで良いので、製造組立が簡単化される。The far-infrared heater having the above-mentioned configuration can be manufactured and assembled simply by forming the far-infrared radiation layer 8 made of the same ceramic material on the PTC thermistor 7.
しかも、正特性サーミスタ7は、周知のように、ある特
定温度で抵抗値に急激に増大し、自己の発熱温度を自動
的に制御する自己温度制御機能を有するから、遠赤外線
放射層8に対して、正特性サーミスタ7自体の定温発熱
動作により、温度制御回路等を必要とすることなく定温
加熱を与え、遠赤外線放射動作を安定化できる。Moreover, as is well known, the positive temperature coefficient thermistor 7 has a self-temperature control function of rapidly increasing the resistance value at a certain specific temperature and automatically controlling the heat generation temperature of the self. By the constant temperature heat generation operation of the positive temperature coefficient thermistor 7 itself, constant temperature heating can be applied without the need for a temperature control circuit or the like, and the far infrared radiation operation can be stabilized.
また、正特性サーミスタ7と遠赤外線放射層8は、共
に、セラミック材料でなるので、両者間に熱歪による剥
離等を生じることがない。このため、両者間の熱伝導が
長期にわたって安定に維持される。Further, since both the positive temperature coefficient thermistor 7 and the far infrared radiation layer 8 are made of a ceramic material, peeling or the like due to thermal strain does not occur between them. For this reason, heat conduction between the two is stably maintained for a long period of time.
更に、電極72、73は、正特性磁器素体71の厚み方向の両
面に被着形成され、しかも、正特性磁器素体71の側端面
に導出されているから、正特性磁器素体71と電極72、73
との接合面が、少なくとも2カ所になり、電極密着面積
が増え、電極強度が高くなる。Further, the electrodes 72, 73 are formed by being adhered to both sides in the thickness direction of the PTC porcelain body 71, and are led out to the side end faces of the PTC porcelain body 71. Electrodes 72, 73
There are at least two bonding surfaces with and the electrode contact area increases, and the electrode strength increases.
また、遠赤外線放射層8は、正特性磁器素体71の表面
に、遠赤外線放射物質を塗布して形成されているので、
遠赤外線放射層8は、正特性磁器素体71との間に隙間を
生じることなく、密着する。このため、正特性サーミス
タ7に発生した熱を、遠赤外線放射層8に対して直接的
に伝達し、熱伝導効率及び熱応答性を向上させることが
できる。また電極72、73が存在するにもかかわらず、そ
の電極厚み差を、遠赤外線放射物質を塗布することによ
って埋め、遠赤外線放射層8を、正特性磁器素体71との
間に隙間を生じさせることなく、密着させることができ
る。このため、正特性サーミスタ7に発生した熱を、遠
赤外線放射層8に対して直接的に伝達し、熱伝導効率及
び熱応答性を向上させることができる。Further, since the far infrared radiation layer 8 is formed by coating the surface of the PTC porcelain body 71 with a far infrared radiation substance,
The far-infrared radiation layer 8 adheres to the PTC porcelain body 71 without forming a gap. Therefore, the heat generated in the positive temperature coefficient thermistor 7 can be directly transferred to the far-infrared radiation layer 8, and the heat conduction efficiency and the thermal response can be improved. Further, despite the presence of the electrodes 72 and 73, the difference in electrode thickness is filled by applying a far infrared radiation substance, and a gap is formed between the far infrared radiation layer 8 and the positive temperature coefficient ceramic body 71. It can be brought into close contact without causing it. Therefore, the heat generated in the positive temperature coefficient thermistor 7 can be directly transferred to the far-infrared radiation layer 8, and the heat conduction efficiency and the thermal response can be improved.
遠赤外線放射物質8は、正特性磁器素体71の厚み方向の
両面に延長して被着形成された電極72、73の面を含む正
特性磁気素体71の表面に塗布されているので、遠赤外線
放射層8が電極72、73に対する保護層となり、電極72、
73の耐久性が向上する。この結果、正特性磁器素体71と
電極72、73との間のオーム性接触特性が長期にわたって
安定に維持され、安定した遠赤外線放射動作が確保され
る。Since the far-infrared radiation substance 8 is applied to the surface of the positive-characteristic magnetic body 71 including the surfaces of the electrodes 72 and 73 formed by being extended to both surfaces in the thickness direction of the positive-characteristic ceramic body 71, The far-infrared radiation layer 8 serves as a protective layer for the electrodes 72 and 73,
The durability of 73 is improved. As a result, the ohmic contact characteristics between the PTC porcelain body 71 and the electrodes 72 and 73 are stably maintained for a long period of time, and stable far-infrared radiation operation is ensured.
遠赤外線放射層8は、正特性サーミスタ7の発熱面とな
る表面上に直接に塗布されているので、正特性サーミス
タ7に発生した熱を、遠赤外線放射層8に対して直接的
に伝導し、熱伝導効率及び熱応答性を向上させることが
できる。Since the far-infrared radiation layer 8 is directly applied to the surface of the positive temperature coefficient thermistor 7 which is a heat generating surface, the heat generated in the positive temperature coefficient thermistor 7 is directly transmitted to the far infrared radiation layer 8. The heat conduction efficiency and the thermal response can be improved.
しかも、電極72、73は、正特性磁器素体71の長さ方向の
両端に、電極72−73間にある表面のほぼ全面が発熱面を
構成するように、その全幅にわたって被着形成され、遠
赤外線放射層8は正特性サーミスタ7の表面上のほぼ全
面に直接に塗布されている。このため、正特性サーミス
タ7の表面の全面に熱を発生させると共に、全面に発生
した熱のほぼ全てを、遠赤外線放射層8に直接的に伝導
できる。これにより、正特性サーミスタ7の表面を、発
熱面として最大限利用すると共に、このようにして発生
した熱を、遠赤外線放射層8に高効率で伝導できる。Moreover, the electrodes 72, 73 are formed on both ends of the positive-characteristic porcelain body 71 in the longitudinal direction so that almost the entire surface between the electrodes 72-73 constitutes a heat-generating surface, and is formed over the entire width thereof. The far-infrared radiation layer 8 is directly applied to almost the entire surface of the positive temperature coefficient thermistor 7. Therefore, heat can be generated on the entire surface of the positive temperature coefficient thermistor 7, and almost all of the heat generated on the entire surface can be directly conducted to the far infrared radiation layer 8. As a result, the surface of the positive temperature coefficient thermistor 7 can be maximally utilized as a heat generating surface, and the heat thus generated can be conducted to the far infrared radiation layer 8 with high efficiency.
電極72、73は、正特性磁器素体71の側端面に導出されて
いるから、正特性サーミスタ7の表面上のほぼ全面に、
遠赤外線放射層8を直接に密着して積層し、発熱量増大
及び熱伝導効率の向上を図った構造において、この構造
に何等の悪影響を与えることなく、正特性磁器素体71の
側端面に導出されている電極72、73の部分を通して、正
特性サーミスタ7に給電することができる。Since the electrodes 72 and 73 are led out to the side end surface of the PTC porcelain body 71, almost all of the surface of the PTC thermistor 7 is
In the structure in which the far-infrared radiation layer 8 is directly adhered and laminated to increase the heat generation amount and improve the heat conduction efficiency, the side end surface of the PTC porcelain body 71 is not adversely affected to the structure. Power can be supplied to the PTC thermistor 7 through the led-out portions of the electrodes 72 and 73.
<発明の効果> 以上述べたように、本発明によれば、次のような効果を
得ることができる。<Effects of the Invention> As described above, according to the present invention, the following effects can be obtained.
(a)製造組立の非常に簡単な遠赤外線ヒータを提供で
きる。(A) It is possible to provide a far-infrared heater that is extremely easy to manufacture and assemble.
(b)温度制御回路等を必要とすることなく、遠赤外線
放射層を定温加熱し、遠赤外線放射動作を安定化させ得
る遠赤外線ヒータを提供できる。(B) A far-infrared heater capable of stabilizing the far-infrared radiation operation by heating the far-infrared radiation layer at a constant temperature without requiring a temperature control circuit or the like can be provided.
(c)電極密着面積が大きく、電極強度の高い遠赤外線
ヒータを提供できる。(C) A far infrared heater having a large electrode contact area and high electrode strength can be provided.
(d)遠赤外線放射層を電極に対する保護層として活用
し、電極の耐久性を向上させ、正特性磁器素体と電極と
の間のオーム性接触特性が長期にわたって安定に維持
し、安定した遠赤外線放射動作を確保し得るようにした
遠赤外線ヒータを提供できる。(D) Utilizing the far-infrared radiation layer as a protective layer for the electrode, improving the durability of the electrode, maintaining the ohmic contact property between the positive-characteristic porcelain body and the electrode stably for a long time, and ensuring a stable long-distance It is possible to provide a far-infrared heater capable of ensuring infrared radiation operation.
(e)電極が存在するにもかかわらず、その電極厚み差
を、遠赤外線放射物質を塗布することによって埋め、遠
赤外線放射層を、正特性磁器素体との間に隙間を生じさ
せることなく、密着させ、熱効率及び熱応答性を向上さ
せた遠赤外線ヒータを提供できる。(E) Despite the existence of the electrode, the difference in electrode thickness is filled by applying a far infrared ray emitting substance, and the far infrared ray emitting layer is formed without forming a gap between the positive characteristic ceramic body. It is possible to provide a far-infrared heater which is closely adhered and has improved thermal efficiency and thermal response.
(f)正特性サーミスタの表面を、発熱面として最大限
利用すると共に、このようにして発生した熱を、遠赤外
線放射層に高効率で伝導し得る遠赤外線ヒータを提供で
きる。(F) It is possible to provide a far-infrared heater capable of maximally utilizing the surface of the positive temperature coefficient thermistor as a heat-generating surface and conducting the heat thus generated to the far-infrared radiation layer with high efficiency.
【図面の簡単な説明】 第1図は本発明に係る遠赤外線ヒータの斜視図、第2図
は同じくその断面図、第3図は特開昭59−189576号公報
に開示された遠赤外線ヒータの斜視図、第4図は同じく
一部の断面図である。 7……正特性サーミスタ 8……遠赤外線放射層BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a far infrared heater according to the present invention, FIG. 2 is a sectional view of the same, and FIG. 3 is a far infrared heater disclosed in Japanese Patent Laid-Open No. 59-189576. 4 is a partial sectional view of the same. 7: Positive characteristic thermistor 8: Far infrared radiation layer
フロントページの続き (56)参考文献 特開 昭60−32278(JP,A) 特開 昭55−54035(JP,A) 実開 昭59−93095(JP,U)Continuation of the front page (56) References JP-A-60-32278 (JP, A) JP-A-55-54035 (JP, A) Actually opened 59-93095 (JP, U)
Claims (1)
を形成してなる遠赤外線ヒータであって、 前記正特性サーミスタは、正特性磁器素体と、一対の電
極とを含んでおり、前記正特性磁器素体は所定の厚みを
有する平板状に形成されており、前記電極は前記正特性
磁器素体の長さ方向の両端に、前記電極間にある前記表
面のほぼ全面が発熱面を構成するように、その全幅にわ
たって、前記正特性磁器素体の厚み方向の両面の内の少
なくとも前記表面及び前記正特性磁器素体の側端面に被
着され、前記正特性磁器素体とオーム性接触を形成して
おり、 前記遠赤外線放射層は、セラミック材料でなり、前記電
極の面を含む正特性サーミスタの前記表面のほぼ全面
に、遠赤外線放射物質を塗布して形成されていること を特徴とする遠赤外線ヒータ。1. A far-infrared heater having a far-infrared radiation layer formed on the surface of a PTC thermistor, wherein the PTC thermistor includes a PTC porcelain body and a pair of electrodes. The PTC porcelain body is formed in a flat plate shape having a predetermined thickness, and the electrodes are provided at both ends in the length direction of the PTC porcelain body with almost the entire surface between the electrodes being a heating surface. As a whole, the positive characteristic porcelain body is adhered to at least the surface and the side end surface of the positive characteristic porcelain body over the entire width thereof in the thickness direction of the positive characteristic porcelain body, and the ohmic property with the positive characteristic porcelain body. Forming a contact, wherein the far-infrared radiation layer is made of a ceramic material, and is formed by coating a far-infrared radiation substance on substantially the entire surface of the positive temperature coefficient thermistor including the surface of the electrode. Features far infrared heat .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60090464A JPH0789512B2 (en) | 1985-04-25 | 1985-04-25 | Far infrared heater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60090464A JPH0789512B2 (en) | 1985-04-25 | 1985-04-25 | Far infrared heater |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61248383A JPS61248383A (en) | 1986-11-05 |
JPH0789512B2 true JPH0789512B2 (en) | 1995-09-27 |
Family
ID=13999323
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60090464A Expired - Lifetime JPH0789512B2 (en) | 1985-04-25 | 1985-04-25 | Far infrared heater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0789512B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020136090A (en) * | 2019-02-20 | 2020-08-31 | 光洋サーモシステム株式会社 | Heat treatment unit, heat treatment device and heater design method for heat treatment device |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5251458Y2 (en) * | 1972-06-02 | 1977-11-22 | ||
ES462575A1 (en) * | 1976-09-24 | 1978-07-16 | Union Carbide Corp | Process for the production of silane |
JPS5546042A (en) * | 1978-09-29 | 1980-03-31 | Hitachi Ltd | Vibration attenuating structure for turbine blade |
JPS5554035A (en) * | 1978-10-18 | 1980-04-21 | Matsushita Electric Ind Co Ltd | Catalytic body |
JPS5887792A (en) * | 1981-10-07 | 1983-05-25 | 国際技術開発株式会社 | Heater |
JPS5993095U (en) * | 1982-12-15 | 1984-06-23 | 株式会社村田製作所 | Positive characteristic thermistor heater |
JPS59159887U (en) * | 1983-04-11 | 1984-10-26 | 南部工業株式会社 | electric heating device |
JPS6032278A (en) * | 1983-07-31 | 1985-02-19 | 松下電工株式会社 | Heat radiator |
-
1985
- 1985-04-25 JP JP60090464A patent/JPH0789512B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS61248383A (en) | 1986-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU1453499A (en) | Quartz substrate heater | |
JPH07153555A (en) | Positive characteristic thermistor heater and positive characteristic thermistor heater device using it | |
JP7472419B2 (en) | Hair iron with ceramic heater | |
JPH0789512B2 (en) | Far infrared heater | |
JPS6236242Y2 (en) | ||
DK1082877T3 (en) | Flexible flat heating element | |
JP2800207B2 (en) | Positive characteristic thermistor heating element | |
JPS63170877A (en) | Temperature self-control far-infrared heater | |
JPH084717Y2 (en) | Flexible heater | |
JPH09293581A (en) | Positive thermistor heating element | |
JPH0546454Y2 (en) | ||
JPS6244482Y2 (en) | ||
JP3516147B2 (en) | Thermo head | |
JPH0348875Y2 (en) | ||
JPS629673Y2 (en) | ||
JPS59710Y2 (en) | constant temperature heating element | |
JPS6143821B2 (en) | ||
JPS6236243Y2 (en) | ||
JPS5833661Y2 (en) | far infrared heating element | |
JPS6338556Y2 (en) | ||
JPS6213346Y2 (en) | ||
RU1820992C (en) | Electric heater | |
JPS6157672B2 (en) | ||
JPH0241876B2 (en) | ||
JP2986485B2 (en) | Positive characteristic thermistor device |