JPH0782866B2 - Molten carbonate fuel cell - Google Patents
Molten carbonate fuel cellInfo
- Publication number
- JPH0782866B2 JPH0782866B2 JP60216576A JP21657685A JPH0782866B2 JP H0782866 B2 JPH0782866 B2 JP H0782866B2 JP 60216576 A JP60216576 A JP 60216576A JP 21657685 A JP21657685 A JP 21657685A JP H0782866 B2 JPH0782866 B2 JP H0782866B2
- Authority
- JP
- Japan
- Prior art keywords
- fuel cell
- molten carbonate
- spacer
- electrolyte layer
- separator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/14—Fuel cells with fused electrolytes
- H01M2008/147—Fuel cells with molten carbonates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0048—Molten electrolytes used at high temperature
- H01M2300/0051—Carbonates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Description
【発明の詳細な説明】 〔発明の技術分野〕 本発明は、単位電池を複数積層して構成される溶融炭酸
塩型燃料電池に関する。TECHNICAL FIELD OF THE INVENTION The present invention relates to a molten carbonate fuel cell constituted by stacking a plurality of unit cells.
従来より、高効率のエネルギ変換装置として燃料電池が
広く知られている。燃料電池は、使用する電解質層によ
ってリン酸型、溶融炭酸塩型、固体電解質型に分類され
る。Conventionally, a fuel cell has been widely known as a highly efficient energy conversion device. Fuel cells are classified into phosphoric acid type, molten carbonate type, and solid electrolyte type depending on the electrolyte layer used.
このような燃料電池の中で、特に発電熱効率の高い溶融
炭酸塩型燃料電池は、通常、第4図に示すように、燃料
電池本体Xと、この燃料電池本体Xに燃料ガスおよび酸
化剤ガスを導く図示しないマニホールドとで構成されて
いる。Among such fuel cells, a molten carbonate fuel cell having particularly high heat generation efficiency is usually a fuel cell main body X and a fuel gas and an oxidant gas in the fuel cell main body X as shown in FIG. And a manifold (not shown) that guides the.
燃料電池本体Xは、個々の単位電池1の出力が微弱なた
め、通常は単位電池1を導電性のセパレータ2を介して
複数積層することによって構成される。Since the output of each unit cell 1 is weak, the fuel cell main body X is usually formed by stacking a plurality of unit cells 1 with a conductive separator 2 interposed therebetween.
そして各単位電池1は、一対の多孔質電極板、つまり燃
料極3aと、酸化剤電極3bとの間にアルカリ炭酸塩の電解
質およびこれを保持する保持材からなる電解質層4を設
けて構成される。各電極板3a,3bは、長方形の板状体か
らなり、長手方向が互いに直交するように配置されてい
る。電解質層4は、これら各電極板の長手方向長さを縦
横寸法とする板状体からなるものである。Each unit cell 1 is configured by providing a pair of porous electrode plates, that is, an electrolyte layer 4 composed of an electrolyte of alkali carbonate and a holding material for holding the electrolyte between the fuel electrode 3a and the oxidizer electrode 3b. It Each of the electrode plates 3a and 3b is formed of a rectangular plate-shaped body and is arranged so that the longitudinal directions thereof are orthogonal to each other. The electrolyte layer 4 is composed of a plate-shaped body whose longitudinal and lateral dimensions are the longitudinal lengths of these electrode plates.
セパレータ2は、導電性の材料からなる板状体の両面
に、両端部に所定幅のフランジ面6a,6bを残して互いに
直交する方向に延びる大溝7a,7bを形成するとともに、
これら大溝7a,7bの各底面部にそれぞれ大溝と同一方向
に延びる複数の溝8a,8bを設けたものとなっている。大
溝7a,7bは、燃料極3a、酸化剤極3bが、それぞれ丁度嵌
合するような深さおよび幅を有している。したがって、
燃料電池本体Xは、単位電池1とセパレータ2とを交互
に積層すると、電解質層4の一方の面とこの面に対向す
るフランジ面6a,6bとが重合し、電解質層4の他方の面
とこの面に対向するフランジ面6c,6dとが重合する。The separator 2 has large grooves 7a, 7b extending in directions orthogonal to each other while leaving flange surfaces 6a, 6b of predetermined widths at both ends on both surfaces of a plate-shaped body made of a conductive material.
A plurality of grooves 8a and 8b extending in the same direction as the large grooves are provided on the bottom surfaces of the large grooves 7a and 7b, respectively. The large grooves 7a and 7b have a depth and a width so that the fuel electrode 3a and the oxidant electrode 3b are exactly fitted to each other. Therefore,
In the fuel cell main body X, when the unit cells 1 and the separators 2 are alternately laminated, one surface of the electrolyte layer 4 and the flange surfaces 6a and 6b facing this surface are polymerized, and the other surface of the electrolyte layer 4 is formed. The flange surfaces 6c and 6d facing this surface overlap.
このような燃料電池を500〜750℃に昇温すると、電解質
層4の炭酸塩が溶融状態になり、多孔質の燃料極3aおよ
び酸化剤極3bに僅かにしみ込み。この状態で溝8bで構成
されるガス流路に燃料ガスPを導入し、溝8aで構成され
るガス流路に酸化剤ガスQを導入すると、各ガスは各電
極板に拡散されて電極、ガス、および溶融炭酸塩からな
る三相界面での反応に供される。このとき、燃料ガスP
と酸化剤ガスQとは、前述した電解質層4とフランジ面
6a〜6dとの重合部にしみ出た溶融炭酸塩で形成されるウ
ェットシール部によって分離される。When the temperature of such a fuel cell is raised to 500 to 750 ° C., the carbonate of the electrolyte layer 4 becomes in a molten state and slightly penetrates the porous fuel electrode 3a and the oxidant electrode 3b. In this state, when the fuel gas P is introduced into the gas passage formed by the groove 8b and the oxidant gas Q is introduced in the gas passage formed by the groove 8a, each gas is diffused to each electrode plate and the electrode, It is subjected to a reaction at a three-phase interface consisting of gas and molten carbonate. At this time, the fuel gas P
And the oxidant gas Q are the above-mentioned electrolyte layer 4 and the flange surface.
6a to 6d are separated by a wet seal part formed of molten carbonate exuded in the polymerization part.
このような従来の溶融炭酸塩型燃料電池においては、電
解質層4に積層体の自重や締付け力が直接加わる構造と
なっていた。このため、電解質層4には、これら加重に
耐え得るような圧縮強さが必要であった。In such a conventional molten carbonate fuel cell, the self-weight of the laminate and the tightening force are directly applied to the electrolyte layer 4. Therefore, the electrolyte layer 4 needs to have a compressive strength that can withstand these loads.
電解質層4の圧縮強さを高めるための提案は、種々なさ
れているが、最も効果的であるのは、電解質層4中の保
持材含有量を増すことである。Various proposals have been made for increasing the compressive strength of the electrolyte layer 4, but the most effective one is to increase the content of the holding material in the electrolyte layer 4.
しかしながら、電解質層の保持材含有量を増すと、電解
質層のイオン伝導度が低下し、電池性能を悪化させると
いう問題がある。また、このように保持材含有量を増加
させると、電池運転中での保持材の粒成長反応による比
表面積の低下が無視できなくなり、運転初期には十分な
圧縮強さでも、経時的な強度低下を招くという問題もあ
った。However, when the content of the holding material in the electrolyte layer is increased, there is a problem that the ionic conductivity of the electrolyte layer is lowered and the battery performance is deteriorated. Further, when the content of the holding material is increased in this way, the decrease in the specific surface area due to the grain growth reaction of the holding material during the operation of the battery cannot be ignored, and even if the compressive strength is sufficient at the beginning of the operation, the strength over time is increased. There was also the problem of causing a decline.
そこで、たとえばUSP3723186号で提案されているよう
に、ウェットシール部を形成する電解質層の周縁部の保
持材含有量を中心部のそれよりも増加させ、電池性能を
低下させることなく圧縮強さを高めるのも一つの方策で
ある。Therefore, for example, as proposed in USP 3723186, the content of the holding material in the peripheral portion of the electrolyte layer forming the wet seal portion is increased more than that in the central portion, and the compressive strength is reduced without lowering the battery performance. One way to increase it is.
しかしながら、このように電解質層の周縁部と中心部と
の保持材含有量を異ならせると、周縁部と中心部との熱
膨張の程度に差ができるため、温度サイクルに伴う熱応
力で電解質層に貫通割れが生じてしまい、反応ガスの交
差混合が生じてしまうという問題があった。However, when the holding material contents of the peripheral portion and the central portion of the electrolyte layer are made to differ in this way, the degree of thermal expansion between the peripheral portion and the central portion can be different, and therefore the electrolyte layer is affected by thermal stress due to the temperature cycle. There was a problem that through-cracking occurred in the resin and cross-mixing of the reaction gases occurred.
また、上述したいずれの燃料電池においても、ウェット
シールを電解質である溶融炭酸塩によって形成している
ため、ウェットシール部を介して電解質が移動逸散して
しまい、経時的にシール性能や電池性能が低下してしま
うという問題もあった。Further, in any of the fuel cells described above, since the wet seal is formed of molten carbonate which is the electrolyte, the electrolyte migrates and dissipates through the wet seal portion, and the seal performance and the cell performance over time. There was also a problem that the value would decrease.
本発明は、このような事情に基づきなされたもので、そ
の目的とするところは、電池性能をなんら低下させるこ
となく、積層体の十分な圧縮強さを確保することがで
き、しかもシール部の経時的安定性に優れた溶融炭酸塩
型燃料電池を提供することにある。The present invention has been made based on such circumstances, and an object of the present invention is to ensure a sufficient compressive strength of a laminate without lowering battery performance at all, and further It is intended to provide a molten carbonate fuel cell excellent in stability over time.
本発明は、溶融炭酸塩電解質層の両面に一対の多孔質電
極を配してなる単位電池と導電性のセパレータとを交互
に積層してなる燃料電池本体を備えた溶融炭酸塩型燃料
電池において、炭酸塩に対して化学的に安定で、かつ非
電子伝導性の酸化物セラミックで環状に形成され、積層
方向に隣接する前記セパレータの周縁部間に前記単位電
池を囲繞する如く挿設されて前記溶融炭酸塩電解質層に
加わる荷重を抑制するスペーサと、このスペーサと前記
セパレータとの間に介挿されて両者間をシールする炭酸
塩とは異なる材質のシール材とを具備してなることを特
徴としている。The present invention relates to a molten carbonate fuel cell including a fuel cell main body formed by alternately laminating a unit cell formed by arranging a pair of porous electrodes on both surfaces of a molten carbonate electrolyte layer and a conductive separator. Formed of an oxide ceramic that is chemically stable with respect to carbonates and non-electroconductive, and is formed so as to surround the unit battery between the peripheral portions of the separators adjacent in the stacking direction. A spacer for suppressing a load applied to the molten carbonate electrolyte layer; and a sealing material made of a material different from carbonate that is interposed between the spacer and the separator and seals between the spacer and the separator. It has a feature.
本発明によれば、セパレータとセパレータとの間に炭酸
塩に対して化学的に安定で、かつ非電子伝導性の酸化物
セラミックで形成されたスペーサを設けているので、従
来、電解質層に加わっていた圧力をスペーサで受けるこ
とができる。したがって、電解質層に従来のような高い
圧縮強さを持たせる必要がなくなるので、電解質層の保
持材含有量は電解質を保持できる必要最小限度の量で済
む。このため、イオン伝導度の低下、温度サイクルによ
る貫通割れの発生などの諸問題を生じることなく、単位
電池の大形化、積層数の増加による大出力化を図ること
ができる。According to the present invention, since a spacer formed of an oxide ceramic that is chemically stable with respect to carbonate and is non-electroconductive is provided between the separators, it has been conventionally added to the electrolyte layer. The existing pressure can be received by the spacer. Therefore, since it is not necessary to give the electrolyte layer a high compressive strength as in the conventional case, the content of the holding material in the electrolyte layer is the minimum necessary amount capable of holding the electrolyte. Therefore, it is possible to increase the size of the unit cell and increase the output by increasing the number of stacked layers without causing various problems such as a decrease in ionic conductivity and occurrence of penetration cracking due to temperature cycling.
また、本発明では、セパレータとスペーサとの間に介挿
されるシール材を炭酸塩以外の材質のもので形成してい
るので、電解質を完全にシールすることができ、電解質
の蒸発損失等による気密性の経時的な低下を生じること
がない。Further, in the present invention, since the sealing material interposed between the separator and the spacer is made of a material other than carbonate, the electrolyte can be completely sealed and the airtightness due to the evaporation loss of the electrolyte or the like can be achieved. There is no decrease in sex over time.
以下、図面を参照しながら、本発明の一実施例について
説明する。An embodiment of the present invention will be described below with reference to the drawings.
第1図は一実施例を示す図であり、従来と特に異なる点
は、単位電池11の周囲を環状のスペーサ12で囲繞した点
と、このスペーサとセパレータ13との接触部分にシール
手段であるガラスを介在させて、セパレータ13の周縁部
とスペーサとの間のウェットシール部を形成したことで
ある。FIG. 1 is a diagram showing an embodiment, and the points that are particularly different from the conventional ones are that a unit battery 11 is surrounded by an annular spacer 12, and sealing means is provided at a contact portion between the spacer and the separator 13. That is, the wet seal portion between the peripheral portion of the separator 13 and the spacer is formed with the glass interposed.
すなわち、単位電池11を構成する燃料極14aと酸化剤極1
4bとは、それぞれの長辺が電解質層16の縦横寸法と略一
致しており、かつ長手方向が互いに直交するように配置
されている。That is, the fuel electrode 14a and the oxidizer electrode 1 that form the unit cell 11
4b are arranged such that their long sides substantially match the vertical and horizontal dimensions of the electrolyte layer 16 and their longitudinal directions are orthogonal to each other.
セパレータ13は、反応ガスの流路を形成する機能と単位
電池11間の電気的な接続機能とを備えたもので、導電性
材料からなる板状体の両面に、両端部に所定幅のフラン
ジ面17a,17bおよび17c,17dを残して互いに直交する方向
に延びる複数の溝18a,18bを設けるとともに、上記フラ
ンジ面17a〜17dに、フランジ面17a〜17dの周縁部を残し
てそれぞれ突条19a,19b,19c,19dを設けたものとなって
いる。The separator 13 has a function of forming a flow path of a reaction gas and an electrical connection function between the unit batteries 11, and has a flange of a predetermined width at both ends on both sides of a plate-like body made of a conductive material. A plurality of grooves 18a, 18b extending in the directions orthogonal to each other are provided while leaving the surfaces 17a, 17b and 17c, 17d, and the flange surfaces 17a to 17d are provided with ridges 19a, respectively, leaving the peripheral portions of the flange surfaces 17a to 17d. , 19b, 19c, 19d are provided.
スペーサ12は、炭酸塩に対して化学的に安定で、かつ非
電子伝導性であるち密質のアルミナを角形環状に形成し
たものである。スペーサ12は、その外形の縦横寸法が、
セパレータ13の寸法と略等しく、また、その内形の縦横
寸法が、電解質層16の寸法より僅か大きくなるように形
成され、さらにその厚みが後述するように組立て直後の
単位電池11の厚みよりも僅か薄くなるように形成されて
いる。The spacer 12 is formed by forming dense alumina, which is chemically stable with respect to carbonate and is non-electron conductive, into a square ring shape. The spacer 12 has a vertical and horizontal dimension of its outer shape,
The dimensions of the separator 13 are substantially equal to each other, and the vertical and horizontal dimensions of the inner shape are formed to be slightly larger than the dimensions of the electrolyte layer 16, and the thickness thereof is greater than the thickness of the unit battery 11 immediately after assembly as described later. It is formed to be slightly thinner.
これら単位電池11、スペーサ12およびセパレータ13を積
層組立すると、セパレータ13の突条19c,19d間に燃料極1
4aが、また突条19a,19b間に酸化剤極14bがそれぞれ嵌合
され、電解質層16が突条19a,19c間および突条19b,19d間
に配置され、さらにセパレータ13のフランジ面17a,17b
と17c,17dとの間にスペーサ12が配置されて燃料電池本
体Yが形成される。この状態ではスペーサ12の厚みが単
位電池11の厚みよりも僅か薄いので、スペーサ12とセパ
レータ13との間には0.1〜0.15mmの僅かな隙間ができ
る。この隙間にシール体である粉末状のガラスを充填す
る。この状態で燃料電池本体Yを昇温し、溶融した電解
質層の一部が電極側に移動することによって電解質層16
と各電極板とのなじみが良好になると、上記の隙間が減
少し、第2図に示すようにスペーサ12とセパレータ13と
は殆ど密着することになる。一方、スペーサ12とセパレ
ータ13との間に充填された粉末状のガラスは、燃料電池
本体Yの温度上昇とともに、溶融状態となり、第2図に
示す如く、スペーサ12とセパレータ13との間でウェット
シール部Wを形成する。したがって、溶融炭酸塩はこの
ウェットシール部Wを介して完全に密閉され、炭酸塩の
移動逸散を抑えることができる。また、積層方向の荷重
は、機械的強度の高いセパレータ13とスペーサ12とで受
けるため、電解質層16に圧力が加わることはない。When the unit cell 11, the spacer 12 and the separator 13 are stacked and assembled, the fuel electrode 1 is formed between the protrusions 19c and 19d of the separator 13.
4a, the oxidant electrode 14b is fitted between the protrusions 19a, 19b, respectively, the electrolyte layer 16 is disposed between the protrusions 19a, 19c and between the protrusions 19b, 19d, further the flange surface 17a of the separator 13, 17b
The spacer 12 is disposed between the fuel cell body 17 and the fuel cell body 17c. In this state, the thickness of the spacer 12 is slightly smaller than the thickness of the unit battery 11, so that a small gap of 0.1 to 0.15 mm is formed between the spacer 12 and the separator 13. The gap is filled with powdery glass which is a sealing body. In this state, the temperature of the fuel cell body Y is raised, and a part of the melted electrolyte layer moves to the electrode side, whereby the electrolyte layer 16
When the conformity with each electrode plate is improved, the above-mentioned gap is reduced, and the spacer 12 and the separator 13 are almost in close contact with each other as shown in FIG. On the other hand, the powdery glass filled between the spacer 12 and the separator 13 becomes in a molten state as the temperature of the fuel cell main body Y rises, and as shown in FIG. The seal portion W is formed. Therefore, the molten carbonate is completely sealed via the wet seal portion W, and the migration of carbonate can be suppressed. Further, since the load in the stacking direction is received by the separator 13 and the spacer 12 having high mechanical strength, no pressure is applied to the electrolyte layer 16.
なお、この実施例は燃料電池本体Yの側面に外部マニホ
ールドを添設するタイプのものであるが、このタイプの
ものは、積層体の周面とマニホールドとの気密部を、電
池運転温度で塑性変形する塑性変形材料と、この材料の
保持層と、電気絶縁層とで構成している。ところが、従
来は塑性変形材料が積層体の周面に沿って露呈した電解
質層と直接接触するため、塑性変形材料として電解質と
同組成のものしか使用できなかった。このため、ジルコ
ニアやアルミナ等で形成された電気絶縁層が溶融炭酸塩
の強力な腐蝕力によって徐々に冒され、隣接する単位電
池間に漏洩電流が流れたり、電解質をこの腐蝕部に引張
り込んで電解質層の抵抗値を高めたりすることがあっ
た。In this embodiment, an external manifold is attached to the side surface of the fuel cell main body Y. In this type, the airtight portion between the peripheral surface of the laminate and the manifold is plastic at the cell operating temperature. It is composed of a plastically deformable material that deforms, a holding layer of this material, and an electrical insulating layer. However, conventionally, since the plastically deformable material is in direct contact with the electrolyte layer exposed along the peripheral surface of the laminate, only the plastically deformable material having the same composition as the electrolyte can be used. For this reason, the electrical insulating layer formed of zirconia, alumina, etc. is gradually affected by the strong corrosive force of the molten carbonate, causing a leakage current to flow between adjacent unit cells or pulling the electrolyte into this corroded part. The resistance value of the electrolyte layer was sometimes increased.
しかしながら、本実施例では、単位電池11の周囲をスペ
ーサ12で取囲み、さらに、スペーサ12とセパレータ13と
のウェットシールがガラスであるため、積層端面に炭酸
塩が直接露呈することがない。つまり、気密部の塑性変
形材料と電解質層とが直接接触することがないので、塑
性変形材料に電解質とは異なる材料、たとえばガラスな
どを用いることができる。したがって、前述した漏洩電
流や電解質の腐蝕部への引張り込みなどの問題も解決す
ることができる。However, in this embodiment, since the periphery of the unit battery 11 is surrounded by the spacer 12 and the wet seal between the spacer 12 and the separator 13 is glass, the carbonate is not directly exposed on the laminated end surface. That is, since the plastically deformable material in the airtight portion does not come into direct contact with the electrolyte layer, a material different from the electrolyte, such as glass, can be used as the plastically deformable material. Therefore, it is possible to solve the problems such as the leakage current and the pulling of the electrolyte into the corroded portion.
なお、本発明は上記実施例に限定されるものではない。The present invention is not limited to the above embodiment.
例えば、上記実施例ではスペーサとしてち密質のものを
用いたが、アルミナ多孔質体(例えば平均孔径1μm、
空孔率50%)を溶融炭酸リチウム中で処理して表面をリ
チウムアルミネート化し、これにホウ酸ガラスを溶融含
浸してシール手段を備えたスペーサを形成し用いるよう
にしても良い。この他、スペーサとしては、Al2O3の代
わりにZrO2用いることもできる。For example, although a dense spacer is used as the spacer in the above embodiment, a porous alumina material (for example, an average pore diameter of 1 μm,
The porosity of 50%) may be treated in molten lithium carbonate to convert the surface into lithium aluminate, which may be melt impregnated with borate glass to form a spacer having a sealing means. In addition, ZrO 2 can be used as the spacer instead of Al 2 O 3 .
また、シール材として上記実施例では粉末状のガラスを
用いたが、ZrO2,Al2O3粉末やAl2O3繊維と混合した板状
体を用いるようにしても良い。Although powdery glass was used as the sealing material in the above-mentioned embodiment, a plate-like body mixed with ZrO 2 , Al 2 O 3 powder or Al 2 O 3 fiber may be used.
また、シール手段は、ガラスなどによるウェットシール
に限られず、例えば第3図に示すように、可撓性の金属
パイプ20を、スペーサ21の溝22に装着してシール機能を
持たせるようにすることも考えられる。金属パイプ20
は、高温クリープ強度があり、しかも可撓性を有してい
れば、特に中空パイプを用いる必要はない。また、シー
ル材との濡れ性向上のため、金属パイプにアルミナ層形
成等の表面処理を施しても良い。Further, the sealing means is not limited to the wet sealing made of glass or the like, and for example, as shown in FIG. 3, a flexible metal pipe 20 is attached to the groove 22 of the spacer 21 so as to have a sealing function. It is also possible. Metal pipe 20
It is not necessary to use a hollow pipe as long as it has high temperature creep strength and flexibility. Further, in order to improve the wettability with the sealing material, the metal pipe may be subjected to surface treatment such as formation of an alumina layer.
この他、セパレータやシール手段の形状、形式も特に例
示したものに限定されるものではなく、例えば、シール
材としてセパレータ端部に辺に平行に溝を切っても良
く、また、インターナルマニホールドタイプの燃料電池
にも本発明の適用は可能である。更に、上記実施例で
は、セパレータとして、表裏両面に互いに直交するよう
機械加工でガス流通路を形成したものを用いたが、波状
加工した薄板と平薄板との組合わせであっても良い。In addition, the shapes and types of the separator and the sealing means are not limited to those specifically exemplified. For example, a groove may be cut parallel to the side at the end of the separator as the sealing material, or the internal manifold type. The present invention can be applied to the above fuel cell. Further, in the above-mentioned embodiment, as the separator, the ones in which the gas flow passages are formed by machining so that they are orthogonal to each other on the front and back sides are used, but a combination of a corrugated thin plate and a flat thin plate may be used.
要するに本発明は、その要旨を逸脱しない範囲で種々変
更して実施することができる。In short, the present invention can be implemented with various modifications without departing from the scope of the invention.
第1図は本発明の一実施例に係る溶融炭酸塩型燃料電池
の要部構成を示す分解斜視図、第2図は同燃料電池を第
1図におけるA−A線に沿って切断し矢印方向に見た断
面図、第3図は本発明の他の実施例を示す部分断面図、
第4図は従来の溶融炭酸塩型燃料電池の要部を示す分解
斜視図である。 1,11……単位電池、2,13,21……セパレータ、3a,14a…
…燃料極、3b,14b……酸化剤極、4,16……電解質層、12
……スペーサ、20……金属パイプ、P……燃料ガス、Q
……酸化剤ガス、W……ガラスのウェットシール部。FIG. 1 is an exploded perspective view showing a main structure of a molten carbonate fuel cell according to an embodiment of the present invention, and FIG. 2 is a sectional view of the fuel cell cut along the line AA in FIG. FIG. 3 is a partial sectional view showing another embodiment of the present invention,
FIG. 4 is an exploded perspective view showing a main part of a conventional molten carbonate fuel cell. 1,11 …… Unit battery, 2,13,21 …… Separator, 3a, 14a…
… Fuel electrode, 3b, 14b …… Oxidizer electrode, 4, 16 …… Electrolyte layer, 12
…… Spacer, 20 …… Metal pipe, P …… Fuel gas, Q
...... Oxidizer gas, W ・ ・ ・ Wet seal part of glass.
Claims (3)
電極を配してなる単位電池と導電性のセパレータとを交
互に積層してなる燃料電池本体を備えた溶融炭酸塩型燃
料電池において、炭酸塩に対して化学的安定で、かつ非
電子伝導性の酸化物セラミックで環状に形成され、積層
方向に隣接する前記セパレータの周縁部間に前記単位電
池を囲繞する如く挿設されて前記溶融炭酸塩電解質層に
加わる荷重を抑制するスペーサと、このスペーサと前記
セパレータとの間に介挿されて両者間をシールする炭酸
塩とは異なる材質のシール材とを具備してなることを特
徴とする溶融炭酸塩型燃料電池。1. A molten carbonate fuel cell comprising a fuel cell body in which unit cells having a pair of porous electrodes arranged on both surfaces of a molten carbonate electrolyte layer and conductive separators are alternately laminated. In the above, a ring is formed of an oxide ceramic that is chemically stable with respect to carbonate and is non-electroconductive, and is inserted so as to surround the unit battery between the peripheral portions of the separators that are adjacent in the stacking direction. A spacer for suppressing a load applied to the molten carbonate electrolyte layer; and a sealing material made of a material different from carbonate that is interposed between the spacer and the separator and seals between the spacer and the separator. Characterized molten carbonate fuel cell.
て溶融するガラスで構成されていることを特徴とする特
許請求の範囲第1項記載の溶融炭酸塩型燃料電池。2. The molten carbonate fuel cell according to claim 1, wherein the sealing material is made of glass that melts at an operating temperature of the cell.
属材で構成されていることを特徴とする特許請求の範囲
第1項記載の溶融炭酸塩型燃料電池。3. The molten carbonate fuel cell according to claim 1, wherein the sealing material is made of a heat-resistant metal material having flexibility.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60216576A JPH0782866B2 (en) | 1985-09-30 | 1985-09-30 | Molten carbonate fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60216576A JPH0782866B2 (en) | 1985-09-30 | 1985-09-30 | Molten carbonate fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6276262A JPS6276262A (en) | 1987-04-08 |
JPH0782866B2 true JPH0782866B2 (en) | 1995-09-06 |
Family
ID=16690578
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60216576A Expired - Fee Related JPH0782866B2 (en) | 1985-09-30 | 1985-09-30 | Molten carbonate fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0782866B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS643966A (en) * | 1987-06-26 | 1989-01-09 | Hitachi Ltd | Fuel cell with dry seal structure |
US5145753A (en) * | 1989-09-12 | 1992-09-08 | Mitsubishi Jukogyo Kabushiki Kaisha | Solid electrolyte fuel cell |
JP2577671B2 (en) * | 1990-06-11 | 1997-02-05 | 高砂熱学工業株式会社 | Vaporization type precision humidifier |
DE102006058335A1 (en) * | 2006-12-11 | 2008-06-12 | Staxera Gmbh | Fuel cell stack and gasket for a fuel cell stack and their manufacturing process |
-
1985
- 1985-09-30 JP JP60216576A patent/JPH0782866B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPS6276262A (en) | 1987-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100894409B1 (en) | Secondary Battery Having Improved Safety by Fixing Separator to Battery Case | |
EP0085405A1 (en) | Fuel cell | |
US5079104A (en) | Integrated fuel cell stack shunt current prevention arrangement | |
US4942099A (en) | Fuel cell | |
CA2020641A1 (en) | Integral edge seals for phosphoric acid fuel cells | |
JP2995604B2 (en) | Gas seal material for solid electrolyte fuel cells | |
JPH0782866B2 (en) | Molten carbonate fuel cell | |
JPS625569A (en) | Molten carbonate type fuel cell stack | |
JPH03114147A (en) | High temperature fuel cell device | |
JPH05166523A (en) | Plate-like solid electrolyte fuel cell | |
ES2464066T3 (en) | Force distributor for a stacking of fuel cells or a stacking of electrolysis cells | |
US20190379076A1 (en) | Hybrid seal and planar arrangement comprising at least one high temperature electrochemical cell and a hybrid seal | |
JPH0218551B2 (en) | ||
JPH0777133B2 (en) | Molten carbonate fuel cell | |
JP2771578B2 (en) | Solid electrolyte fuel cell | |
JPS63116369A (en) | Fuel cell | |
JPH0815094B2 (en) | Molten carbonate fuel cell | |
JP3339720B2 (en) | Molten carbonate fuel cell | |
JPH036624B2 (en) | ||
JPH0615403Y2 (en) | Fuel cell | |
JP2011198704A (en) | Fuel cell | |
JPH0358153B2 (en) | ||
JPS61216252A (en) | Fuel cell | |
JPS63133457A (en) | Fuel cell of molten carbonate | |
JPS60180066A (en) | Fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |