JPH078722B2 - Method for producing silicon hydride - Google Patents
Method for producing silicon hydrideInfo
- Publication number
- JPH078722B2 JPH078722B2 JP60193250A JP19325085A JPH078722B2 JP H078722 B2 JPH078722 B2 JP H078722B2 JP 60193250 A JP60193250 A JP 60193250A JP 19325085 A JP19325085 A JP 19325085A JP H078722 B2 JPH078722 B2 JP H078722B2
- Authority
- JP
- Japan
- Prior art keywords
- silicon
- alloy
- acid
- magnesium
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Silicon Compounds (AREA)
Description
【発明の詳細な説明】 技術分野 本発明は、ケイ素を含む合金と酸とを反応させることに
より、一般式SinH2n+2(nは1以上の正の整数)で表わ
される水素化ケイ素を製造する方法に関する。TECHNICAL FIELD The present invention relates to a silicon hydride represented by the general formula Si n H 2n + 2 (n is a positive integer of 1 or more) by reacting an alloy containing silicon with an acid. To a method of manufacturing.
背景技術 近年エレクトロニクス工業の発展に伴い、多結晶シリコ
ンあるいはアモルフアスシリコン等の半導体用シリコン
の需要が急激に増大している。水素化ケイ素SinH2n+2は
かかる半導体用シリコンの製造用原料として最近その重
要性を増しており、特にシラン(SiH4)、ジシラン(Si
2H6)は太陽電池用半導体の原料として、今後大幅な需
要増加が期待されている。BACKGROUND ART With the recent development of the electronics industry, demand for semiconductor silicon such as polycrystalline silicon or amorphous silicon is rapidly increasing. Silicon hydride Si n H 2n + 2 has recently become more important as a raw material for the production of such semiconductor silicon, especially silane (SiH 4 ) and disilane (Si
2 H 6 ) is a raw material for semiconductors for solar cells, and it is expected that demand will increase significantly in the future.
従来、水素化ケイ素の製造方法としては、以下に例示す
るような、いくつかの方法が知られている。Conventionally, as a method for producing silicon hydride, several methods are known as exemplified below.
これらの中で、本発明に係わるケイ素合金、特にケイ化
マグネシウムと酸とを反応させるあるいはの方法
は、古くから最も実施容易な方法として知られている。
すなわち及びの方法は、他の方法に比較し、高価な
還元剤を必要とせず(と比較)、常温常圧付近で反応
が可能(と比較)などの利点がある。特にジシラン
(Si2H6)を製造する場合には、例えばの方法によ
り、高価なヘキサクロロジシラン(Si2Cl6)を金属水素
化物で還元することによっても得られるが、、特に
の方法によれば、きわめて容易にジシラン(Si2H6)
を得ることができる。 Among them, the method of reacting a silicon alloy according to the present invention, particularly magnesium silicide with an acid, has long been known as the easiest method.
That is, the methods (1) and (2) are advantageous over other methods in that an expensive reducing agent is not required (compared to), and a reaction can be performed at around room temperature and pressure (compared to). In particular, when disilane (Si 2 H 6 ) is produced, it can also be obtained by reducing expensive hexachlorodisilane (Si 2 Cl 6 ) with a metal hydride by, for example, the method described below. Very easily with disilane (Si 2 H 6 )
Can be obtained.
しかるに、の方法においては、副反応によってシロキ
サン結合を有するケイ素化合物の副生を避けられずケイ
素合金中のケイ素の水素化ケイ素への転化率(以下収率
という)が低く、またSiH4とSi2H6の生成割合が不変で
あるなどの欠点を有していた。(SiH4とSi2H6の合計収
率が約30%、(SiH4/Si2H6)モル比〜2(Siアトムベ
ース))例えばジャーナル オブ ザ ケミカルソサイ
エテイ(Journal of the chemical Society)、1131(1
946))更には反応の進行に伴い粘稠な黒色固型物が反
応器中に蓄積するため、それらが器壁に付着することに
より伝熱が低下し、また攪拌が不良となる等の問題もあ
った。本発明者らは、この問題を解決するために鋭意努
力し、先に、反応系内にエーテル化合物や炭化水素など
の有機溶剤を共存させる、および該有機溶剤に可溶の副
生高級シラン類をSiH4、Si2H6に低級化させるなどの方
法により、SiH4、Si2H6の収率が大巾に向上することを
提案した(SiH4とSi2H6の合計収率60乃至70%、例えば
特願昭58-245772、58-245773、59-11938059-034830、59
-110703、59-109358、59-110704、59-113194、59-10646
1、59-175663、59-175662)。However, in the method (1), a side reaction of a silicon compound having a siloxane bond cannot be avoided by a side reaction, and the conversion rate of silicon to silicon hydride in the silicon alloy (hereinafter referred to as yield) is low, and SiH 4 and Si It had the drawback that the production rate of 2 H 6 remained unchanged. (The total yield of SiH 4 and Si 2 H 6 is about 30%, (SiH 4 / Si 2 H 6 ) molar ratio ~ 2 (Si atom base)) For example, Journal of the Chemical Society ), 1131 (1
946)) Further, as the reaction progresses, viscous black solids accumulate in the reactor, so that they adhere to the wall of the reactor, which lowers heat transfer and results in poor stirring. There was also. The present inventors have made diligent efforts to solve this problem, first, an organic solvent such as an ether compound or a hydrocarbon is allowed to coexist in the reaction system, and a by-product higher silane soluble in the organic solvent is produced. by methods such as by lower into SiH 4, Si 2 H 6, the total yield of SiH 4, Si 2 yield of H 6 was proposed to improve by a large margin (SiH 4 and Si 2 H 6 60 To 70%, for example, Japanese Patent Application Nos. 58-245772, 58-245773, 59-11938059-034830, 59
-110703, 59-109358, 59-110704, 59-113194, 59-10646
1, 59-175663, 59-175662).
しかしながら該発明によっても、SiH4とSi2H6の生成割
合を任意に変えることは難しく、ほぼ(SiH4/Si2H6)
のモル比の値が1乃至2(Siアトムベース)の狭い範囲
であった。However, even according to the invention, it is difficult to arbitrarily change the production ratio of SiH 4 and Si 2 H 6 , and it is almost (SiH 4 / Si 2 H 6 )
The value of the molar ratio was within a narrow range of 1 to 2 (Si atom base).
一方の方法においては、SiH4の収率が高いものの(70
乃至80%)、Si2H6の収率が低い欠点がある(通常5%
以下)。もちろんこの両者の生成割合を任意に変えるこ
とは困難である。In one method, although the yield of SiH 4 was high (70
, 80%), and the low yield of Si 2 H 6 (usually 5%)
Less than). Of course, it is difficult to arbitrarily change the generation ratio of both.
本発明者らは、これらのケイ素合金と酸との反応におけ
る課題であるSi2H6収率の向上、及びSiH4とSi2H6の生成
割合を任意にコントロールする方法について鋭意検討
し、本発明に至った。The present inventors diligently studied the improvement of Si 2 H 6 yield, which is a problem in the reaction between these silicon alloys and acids, and a method of arbitrarily controlling the production ratio of SiH 4 and Si 2 H 6 , The present invention has been completed.
すなわち、本発明は、ケイ素とマグネシウムとから成る
合金と酸とを作用せしめてSiH4及びSi2H6を製造する方
法において、該合金中に、第3成分元素を含有させるこ
とに特徴を有するものであり、本発明によれば、Si2H6
収率を大幅に向上することが可能であり、かつSiH4とSi
2H6の生産割合を任意にコントロールすることができ
る。That is, the present invention is characterized in that in the method for producing SiH 4 and Si 2 H 6 by causing an alloy of silicon and magnesium and an acid to act, the alloy contains a third component element. According to the present invention, Si 2 H 6
It is possible to significantly improve the yield, and SiH 4 and Si
The production rate of 2 H 6 can be controlled arbitrarily.
発明の詳細な開示 本発明はケイ素とマグネシウムとから成る合金と酸とを
作用せしめて一般式SinH2n+2(nは正の整数)で表され
る水素化ケイ素を製造する方法において、該合金中に周
期律表における酸素、窒素及びケイ素を除く第IIIB、第
IVB、第VBまたは第VIB亜族の元素を、合金中のケイ素に
対して添加率(100×添加元素のg原子数/ケイ素のg
原子数)が0.5%〜20%の範囲で含有させる水素化ケイ
素の製造方法に存する。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for producing a silicon hydride represented by the general formula Si n H 2n + 2 (n is a positive integer) by reacting an alloy of silicon and magnesium with an acid. In the alloy, in the periodic table except for oxygen, nitrogen and silicon, IIIB,
Addition rate of element of IVB, VB or VIB subgroup to silicon in alloy (100 x g of added element / g of silicon)
The number of atoms is 0.5% to 20%.
本発明における、ケイ素合金と酸との反応は、水あるい
はアンモニア、ヒドラジン、エチルアミン、ヘキシルア
ミン、エチレンジアミン、ピペリジン、アニリン、ピリ
ジン等の含チッ素有機化合物、あるいはジエチルエーテ
ル、エチレングリコールジメチルエーテル、テトラヒド
ロフラン、ジオキサン、アニソール等のエーテル化合物
などの溶媒中もしくはその混合溶媒中にて行ない得る
が、これらの中では水、アンモニア、ヒドラジンが特に
好ましい。In the present invention, the reaction between the silicon alloy and the acid is carried out by water or ammonia, hydrazine, ethylamine, hexylamine, ethylenediamine, piperidine, aniline, nitrogen-containing organic compounds such as pyridine, or diethyl ether, ethylene glycol dimethyl ether, tetrahydrofuran, dioxane. It can be carried out in a solvent such as an ether compound such as anisole or a mixed solvent thereof, and among these, water, ammonia and hydrazine are particularly preferable.
酸としては、上述の溶媒中にて酸としてケイ素合金と作
用するものであればいかなるものでも良く、種々の無機
酸、あるいは有機酸を用い得る。例えば、水を溶媒とす
る場合には、塩化水素酸、臭化水素酸、フッ化水素酸、
硫酸、リン酸、酢酸、ギ酸、蓚酸などを、またアンモニ
アを溶媒とする場合には、塩化アンモニウム、臭化アン
モニウム、ロダン酸アンモニウムなどの化合物を、ヒド
ラジンを溶媒とする場合には、塩化ヒドラジルなどの化
合物が酸として用いられる。As the acid, any acid may be used as long as it acts as an acid in the above solvent with the silicon alloy, and various inorganic acids or organic acids can be used. For example, when water is used as the solvent, hydrochloric acid, hydrobromic acid, hydrofluoric acid,
Sulfuric acid, phosphoric acid, acetic acid, formic acid, oxalic acid, etc., when using ammonia as a solvent, compounds such as ammonium chloride, ammonium bromide, ammonium rhodate, and when using hydrazine as a solvent, hydrazyl chloride, etc. Is used as the acid.
更に、背景技術の項で述べたごとく、水溶媒系において
は、我々が提案しているようにエーテル化合物、炭化水
素、ハロゲン化炭化水素などの有機化合物を共存させる
ことがシランの収率上好ましい。Further, as described in the background art section, in the water solvent system, it is preferable in the yield of silane to coexist with an organic compound such as an ether compound, a hydrocarbon and a halogenated hydrocarbon as we have proposed. .
本発明におけるケイ素とマグネシウムとから成る合金と
は、Mg2Siに近い化学組成のものであり、通常、所定量
のケイ素とマグネシウムを水素あるいはアルゴン、ヘリ
ウムなどの不活性ガス雰囲気中、450℃以上にて焼成す
ることにより得られる。The alloy composed of silicon and magnesium in the present invention has a chemical composition close to that of Mg 2 Si, and usually contains a predetermined amount of silicon and magnesium in an inert gas atmosphere such as hydrogen or argon or helium at 450 ° C. or higher. It is obtained by firing at.
本発明は、この合金中に特定の第三成分元素を含有させ
ることに特徴を有するものである。すなわち本発明にお
いて用いられる第三成分とは、周期律表(新実験化学講
座、丸善株式会社発行(1977)に記載)における酸素、
窒素およびケイ素を除く第IIIB、第IVB、第VBまたは第V
IB亜族の元素であり、具体的には、Tl、In、Ga、Al、
B、Pb、Sn、Ge、C、Bi、Sb、As、P、Po、Te、Seおよ
びSである。これらの第三成分元素の添加方法は、種々
取り得るが、ケイ素とマグネシウムと第三成分元素とか
ら成る合金とする方法が最も好ましい。具体的には、例
えばケイ素とマグネシウムと第三成分元素とから成る
混合物を水素あるいは不活性ガス中にて焼成するか、あ
るいはケイ化マグネシウムと第三成分元素を、ケイ
素と第三成分とから成る合金(または化合物)(原料ケ
イ素中に本発明で規定する特定の第三成分が見掛け上は
じめから不純物として含有されているものでももちろん
かまわない)とマグネシウムを、マグネシウムと第三
成分とから成る合金(化合物)とケイ素をそれぞれに焼
成して得られる。これらの合金は各成分の単体から得ら
れるばかりでなく、他の元素との化合物を出発原料とし
ても得られる。例えばそれぞれの各酸化物を出発原料と
し、還元ガスの雰囲気下にて脱酸素反応及び合金製造反
応を同時に行なわせるなどの方法も採用できる。以上の
本発明における第三成分含有合金の製造温度は、450乃
至1200℃、好ましくは、500乃至1000℃の範囲である。
この他、第三成分元素をケイ化マグネシウムとただ単に
室温にて物理的に混合して用いることも可能であるが、
この場合には発明の効果が小さい。第三成分元素の添加
量は、該ケイ素合金中のケイ素に対して、表示される。The present invention is characterized by including a specific third component element in this alloy. That is, the third component used in the present invention is oxygen in the periodic table (described in New Experimental Chemistry Lecture, published by Maruzen Co., Ltd. (1977)),
IIIB, IVB, VB or V excluding nitrogen and silicon
An element of the IB subgroup, specifically, Tl, In, Ga, Al,
B, Pb, Sn, Ge, C, Bi, Sb, As, P, Po, Te, Se and S. Various methods can be used for adding these third component elements, but the method of forming an alloy containing silicon, magnesium and the third component element is most preferable. Specifically, for example, a mixture of silicon, magnesium and a third component element is fired in hydrogen or an inert gas, or magnesium silicide and the third component element are composed of silicon and a third component. An alloy (or compound) (of course, a specific third component defined in the present invention may be contained as an impurity from the beginning in the raw material silicon) may be used, magnesium, and an alloy composed of magnesium and the third component. It is obtained by firing (compound) and silicon respectively. These alloys can be obtained not only from the simple substance of each component, but also from a compound with another element as a starting material. For example, a method of using each oxide as a starting material and simultaneously performing a deoxidation reaction and an alloy production reaction in a reducing gas atmosphere can be adopted. The production temperature of the third component-containing alloy in the present invention is in the range of 450 to 1200 ° C, preferably 500 to 1000 ° C.
In addition to this, it is possible to use the third component element physically mixed with magnesium silicide at room temperature,
In this case, the effect of the invention is small. The addition amount of the third component element is indicated with respect to silicon in the silicon alloy.
すなわち、(添加元素のg-atms/ケイ素のg-atms)×100
を添加率と定義すれば、該添加率は0.5%〜20%、好ま
しくは1%〜10%である。That is, (g-atms of additive element / g-atms of silicon) x 100
Is defined as the addition rate, the addition rate is 0.5% to 20%, preferably 1% to 10%.
これより添加率が少いと、添加元素の効果が少なく、ま
たこれより添加率を大としてもきわだったSiH4とSi2H6
の割合変更の効果は得られない。If the addition rate is lower than this, the effect of the added element is small, and even if the addition rate is higher than this, SiH 4 and Si 2 H 6
The effect of changing the ratio of is not obtained.
また添加成分は2種以上であっても良く、ケイ素、マグ
ネシウムの他に本発明における範囲外の第三成分元素を
含有してても良い。Further, the additive component may be two or more kinds, and may contain a third component element outside the scope of the present invention in addition to silicon and magnesium.
ケイ素合金と酸との反応様式は、特に制限はなく、通常
行なわれている種々の方法を採用できる。例えば酸性水
溶液にケイ素合金を装入する。塩化アンモニウムを溶解
させたアンモニア溶液にケイ素合金を装入するなどの方
法があげられる。ケイ素合金と酸との使用割合は反応モ
ル当量で行なうことが経済上望ましいが、実際には酸の
使用量が過剰であることが水素化ケイ素の収率上好まし
い。例えば((H+/Mg2Si)モル比=4.0)以上、好まし
くは((H+/Mg2Si)モル比=4.4以上)である。The reaction mode between the silicon alloy and the acid is not particularly limited, and various commonly used methods can be adopted. For example, a silicon alloy is charged in an acidic aqueous solution. Examples of the method include charging a silicon alloy into an ammonia solution in which ammonium chloride is dissolved. Although it is economically desirable to use the silicon alloy and the acid in the reaction molar equivalents, it is actually preferable that the amount of the acid used is excessive in view of the yield of silicon hydride. For example, ((H + / Mg 2 Si) molar ratio = 4.0) or more, preferably ((H + / Mg 2 Si) molar ratio = 4.4 or more).
なお、反応温度、反応時間、使用溶媒などの細かい反応
条件は、すでに我々が前記出願に開示した方法、もしく
はそれ自体公知の条件に従ってそのまま実施することが
できる。The reaction temperature, reaction time, solvent used, and other detailed reaction conditions can be directly carried out according to the method already disclosed in the above-mentioned application by us, or known per se.
ケイ素とマグネシウムとから成る合金と酸との反応によ
り、水素化ケイ素を製造する方法に関する本発明は、マ
グネシウムとの合金と酸との反応により製造することの
できる他の金属水素化物、具体的にはゲルマニウムの水
素化物、リンの水素化物、アンチモンの水素化物、鉛の
水素化物などの製造にも容易に適用できる。The present invention relates to a method for producing silicon hydride by the reaction of an alloy consisting of silicon and magnesium with an acid, and the present invention relates to another metal hydride which can be produced by the reaction of an alloy with magnesium and an acid, specifically Can be easily applied to the production of germanium hydride, phosphorus hydride, antimony hydride, lead hydride and the like.
実施例 以下、本発明を実施例によってより具体的に説明する。EXAMPLES Hereinafter, the present invention will be described more specifically by way of examples.
〈実施例1〉 ケイ素粉末(三津和化学社製、純度99.9%以上、粒度20
0メッシュ以下)4.21g、マグネシウム末(和光純薬社
製、純度99.9%以上)7.29g、および鉛粉末(和光純薬
社製、特級、粒度200メッシュ以下)0.62g(Siの2mol%
に相当)から成る混合物を、磁製のルツボに入れ、アル
ゴン−水素の混合ガス中(水素含有量3vol.%)、650℃
にて4時間焼成した(焼成後、該合金を乳鉢にて粉砕
し、80メッシュ以下とした。)。<Example 1> Silicon powder (manufactured by Mitsuwa Chemical Co., Ltd., purity 99.9% or more, particle size 20)
4.21 g of magnesium powder (manufactured by Wako Pure Chemical Industries, purity 99.9% or more) 7.29 g, and lead powder (manufactured by Wako Pure Chemical Industries, special grade, particle size of 200 mesh or less) 0.62 g (2 mol% of Si)
) At a temperature of 650 ° C. in a mixed gas of argon and hydrogen (hydrogen content 3 vol.%).
(The alloy was crushed in a mortar to obtain 80 mesh or less after firing).
容量300mlの筒形セパラブルフラスコに、濃度20wt%の
塩酸水溶液200mlを装入した。水素ガス雰囲気中、この
塩酸水溶液に上記のケイ素合金6.32g(Siとして78.2mmo
l)を攪拌しながら40分間約0.16g/minの一定速度で加え
続けた。反応中の温度は0℃とし、該ケイ素合金の投入
終了後は反応液を室温にまで上昇させ、水素気流中にて
60分間そのままの状態で保持し、反応器中のSiH4、Si2H
6を完全に追出した。生成ガスは、液体チッ素温度で冷
却したトラップ中に捕集し、実験終了後捕集ガス中のSi
H4、Si2H6の量をガスクロマトグラフにより分析、定量
した。A tubular separable flask having a capacity of 300 ml was charged with 200 ml of a hydrochloric acid aqueous solution having a concentration of 20 wt%. 6.32 g of the above silicon alloy (78.2 mmo as Si) in this hydrochloric acid aqueous solution in a hydrogen gas atmosphere.
l) was added continuously with stirring at a constant rate of about 0.16 g / min for 40 minutes. The temperature during the reaction was set to 0 ° C., and after the addition of the silicon alloy was completed, the reaction solution was raised to room temperature, and the reaction mixture was heated in a hydrogen stream.
Hold it as it is for 60 minutes, and keep SiH 4 and Si 2 H in the reactor.
Completely eliminated 6 . The produced gas is collected in a trap cooled at the liquid nitrogen temperature, and after the end of the experiment, the Si in the collected gas is collected.
The amounts of H 4 and Si 2 H 6 were analyzed and quantified by gas chromatography.
SiH4、Si2H6の量はそれぞれ6.6mmol、11.4mmolであっ
た。これらSiH4とSi2H6の量は、反応に供したケイ化マ
グネシウム中のケイ素の37.6%に相当し、(SiH4/Si2H
6)モル比は0.29(ケイ素アトムベース)であった。The amounts of SiH 4 and Si 2 H 6 were 6.6 mmol and 11.4 mmol, respectively. The amounts of SiH 4 and Si 2 H 6 correspond to 37.6% of silicon in the magnesium silicide subjected to the reaction, and (SiH 4 / Si 2 H 6
6 ) The molar ratio was 0.29 (silicon atom base).
〈実施例2乃至7〉 実施例1において、鉛粉末のかわりに錫粉末(和光純薬
社製、200メッシュ以下)0.36g、ゲルマニウム粉末(和
光純薬社製、純度99.99%)0.22g、アルミニウム粉末
(純正化学社製、粒度250メッシュ)0.081g、ビスマス
粉末(添川理化学社製、純度99.99%、粒度200メッシュ
以下)0.63g、セレン粉末(和光純薬社製)0.24g、活性
炭(純正化学社製)0.036gを用いて、ケイ素合金を製造
した以外は、実施例1と同様に実験を行なった。ただし
活性炭を添加した場合は、合金の製造温度を950℃とし
た。<Examples 2 to 7> In Example 1, 0.36 g of tin powder (manufactured by Wako Pure Chemical Industries, Ltd., 200 mesh or less) instead of lead powder, 0.22 g of germanium powder (manufactured by Wako Pure Chemical Industries, purity 99.99%), aluminum Powder (manufactured by Junsei Chemical Co., Ltd., particle size 250 mesh) 0.081g, Bismuth powder (manufactured by Soegawa Rikagaku Co., purity 99.99%, particle size 200 mesh or less) 0.63g, Selenium powder (manufactured by Wako Pure Chemical Industries Ltd.) 0.24g, activated carbon (Junsei Kagaku) An experiment was conducted in the same manner as in Example 1 except that a silicon alloy was produced using 0.036 g (manufactured by the company). However, when activated carbon was added, the alloy production temperature was 950 ° C.
結果を第1表に示す。The results are shown in Table 1.
〈比較例1、2〉 実施例1において、鉛を添加することなくケイ素とマグ
ネシウムをそれぞれ650℃、950℃で焼成した以外は実施
例1と同様に実験を行った。<Comparative Examples 1 and 2> An experiment was performed in the same manner as in Example 1 except that silicon and magnesium were fired at 650 ° C and 950 ° C, respectively, without adding lead.
結果を第1表に示す。The results are shown in Table 1.
〈実施例8乃至14〉 容量300mlの筒形セパラブルフラスコに、濃度20wt%の
塩酸水溶液200mlおよびジエチルエーテル40mlを装入し
た。水素ガス雰囲気中、この混合液に実施例1乃至7に
用いたと同じケイ素合金をそれぞれ同じ量(Siとして7
8.2mmol)40分間かけて一定速度で加え続けた。反応を
ジエチルエーテルの還流下(35℃)にて行なった以外
は、実施例1と同様に実験を行なった。Examples 8 to 14 A tubular separable flask having a capacity of 300 ml was charged with 200 ml of a 20 wt% concentration hydrochloric acid aqueous solution and 40 ml of diethyl ether. In a hydrogen gas atmosphere, the same silicon alloy as that used in Examples 1 to 7 was added to this mixed solution in the same amount (7% as Si).
(8.2 mmol) was added at a constant rate over 40 minutes. An experiment was performed in the same manner as in Example 1 except that the reaction was performed under reflux of diethyl ether (35 ° C).
結果を第1表に示す。The results are shown in Table 1.
〈実施例15,16〉 ケイ素合金として、ケイ素4.21g、マグネシウム7.29gお
よび鉛のそれぞれ3.1g、0.2gから成る混合物を650℃に
て4時間焼成したものを用いた以外は実施例8と同様の
実験を行なった。<Examples 15 and 16> Same as Example 8 except that a mixture of 4.21 g of silicon, 7.29 g of magnesium and 3.1 g and 0.2 g of lead, respectively, was fired at 650 ° C. for 4 hours as the silicon alloy. The experiment was conducted.
結果を第1表に示す。The results are shown in Table 1.
〈実施例17,18,19〉 実施例8、9、11において、それぞれ鉛、錫、アルミニ
ウムを含む混合物を950℃にて4時間焼成し、これをケ
イ素合金として用いた以外は、実施例8、9、11と同様
に実験を行なった。<Examples 17, 18, and 19> Example 8 except that the mixture containing lead, tin, and aluminum was baked at 950 ° C. for 4 hours and used as a silicon alloy in Examples 8, 9, and 11. , 9 and 11 were conducted.
結果を第1表に示す。The results are shown in Table 1.
〈実施例20〉 ケイ素合金として、ケイ素4.21g、マグネシウム7.29g、
鉛0.62g、およびアルミニウム0.081gから成る混合物を6
50℃にて4時間焼成したものを用いた以外は実施例8と
同様に実験を行なった。<Example 20> As a silicon alloy, 4.21 g of silicon, 7.29 g of magnesium,
6 mixture of 0.62 g lead and 0.081 g aluminum
An experiment was conducted in the same manner as in Example 8 except that the one that was baked at 50 ° C. for 4 hours was used.
結果を第1表に示す。The results are shown in Table 1.
〈実施例21〉 予め650℃にて製造したケイ化マグネシウム(Mg2Si)1
1.5gと鉛0.62gとから成る混合物を更に650℃にて4時間
焼成した。実施例8において、このケイ素合金を反応に
用いた以外は、実施例8と同様に実験を行なった。<Example 21> Magnesium silicide (Mg 2 Si) 1 previously manufactured at 650 ° C
The mixture of 1.5 g and 0.62 g of lead was further calcined at 650 ° C. for 4 hours. An experiment was conducted in the same manner as in Example 8 except that this silicon alloy was used in the reaction.
結果を第1表に示す。The results are shown in Table 1.
〈実施例22,23〉 マグネシウムとゲルマニウムから成る合金(化学組成Mg
2Ge)0.37g、ケイ素4.21gおよびマグネシウム7.14gとか
ら成る混合物を650℃にて4時間焼成したもの、および
ケイ素とアルミニウムから成る合金(化学組成Si 0.95
Al 0.05)1.68g、ケイ素2.61gおよびマグネシウム7.29g
を650℃にて4時間焼成したものを用いた以外は実施例
8と同様に実験を行なった。<Examples 22 and 23> Alloy composed of magnesium and germanium (chemical composition Mg
2 Ge) 0.37 g, silicon 4.21 g, and magnesium 7.14 g, which were calcined at 650 ° C. for 4 hours, and an alloy of silicon and aluminum (chemical composition Si 0.95
Al 0.05) 1.68g, silicon 2.61g and magnesium 7.29g
An experiment was performed in the same manner as in Example 8 except that the product obtained by firing at 650 ° C. for 4 hours was used.
結果を第1表に示す。The results are shown in Table 1.
〈比較例3、4〉 実施例8において、ケイ素とマグネシウムを650℃、あ
るいは950℃にて4時間焼成したものをケイ素合金とし
て用いた以外は実施例8と同様に実験を行なった。<Comparative Examples 3 and 4> An experiment was performed in the same manner as in Example 8 except that silicon and magnesium obtained by firing at 650 ° C. or 950 ° C. for 4 hours in Example 8 were used as the silicon alloy.
〈実施例24乃至30〉 容量300mlの筒形セパラブルフラスコに、塩化アンモニ
ア粉末9.7gと実施例1,2,4,5,6,17及び19で用いたと同じ
ケイ素合金をそれぞれ所定量(Siとして37.0mmol)良く
攪拌、混合させたものを仕込んだ。反応器にはドライア
イス温度で冷却した還流器を取付け、水素雰囲気中にて
アンモニアを一定速度1.0g/minで30分間供給し、アンモ
ニアを還流(−33℃)されながら反応を行なった。アン
モニアの供給終了後、更に30分間そのままの状態を保持
した。生成したシランガスは、塩酸水洗浄により同伴の
アンモニアと分離した後、液体チッ素温度で冷却したト
ラップ中に捕集した。実験終了後、捕集ガス中のSiH4、
Si2H6の量をガスクロマトグラフにより分析、定量し
た。<Examples 24 to 30> In a tubular separable flask having a capacity of 300 ml, 9.7 g of ammonium chloride powder and the same silicon alloy as those used in Examples 1, 2, 4, 5, 6, 17 and 19 were each given a predetermined amount (Si. (37.0 mmol) was thoroughly stirred and mixed. A reflux condenser cooled at dry ice temperature was attached to the reactor, and ammonia was supplied at a constant rate of 1.0 g / min for 30 minutes in a hydrogen atmosphere to carry out the reaction while refluxing the ammonia (-33 ° C). After the supply of ammonia was completed, the state was maintained for another 30 minutes. The produced silane gas was separated from the accompanying ammonia by washing with hydrochloric acid, and then collected in a trap cooled at liquid nitrogen temperature. After the experiment, SiH 4 in the collected gas,
The amount of Si 2 H 6 was analyzed and quantified by gas chromatography.
結果を第1表に示す。The results are shown in Table 1.
〈比較例5、6〉 実施例24において、ケイ素とマグネシウムを650℃ある
いは950℃にて4時間焼成したものをケイ素合金として
用いた以外は実施例24と同様に実験を行なった。<Comparative Examples 5 and 6> An experiment was performed in the same manner as in Example 24 except that silicon and magnesium obtained by firing at 650 ° C. or 950 ° C. for 4 hours in Example 24 were used as the silicon alloy.
結果を第1表に示す。The results are shown in Table 1.
〈実施例31〉 容量300mlの筒形セパラブルフラスコに、アンモニア50g
を仕込み、これに塩化アンモニウム9.7gを溶解させた。
次に実施例5で用いたBiを含むケイ素合金を攪拌しなが
ら30分間、一定速度で加え続けた。投入した合金量はSi
として37.0mmolであり、反応はアンモニアの還流下に行
なった。その他は実施例24と同様に実験を行なった。<Example 31> In a cylindrical separable flask having a capacity of 300 ml, 50 g of ammonia was added.
Was charged, and 9.7 g of ammonium chloride was dissolved in this.
Next, the silicon alloy containing Bi used in Example 5 was continuously added at a constant rate for 30 minutes while stirring. The amount of alloy charged is Si
As 37.0 mmol and the reaction was carried out under reflux of ammonia. Others were the same as in Example 24.
結果を第1表に示す。The results are shown in Table 1.
〈比較例7〉 実施例31において、ケイ素とマグネシウムを650℃にて
4時間焼成したものを用いた以外は実施例31と同様に実
験を行なった。<Comparative Example 7> An experiment was performed in the same manner as in Example 31 except that silicon and magnesium obtained by firing at 650 ° C for 4 hours were used.
結果を第1表に示す。The results are shown in Table 1.
〈比較例8、9〉 実施例26において、ケイ素、マグネシウムおよびアルミ
ニウムから成る混合物(原子比Mg/Si/Al=2/1/1)、ま
たケイ素、マグネシウム、アルミニウムおよび鉄から成
る混合物(原子比Mg/Si/Al/Fe=3/6/8/1)をそれぞれ65
0℃にて4時間焼成したものを用いた以外は実施例26と
同様に実験を行い、次の結果を得た。<Comparative Examples 8 and 9> In Example 26, a mixture of silicon, magnesium and aluminum (atomic ratio Mg / Si / Al = 2/1/1) and a mixture of silicon, magnesium, aluminum and iron (atomic ratio) Mg / Si / Al / Fe = 3/6/8/1) 65
An experiment was conducted in the same manner as in Example 26 except that the one that was baked at 0 ° C. for 4 hours was used, and the following result was obtained.
発明の効果 以上のごとく、本発明は、ケイ素とマグネシウムを含む
合金と酸との反応により水素化ケイ素を製造する方法に
おいて、該合金中に、周期律表における第IIIB、第IV
B、第VBまたは第VIB亜族の元素を含有させることによ
り、Si2H6収率を大幅に向上することが可能であり、か
つなかんずくSiH4とSi2H6の生産割合を任意にコントロ
ールすることができるため、プロセスの経済性が大幅に
改善される。 Effects of the Invention As described above, the present invention is a method for producing silicon hydride by the reaction of an alloy containing silicon and magnesium with an acid, in the alloy, IIIB, IV in the periodic table
By containing B, VB or VIB subgroup elements, the Si 2 H 6 yield can be significantly improved, and above all, the production ratio of SiH 4 and Si 2 H 6 can be arbitrarily controlled. Therefore, the economic efficiency of the process is greatly improved.
すなわち現在、半導体用シリコンの製造において、その
目的性能、生産規模、生産速度、対象デバイスの種類等
によって原料たるSiH4とSi2H6は、たとえばCVD原料とし
ての特性一つにしても格段に異なり、決して等価的に使
用されているものでない。したがって上記各要素を勘案
して、ある場合にはSiH4がより望まれ、また他の場合に
はSi2H6がより望まれる。本発明によれば、かかる場
合、その要求に応じて任意に生産割合を変更することが
できるものであるから、その産業上の意義はきわめて大
きいといわねばならない。That is, currently, in the manufacture of silicon for semiconductors, SiH 4 and Si 2 H 6 which are raw materials depending on the target performance, production scale, production speed, type of target device, etc. Unlike, it is never used equivalently. Therefore, considering the above-mentioned factors, in some cases SiH 4 is more desirable, and in other cases Si 2 H 6 is more desirable. According to the present invention, in such a case, the production ratio can be arbitrarily changed according to the demand, so it must be said that its industrial significance is extremely large.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−166216(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-60-166216 (JP, A)
Claims (5)
とを溶媒中で作用せしめて一般式 SinH2n+2(nは1以
上の正の整数)で表される水素化ケイ素を製造する方法
において、該合金中に周期律表における酸素、窒素及び
ケイ素を除く第IIIB、第IVB、第VBまたは第VIB亜族の元
素を、合金中のケイ素に対して添加率(100×添加元素
のg原子数/ケイ素のg原子数)が0.5%〜20%の範囲
で含有させることを特徴とする水素化ケイ素の製造方
法。1. A silicon hydride represented by the general formula Si n H 2n + 2 (n is a positive integer of 1 or more) is produced by reacting an alloy of silicon and magnesium and an acid in a solvent. In the method, in the alloy, oxygen, nitrogen and silicon in the Periodic Table, elements IIIB, IVB, VB or VIB subgroups are added to silicon in the alloy at an addition rate (100 × additional element A method for producing silicon hydride, characterized in that the ratio (g atom number / g atom number of silicon) is in the range of 0.5% to 20%.
請求の範囲第(1)項に記載の方法。2. The method according to claim 1, wherein the alloy and the acid are allowed to act in a water solvent.
にて作用させる特許請求の範囲第(1)項に記載の方
法。3. The method according to claim 1, wherein the alloy and the acid are allowed to act in a mixed solvent of an organic solvent and water.
ジンの溶媒中にて作用させる特許請求の範囲第(1)項
に記載の方法。4. The method according to claim 1, wherein the alloy and the acid are allowed to act in a solvent of ammonia or hydrazine.
囲第(1)項に記載の方法。5. The method according to claim 1, wherein the acid is hydrohalic acid.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60193250A JPH078722B2 (en) | 1985-09-03 | 1985-09-03 | Method for producing silicon hydride |
AU62004/86A AU585641B2 (en) | 1985-09-03 | 1986-08-27 | Process for producing silanes |
CA000516999A CA1266161A (en) | 1985-09-03 | 1986-08-28 | Process for producing silanes |
KR1019860007233A KR900000445B1 (en) | 1985-09-03 | 1986-08-30 | Method for preparing silane |
EP86306767A EP0215606B1 (en) | 1985-09-03 | 1986-09-02 | Process for producing silanes |
DE8686306767T DE3671204D1 (en) | 1985-09-03 | 1986-09-02 | METHOD FOR PRODUCING SILANES. |
US07/068,759 US4808392A (en) | 1985-09-03 | 1987-06-29 | Process for producing silanes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60193250A JPH078722B2 (en) | 1985-09-03 | 1985-09-03 | Method for producing silicon hydride |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6256314A JPS6256314A (en) | 1987-03-12 |
JPH078722B2 true JPH078722B2 (en) | 1995-02-01 |
Family
ID=16304827
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60193250A Expired - Lifetime JPH078722B2 (en) | 1985-09-03 | 1985-09-03 | Method for producing silicon hydride |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH078722B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112723359B (en) * | 2020-12-30 | 2022-02-08 | 烟台万华电子材料有限公司 | Method and system for preparing disilane by reaction of multi-metal silicide and ammonium chloride |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60166216A (en) * | 1984-02-10 | 1985-08-29 | Mitsui Toatsu Chem Inc | Production of silicon hydride |
-
1985
- 1985-09-03 JP JP60193250A patent/JPH078722B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6256314A (en) | 1987-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6989457B2 (en) | Chemical vapor deposition precursors for deposition of tantalum-based materials | |
CN105899478A (en) | Method for producing fluorinated hydrocarbon | |
JPH078722B2 (en) | Method for producing silicon hydride | |
US5061672A (en) | Active mass for making organohalosilanes | |
JPS63233007A (en) | Production of chloropolysilane | |
EP0215606B1 (en) | Process for producing silanes | |
JPH0714811B2 (en) | Method for producing silicon hydride | |
JPH0714809B2 (en) | Method for producing silicon hydride | |
JPH0714810B2 (en) | Method for producing silicon hydride | |
JPH0714808B2 (en) | Method for producing silicon hydride | |
JP4131575B2 (en) | Production method of benzophenone imine | |
JPH0788211B2 (en) | Method for producing silanes | |
JPS6389414A (en) | Production of chloropolysilane | |
JP3620909B2 (en) | Process for producing silanes | |
JPH09142824A (en) | Production of silane compounds | |
JP2613259B2 (en) | Method for producing trichlorosilane | |
JP2615798B2 (en) | Method for producing monosilane | |
JPS60141614A (en) | Preparation of silicon hydride | |
JPH0328367B2 (en) | ||
JPH01301684A (en) | Production of organometallic compound | |
CN113087728A (en) | Copper complex | |
CN118791520A (en) | Synthesis method of tri (trimethylsilyl) phosphate | |
CN117024471A (en) | Preparation method of 2, 5-dimethylolfuran silane derivative | |
JPS6158806A (en) | Manufacture of high-purity hexagonal boron nitride powder | |
JPH0832670B2 (en) | Method for producing suberonitrile |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |