Nothing Special   »   [go: up one dir, main page]

JPH0768052B2 - Method of chemically strengthening float glass - Google Patents

Method of chemically strengthening float glass

Info

Publication number
JPH0768052B2
JPH0768052B2 JP60240430A JP24043085A JPH0768052B2 JP H0768052 B2 JPH0768052 B2 JP H0768052B2 JP 60240430 A JP60240430 A JP 60240430A JP 24043085 A JP24043085 A JP 24043085A JP H0768052 B2 JPH0768052 B2 JP H0768052B2
Authority
JP
Japan
Prior art keywords
glass
float glass
ions
molten salt
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60240430A
Other languages
Japanese (ja)
Other versions
JPS62100458A (en
Inventor
眞一 荒谷
正昭 片野
武志 溝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP60240430A priority Critical patent/JPH0768052B2/en
Priority to GB08605317A priority patent/GB2171990B/en
Priority to DE19863607404 priority patent/DE3607404A1/en
Priority to FR868603260A priority patent/FR2578535B1/en
Priority to US06/837,131 priority patent/US4671814A/en
Priority to US07/024,033 priority patent/US4859636A/en
Publication of JPS62100458A publication Critical patent/JPS62100458A/en
Publication of JPH0768052B2 publication Critical patent/JPH0768052B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Glass (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、フロート方式で製造されたガラス、とくにソ
ーダ石灰系フロートガラスを、電子材料の基板、ことに
光デイスク用ガラス基板等として適用するところの化学
強化方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention applies glass manufactured by a float method, particularly soda lime-based float glass, as a substrate for electronic materials, particularly as a glass substrate for optical discs, and the like. Regarding the chemical strengthening method.

本発明は、デイスクプレイおよびデイスク用基板に採用
しうることはもちろん、薄板で大面積の建築用および車
輌用窓ガラス等の板状体、さらにはフロートガラス板を
用いた各種成型品、料理用硝子製品および各種電子電気
機器の基板等、加工された板状等の化学強化フロートガ
ラスとして幅広く用いられる。
INDUSTRIAL APPLICABILITY The present invention can be applied not only to a disk play and a disk substrate, but also to a thin plate having a large area such as a window glass for construction and vehicles, and various molded products using a float glass plate, for cooking. Widely used as chemically strengthened float glass such as glass plates and substrates for various electronic and electrical devices, such as processed plates.

〔従来の技術〕[Conventional technology]

フロートガラスはいわゆる普通板ガラスに比べ表面平滑
性、平坦性、厚みの均一性等に優れているので建築、車
輌等の分野に加え電子材料分野、例えば液晶やプラズマ
等のデイスプレイなどに広く利用されつつある。
Float glass has excellent surface smoothness, flatness, thickness uniformity, etc. compared to so-called ordinary flat glass, so it is widely used not only in the fields of construction, vehicles, etc., but also in the field of electronic materials, such as liquid crystal and plasma displays. is there.

さらに最近の傾向として4mm厚以下の薄板ガラスが賞用
されており、厚みが薄くなるほど、強度の向上が望まれ
ている。
Further, as a recent trend, thin glass with a thickness of 4 mm or less has been favored, and it is desired to improve the strength as the thickness decreases.

薄板ガラスを効果的に強化するためにアルカリイオン置
換による化学強化法を適用することは周知であるが、フ
ロートガラスにそのまま化学強化法を用いた場合、ガラ
スに反りが生じて(たとえば1mm厚で0.4〜1.3mm/300mm
径)平坦性を損ない、ことに光デイスク基板等において
要求される平坦度(たとえば1mm厚で0.2mm/300mm径以
下)を得ることができないものであつた。前記反りの原
因はガラスのフロート成形時における溶融金属、通例Sn
の接触ガラス面への浸入の影響によるものと推察される
が、この反りに対する画期的な対処法は見出されていな
い。例えばガラスのSn浸入面を研削、研摩したうえでア
ルカリイオン置換処理することが実施されているが、該
Snの接触ガラス面におけるSnの拡散層は10〜20μmあ
り、最大この層の研削、研摩が必要となり、この方法で
は工程が煩雑であるのみならず、そのためのガラスの割
れおよび欠陥を生じるという研削、研摩自体にも問題が
あるものであつて、コスト上も高価なものとなる。
It is well known to apply the chemical strengthening method by alkali ion substitution to effectively strengthen thin glass, but when the chemical strengthening method is used for float glass as it is, warpage occurs in the glass (for example, 1 mm thick 0.4-1.3mm / 300mm
However, the flatness required for optical disk substrates and the like (for example, 0.2 mm / 300 mm diameter or less at a thickness of 1 mm) cannot be obtained. The cause of the warp is molten metal during float forming of glass, usually Sn
It is presumed that this is due to the effect of the invasion of the contact glass surface, but no epoch-making countermeasure against this warp has been found. For example, it has been practiced to grind and polish the Sn infiltrated surface of glass, and then to carry out alkali ion substitution treatment.
Since the Sn diffusion layer on the Sn contact glass surface is 10 to 20 μm, grinding and polishing of this layer are required at the maximum, and this method not only complicates the process but also causes cracks and defects in the glass. However, the polishing itself has a problem, and the cost is high.

したがつて、上述の方法では光デイスク基板等にはフロ
ートガラスが採用されないものであつた。
Therefore, in the above-mentioned method, the float glass is not used for the optical disk substrate or the like.

なお、化学強化時に前段処理をしようとするものとして
は、例えば特公昭54−17765号公報があり、該公報の実
施例では、一定温度に保持されたNaNO3とKNO3からなる
混合塩浴中で前段処理を行つて通常の化学強化をするも
のが記載され、ガラス物品の強度を増大せしめようとす
るものが開示されている。
Incidentally, as an attempt to pre-stage process during chemical strengthening, for example, there is Japanese Patent Publication 54-17765 discloses, in the embodiment of this publication, a mixture salt bath consisting of NaNO 3 and KNO 3, which is kept at a constant temperature Describes a method of performing a conventional chemical strengthening by performing a pre-treatment, and discloses a method of increasing the strength of a glass article.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

前述したように、フロートガラスを化学強化する際、そ
の溶融金属接触面を研削、研摩し、Sn拡散層を除去しな
いかぎり、また前述の特公昭54−17765号公報に記載の
前段処理等では、フロートガラスの反りの発生を阻止す
ることができないというものである。
As described above, when chemically strengthening the float glass, its molten metal contact surface is ground, polished, unless the Sn diffusion layer is removed, and also in the pretreatment described in JP-B-54-17765, It is impossible to prevent the warp of the float glass.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、従来のかかる欠点に鑑みてなしたものであつ
て、フロートガラスを化学強化するに際して、該フロー
トガラスがそのままの状態にある溶融金属接触面と溶融
金属非接触面とのアルカリ濃度の差を減少させ、化学強
化後の反り量が0.2mm/300mm径以内になるような処理を
した後、化学強化を行うことで、反りが発生するという
問題を解消することができる新規な方法を提供するもの
である。
The present invention has been made in view of such drawbacks of the prior art, in chemically strengthening the float glass, the alkali concentration of the molten metal contact surface and the molten metal non-contact surface of the float glass as it is A new method that can solve the problem of warpage by reducing the difference and performing chemical strengthening after performing treatment so that the amount of warpage after chemical strengthening is within 0.2 mm / 300 mm diameter. It is provided.

すなわち、本発明は、フロートガラスを350〜600℃の保
持温度範囲としたLiイオンを含む溶融塩中あるいはLiイ
オンとNaイオンを含む2種類以上の混合溶融塩中に、0.
06〜50時間浸漬処理した後、該処理ガラス表面層中のア
ルカリイオンを、歪点以下の温度でもって、イオン半径
がより大きいアルカリイオンに置換する化学強化をし、
±0.2mm/300mm径以下の反り量になるようにすることを
特徴とするものである。
That is, the present invention, in a molten salt containing Li ions or a mixed molten salt of two or more kinds containing Li ions and Na ions, in which the float glass has a holding temperature range of 350 to 600 ° C.,
After the dipping treatment for 06 to 50 hours, the alkali ions in the treated glass surface layer are chemically strengthened by substituting the alkali ions with a larger ionic radius at a temperature below the strain point,
The feature is that the warp amount is ± 0.2 mm / 300 mm diameter or less.

ここで、溶融塩の温度が350℃未満ではフロートガラス
の溶融金属接触および非接触両面に作用せず、該両面の
表層部におけるLiイオン等の拡散がほとんどのなく、両
面でのアルカリ濃度の差が縮まらず化学強化時の反りの
防止に対し効果がない、好ましくは400℃以上である。
また特に約650℃等歪点を超えるとガラス自身の軟化温
度に近くなるので変形が生じやすく、永く浸漬を続ける
とガラス表面に白濁現象を生じるものであつて両面にお
けるNaイオン等の影響差は縮めるものの他の欠点を生じ
るもので、安定して確実な溶融塩の処理温度は600℃以
下である。
Here, when the temperature of the molten salt is less than 350 ° C, it does not act on both the molten metal contact and non-contact surfaces of the float glass, there is almost no diffusion of Li ions or the like in the surface layer portions of the both surfaces, and the difference in alkali concentration on both surfaces. Does not shrink and has no effect on preventing warpage during chemical strengthening, preferably at 400 ° C or higher.
Moreover, especially when the strain point exceeds about 650 ° C, the glass tends to be deformed because it is close to the softening temperature of the glass itself, and if it is immersed for a long period of time, a turbid phenomenon occurs on the glass surface. It causes other drawbacks of shrinkage, and the stable and reliable treatment temperature of molten salt is 600 ° C or lower.

一方、前述の浸漬処理は溶融塩の温度、浸漬時間によつ
て反りの量が変化し、処理温度によつて0.06〜50時間の
処理時間内から任意に選択できるものである。0.06時
間、好ましくは0.1時間以上とするのは、処理温度が600
℃以下であることと50時間以下、好ましくは40時間以下
とするのは、経済面に加え、ガラス表面の変化が進みす
ぎないようにするためである。
On the other hand, in the above-mentioned dipping treatment, the amount of warpage changes depending on the temperature of the molten salt and the dipping time, and the dipping treatment can be arbitrarily selected from the treatment time of 0.06 to 50 hours depending on the treatment temperature. 0.06 hours, preferably 0.1 hours or more, the treatment temperature is 600
The reason why the temperature is not higher than 50 ° C. and the time is not longer than 50 hours, preferably not longer than 40 hours is to prevent the change of the glass surface from progressing excessively in addition to the economical aspect.

なお、前記浸漬処理をするに当り、ガラスを予熱し、浸
漬処理後ステツプ冷却等の徐冷を行い、洗滌するとさら
に効果的なものとなる。またLiイオンを含む溶融塩とし
ては、例えば、硫酸リチウム、亜硝酸リチウム、硫酸リ
チウム、リン酸リチウムあるいはこれら混合溶融塩等が
用いられるものであり、加えてLiイオンとNaイオンを含
む2種類以上の混合溶融塩に他の添加剤を補助的に用い
てもよいものである。
It is more effective to preheat the glass before the dipping treatment, and after the dipping treatment, perform slow cooling such as step cooling and wash. As the molten salt containing Li ions, for example, lithium sulfate, lithium nitrite, lithium sulfate, lithium phosphate, or a mixed molten salt thereof is used, and in addition, two or more kinds containing Li ion and Na ion are used. Other additives may be supplementarily used in the mixed molten salt of.

さらに化学強化については通常用いられているところの
公知の化学強化方法、すなわち、ことに歪点以下の温度
でもって、前記処理後のフロートガラス表面層中のアル
カリイオンを、イオン半径がより大きいアルカリイオン
に置換する化学強化方法が適用できるものである。
Further, for the chemical strengthening, a known chemical strengthening method which is usually used, that is, at a temperature not higher than the strain point, alkali ions in the float glass surface layer after the treatment are treated with an alkali having a larger ionic radius. The chemical strengthening method of substituting with ions can be applied.

〔作 用〕[Work]

前述したとおり、本発明のフロートガラスの化学強化方
法によつて、4mm程度の板厚から薄くなるにしたがつて
風冷強化法では充分なる強化ができないという問題を含
め、特異の前段処理を施すようにしたことによりフロー
トガラスでの反りをほぼ生板(表面加工なし)に近い数
値まで減少して解決し、したがつて研削、研摩を必要と
しないで表面あらさ、面平行性および平滑性等の特性を
生かせて化学強化ができるものであるから、より薄く比
較的大面積でしかも強度をもつフロートガラスが多目的
に採用されることとなり、薄くなるほど、また大面積に
なるほど反り対策の必要性が増すなかで、その解決法を
見出したものであつて、成型品等の形状の精度を向上さ
せることができ、デイスプレイ等はもちろん反りが0.2m
m/300mm径以下というようなデイスクの仕様をも満足
し、歩留等も大きく向上するという特徴を有するもので
ある。
As described above, according to the method for chemically strengthening the float glass of the present invention, the peculiar pre-treatment is performed, including the problem that the plate thickness of about 4 mm is thinned but the wind-cooling strengthening method cannot sufficiently strengthen it. By doing so, the warpage in float glass was reduced to a value close to that of a raw plate (without surface treatment), and therefore surface roughness, surface parallelism, smoothness, etc. without the need for grinding and polishing. Since it can be chemically strengthened by making full use of the characteristics of, the float glass, which is thinner and has a relatively large area and has strength, will be used for multiple purposes. Among them, we have found a solution to this problem and can improve the accuracy of the shape of molded products, etc.
It is characterized by satisfying the disk specifications such as m / 300 mm diameter or less and greatly improving the yield.

さらに、LiイオンとNaイオンを含む2種類以上の混合溶
液塩を用いると溶融塩自身の安定性が増し、コスト的に
も好ましいものとなるものである。
Furthermore, when two or more kinds of mixed solution salts containing Li ions and Na ions are used, the stability of the molten salt itself increases, which is preferable in terms of cost.

〔実 施 例〕〔Example〕

以下本発明の実施例を説明する。 Examples of the present invention will be described below.

実施例2〜9 ガラス基板として約1.0mm板厚で大きさ約300mm×300mm
のフロートガラスを、またLiイオンを含む溶融塩として
は硫酸リチウムをそれぞれ用い、表1に示すような温度
と時間を条件として浸漬処理をするとともに硫酸カリウ
ムを用いて通常の化学強化を行い、試料とした。
Examples 2 to 9 A glass substrate having a thickness of about 1.0 mm and a size of about 300 mm × 300 mm
The float glass of No. 1 and lithium sulfate as a molten salt containing Li ions are subjected to immersion treatment under the conditions of temperature and time as shown in Table 1 and normal chemical strengthening using potassium sulfate to obtain a sample. And

これらの試料について、反り量としてはDEKTAK II(SLO
AN社製(米)の形状測定器)を用い、化学強化度(表面
圧縮応力値)としては表面応力測定計を用いそれぞれ測
定した。
For these samples, the amount of warpage is DEKTAK II (SLO
An AN (US) shape measuring instrument) was used, and the degree of chemical strengthening (surface compressive stress value) was measured using a surface stress measuring instrument.

その反り量を表1に示す。The amount of warpage is shown in Table 1.

比較例1 実施例と同一のフロートガラスをLiイオンを含む溶融塩
で処理せずにそのまま、他は同一条件で化学強化したも
のを試料とした。
Comparative Example 1 The same float glass as in the example was not treated with a molten salt containing Li ions, but was chemically strengthened under the same conditions as the other samples.

反り量および表面圧縮応力値を実施例と同一の機器を用
いて測定した。
The amount of warpage and the surface compressive stress value were measured using the same equipment as in the examples.

その反り量を表1に示す。The amount of warpage is shown in Table 1.

比較例2 実施例と同一のフロートガラスをそのまま(生板)試料
として、反り量を実施例と同一の機器で測定した。
Comparative Example 2 The same float glass as in Example was used as it was (raw plate) as a sample, and the amount of warpage was measured with the same equipment as in Example.

その結果を表1に示す。The results are shown in Table 1.

比較例3〜6 実施例と同一のガラスおよび溶融塩を用い、浸漬処理条
件のみ表1に示す温度と時間で行い、他は実施例と同一
で行い、その反り量を表1に示す。
Comparative Examples 3 to 6 The same glass and molten salt as in the examples were used, only the dipping treatment conditions were carried out at the temperature and time shown in Table 1, and the others were carried out in the same way as the Examples, and the warpage amounts thereof are shown in Table 1.

但し、反り量は試料5枚の測定値であり、マイナス表示
は、溶融金属面に接触する側が凸であることを示す。
However, the amount of warp is a measured value of five samples, and a minus sign indicates that the side in contact with the molten metal surface is convex.

〔発明の効果〕〔The invention's effect〕

前述した本発明の実施例と従来法を含む比較例を対比し
て示した表1により明らかなように、従来の化学強化の
みまたは浸漬処理温度が本発明の下限未満での浸漬処理
後の化学強化であれば、生板の数倍〜数十倍の反り量に
なり、本発明であれば、反り量が生板に近い値までにな
り、場合によつては生板より少なくすることができ、そ
の効果が顕著である。
As is clear from Table 1 showing the comparison between the above-described examples of the present invention and the comparative examples including the conventional method, the conventional chemical strengthening only or the chemical treatment after the immersion treatment in which the immersion treatment temperature is less than the lower limit of the present invention is performed. If it is reinforced, the warp amount is several times to several tens of times that of the raw plate, and if it is the present invention, the warp amount becomes a value close to that of the raw plate, and in some cases, it may be less than the raw plate. It is possible and its effect is remarkable.

また化学強化度に関しては、本発明を実施した際でも、
フロートガラス板の溶融金属接触面および非接触面の両
面とも、ほとんど差なく表面圧縮応力値が2500〜3500kg
/cm2となり、曲げ破壊強度が4500〜6000kg/cm2となり、
従来法による強化度と同程度が得られるものである。さ
らに表面からの圧縮応力層についても、20〜30μm程度
が得られ、充分電子材料の分野での仕様を満すものであ
る。
Regarding the degree of chemical strengthening, even when the present invention is carried out,
The surface compression stress value of the float glass plate is 2500 to 3500 kg on both the contact surface and the non-contact surface of the molten metal.
/ cm 2 and bending fracture strength of 4500-6000 kg / cm 2 ,
It is possible to obtain the same degree of strengthening as in the conventional method. Further, the compressive stress layer from the surface is also about 20 to 30 μm, which sufficiently satisfies the specifications in the field of electronic materials.

さらにまた、本発明の範囲内で高い浸漬処理温度であれ
ば短い浸漬処理時間でよいことを示すことはもちろん、
反り量も仕様によつて任意に選択できるものであり、さ
らに、圧縮応力層の表面からの深さをより深くして反り
量を±0.2mm/300mm径以内にしたいという際も、自由に
選択し得て達成でき得るものである。
Furthermore, it goes without saying that a short immersion treatment time is sufficient if the immersion treatment temperature is high within the scope of the present invention,
The amount of warp can be arbitrarily selected according to the specifications.Furthermore, if you want to make the depth from the surface of the compressive stress layer deeper and keep the amount of warp within ± 0.2 mm / 300 mm diameter, you can freely select it. It is possible and attainable.

以上のように、本発明は、フロートガラスの化学強化に
おいて、従来解決しえなかつた反りを解決することで、
電子材料分野、とくに光デイスク基板等から建築用等ま
で広い分野に薄いフロートガラスを採用し得ることがで
きるという卓効を奏するものである。
As described above, the present invention, in the chemical strengthening of the float glass, by solving the warp that has not been solved in the past,
It has an excellent effect that thin float glass can be used in a wide range of fields such as electronic materials, particularly optical disc substrates and construction.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】フロートガラスを化学強化する際におい
て、保持温度が350〜600℃の範囲にあるLiイオンを含む
溶融塩中あるいはLiイオンとNaイオンを含む2種類以上
の混合溶融塩中に、0.06〜50時間前記ガラスを浸漬処理
した後、ガラス表面層におけるアルカリイオンを、歪点
以下の温度でもって、イオン半径がより大きいアルカリ
イオンに置換する化学強化を行うようにしたことを特徴
とするフロートガラスの化学強化方法。
1. When chemically strengthening float glass, in a molten salt containing Li ions or a mixed molten salt of two or more kinds containing Li ions and Na ions, the holding temperature of which is in the range of 350 to 600 ° C., After the immersion treatment of the glass for 0.06 to 50 hours, alkali ions in the glass surface layer, at a temperature below the strain point, to perform chemical strengthening to replace the alkali ions with a larger ionic radius Method of chemically strengthening float glass.
JP60240430A 1985-03-08 1985-10-29 Method of chemically strengthening float glass Expired - Lifetime JPH0768052B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP60240430A JPH0768052B2 (en) 1985-10-29 1985-10-29 Method of chemically strengthening float glass
GB08605317A GB2171990B (en) 1985-03-08 1986-03-04 Method of strengthening glass article formed of float glass by ion exchange and strengthened glass article
DE19863607404 DE3607404A1 (en) 1985-03-08 1986-03-06 METHOD FOR STRENGTHENING GLASS OBJECTS MADE FROM FLOAT GLASS BY ION EXCHANGE AND STRENGTHENED GLASS OBJECT
FR868603260A FR2578535B1 (en) 1985-03-08 1986-03-07 METHOD FOR REINFORCING A GLASS ARTICLE FORMED IN A FLOAT GLASS BY ION EXCHANGE, AND REINFORCED GLASS ARTICLE OBTAINED
US06/837,131 US4671814A (en) 1985-03-08 1986-03-07 Method of strengthening glass article formed of float glass by ion exchange
US07/024,033 US4859636A (en) 1985-03-08 1987-03-10 Chemically strengthened glass article formed of float glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60240430A JPH0768052B2 (en) 1985-10-29 1985-10-29 Method of chemically strengthening float glass

Publications (2)

Publication Number Publication Date
JPS62100458A JPS62100458A (en) 1987-05-09
JPH0768052B2 true JPH0768052B2 (en) 1995-07-26

Family

ID=17059369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60240430A Expired - Lifetime JPH0768052B2 (en) 1985-03-08 1985-10-29 Method of chemically strengthening float glass

Country Status (1)

Country Link
JP (1) JPH0768052B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9199168B2 (en) 2010-08-06 2015-12-01 Nintendo Co., Ltd. Game system, game apparatus, storage medium having game program stored therein, and game process method
US9272207B2 (en) 2010-11-01 2016-03-01 Nintendo Co., Ltd. Controller device and controller system
US9358457B2 (en) 2010-02-03 2016-06-07 Nintendo Co., Ltd. Game system, controller device, and game method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140227525A1 (en) 2011-09-29 2014-08-14 Central Glass Company, Limited Cover glass for display device, and manufacturing method for same
JP2014133683A (en) * 2013-01-10 2014-07-24 Central Glass Co Ltd Method for manufacturing a chemically strengthened glass plate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4972317A (en) * 1972-11-13 1974-07-12
JPS5483923A (en) * 1977-12-16 1979-07-04 Asahi Glass Co Ltd Ion exchange strengthening of glass

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4972317A (en) * 1972-11-13 1974-07-12
JPS5483923A (en) * 1977-12-16 1979-07-04 Asahi Glass Co Ltd Ion exchange strengthening of glass

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9358457B2 (en) 2010-02-03 2016-06-07 Nintendo Co., Ltd. Game system, controller device, and game method
US9199168B2 (en) 2010-08-06 2015-12-01 Nintendo Co., Ltd. Game system, game apparatus, storage medium having game program stored therein, and game process method
US9272207B2 (en) 2010-11-01 2016-03-01 Nintendo Co., Ltd. Controller device and controller system

Also Published As

Publication number Publication date
JPS62100458A (en) 1987-05-09

Similar Documents

Publication Publication Date Title
CN108383398B (en) With improved K near the glass surface 2 O-distributed lithium-containing glass or glass-ceramic articles
EP3589598B1 (en) Asymmetric stress profiles for low warp and high damage resistance glass articles
US4671814A (en) Method of strengthening glass article formed of float glass by ion exchange
JP7530482B2 (en) Glass products and their manufacturing method
JP2013536153A (en) How to strengthen the edge of glassware
JPS6360129A (en) Method for chemically tempering glass
US11414343B2 (en) Reverse ion exchange process for lithium containing glass
WO2016117474A1 (en) Chemically strengthened glass and production method for chemically strengthened glass
JP7310966B2 (en) chemically strengthened glass
Abrams et al. Fracture behavior of engineered stress profile soda lime silicate glass
WO2020092122A1 (en) Methods and systems for chemically strengthening lithium-containing glass
JPH0651580B2 (en) Method of chemically strengthening float glass
US20220267201A1 (en) Reverse ion exchange process for lithium containing glass
KR100414000B1 (en) Adhering Metal to Glass
JPH0768051B2 (en) Method of chemically strengthening float glass
JPH0768052B2 (en) Method of chemically strengthening float glass
JP2004359504A (en) Chemically tempered glass and its manufacturing method
JP2001261355A (en) Method of improving strength of end face of glass substrate and glass substrate for flat panel display
JPS62241845A (en) Method for holding glass plate
JPH0772093B2 (en) Chemically strengthened float glass
JPH0651582B2 (en) Method of chemically strengthening float glass
JPH0660039B2 (en) Glass chemical strengthening method
JPH0651581B2 (en) Method of chemically strengthening float glass
JPS62275044A (en) Method for chemically reinforcing polished glass
JPS62100460A (en) Method of chemically strengthening float glass