JPH0766437A - Manufacture of substrate for photoelectric transducer - Google Patents
Manufacture of substrate for photoelectric transducerInfo
- Publication number
- JPH0766437A JPH0766437A JP5213627A JP21362793A JPH0766437A JP H0766437 A JPH0766437 A JP H0766437A JP 5213627 A JP5213627 A JP 5213627A JP 21362793 A JP21362793 A JP 21362793A JP H0766437 A JPH0766437 A JP H0766437A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- film
- substrate
- single crystal
- crystal silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/548—Amorphous silicon PV cells
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、成膜型太陽電池やイメ
ージセンサ等光電変換装置に適用される光電変換装置用
基板の製造方法に係り、特に、表面にテクスチャ溝を備
えかつ低温成膜手段により欠陥の少ない半導体被膜を均
一に成膜できる光電変換装置用基板の製造方法に関する
ものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a substrate for a photoelectric conversion device applied to a photoelectric conversion device such as a film-forming solar cell or an image sensor, and more particularly to a low temperature film formation having a texture groove on the surface. The present invention relates to a method for manufacturing a substrate for a photoelectric conversion device, by which a semiconductor film having few defects can be uniformly formed.
【0002】[0002]
【従来の技術】この種の光電変換装置として成膜型太陽
電池を例に挙げて説明すると、この成膜型太陽電池は、
図2及び図3(A)に示すように例えばp型の単結晶シ
リコン基板aと、この単結晶シリコン基板aの光入射側
面に設けられシリコン基板aとの間でpn接合を形成す
るn型非晶質シリコン層bと、この非晶質シリコン層b
上に設けられた櫛歯状電極cと、上記単結晶シリコン基
板aの背面側に一様に設けられた裏面電極dとでその主
要部が構成され、光入射に伴って発生したエレクトロン
とホールが上記電極c、dから電流として取出される構
造のものが知られている。2. Description of the Related Art A film-type solar cell will be described as an example of this type of photoelectric conversion device.
As shown in FIGS. 2 and 3A, for example, a p-type single crystal silicon substrate a and an n-type that forms a pn junction between the silicon substrate a provided on the light incident side surface of the single crystal silicon substrate a. Amorphous silicon layer b and this amorphous silicon layer b
The comb-teeth-shaped electrode c provided above and the back surface electrode d uniformly provided on the back surface side of the single crystal silicon substrate a constitute a main part thereof, and electrons and holes generated due to light incidence are generated. There is known a structure in which is extracted as a current from the electrodes c and d.
【0003】そして、成膜型太陽電池等この種の光電変
換装置においては光を有効に吸収して高い光電変換効率
を得るため、従来、光電変換装置用基板としてその表面
に光閉じ込め作用を有するテクスチャ溝a1が形成された
単結晶シリコン基板を適用している(図3B参照)。す
なわち、このテクスチャ溝を備えた単結晶シリコン基板
は、例えば、(100)の結晶方位を有する単結晶シリ
コンをKOHのような強アルカリ等でエッチング処理
し、その表面にピラミッド状のエッチピットを形成して
得られるものであった。In this type of photoelectric conversion device such as a film-forming solar cell, in order to effectively absorb light and obtain high photoelectric conversion efficiency, conventionally, a substrate for a photoelectric conversion device has a light confining function on its surface. A single crystal silicon substrate in which the textured groove a1 is formed is applied (see FIG. 3B). That is, the single crystal silicon substrate having the textured groove is formed by, for example, etching single crystal silicon having a (100) crystal orientation with a strong alkali such as KOH to form a pyramid-shaped etch pit on the surface. Was obtained.
【0004】[0004]
【発明が解決しようとする課題】ところで、図3(B)
に示すようにテクスチャ度の高い(すなわち上記エッチ
ピットの頂部と谷部が角形状にあるものを意味する)単
結晶シリコン基板の表面へ、例えば、スパッタリング法
やプラズマCVD(化学気相成長)法等その成膜条件が
比較的低温の成膜手段により非晶質シリコン層等半導体
被膜を形成した場合、図4に示すようにエッチピットの
頂部と谷部に形成される半導体被膜に欠陥が生じ易く成
膜された半導体被膜の膜特性が良好でない欠点があっ
た。このため、これに起因して得られた成膜型太陽電池
等光電変換装置においては、上記テクスチャ溝が作用し
て光を有効に吸収するにも拘らずその光電変換効率があ
まり上昇しない問題点を有していた。By the way, FIG. 3 (B)
As shown in, the surface of a single crystal silicon substrate having a high degree of texture (that is, the tops and valleys of the above etch pits having a square shape) is subjected to, for example, a sputtering method or a plasma CVD (chemical vapor deposition) method. When a semiconductor film such as an amorphous silicon layer is formed by a film forming means whose film forming conditions are relatively low, defects occur in the semiconductor film formed at the top and the valley of the etch pit as shown in FIG. There is a defect that the film characteristics of the semiconductor film formed easily are not good. For this reason, in the photoelectric conversion device such as a film-forming solar cell obtained due to this, the photoelectric conversion efficiency does not increase so much despite the fact that the texture grooves act to effectively absorb light. Had.
【0005】そこで、従来においては上記エッチピット
が形成された単結晶シリコン基板表面を等方エッチング
処理し、エッチピットの頂部と谷部を曲面形状に加工し
てそのテクスチャ度を低減させる方法が採られていた。Therefore, conventionally, there is adopted a method in which the surface of the single crystal silicon substrate on which the etch pits are formed is isotropically etched, and the tops and valleys of the etch pits are processed into a curved shape to reduce the texture. It was being done.
【0006】しかし、エッチピットが形成された単結晶
シリコン基板表面を等方エッチング処理した場合、エッ
チピットの頂部と谷部のエッチングに加えてエッチピッ
トの傾斜面についても一様にエッチングがなされるた
め、基板表面が全体的に平坦となり上記テクスチャ溝が
消失し易い欠点があった。そして、これに起因して上記
光閉じ込め効果が低下するため、テクスチャ度の高い基
板を適用した場合と同様にその光電変換効率があまり上
昇しない問題点を有していた。However, when the surface of the single crystal silicon substrate on which the etch pits are formed is subjected to isotropic etching, not only the tops and valleys of the etch pits but also the inclined surfaces of the etch pits are uniformly etched. Therefore, there is a drawback that the surface of the substrate becomes flat as a whole and the texture groove is easily lost. Then, due to this, the light confinement effect is lowered, so that there is a problem that the photoelectric conversion efficiency thereof does not increase so much as in the case of applying a substrate having a high texture.
【0007】尚、上記テクスチャ度の高い基板を適用す
る場合、上述したスパッタリング法やプラズマCVD法
等の低温成膜法に代えて熱CVD法を適用する方法も考
えられる。すなわち、この熱CVD法を適用しかつ成膜
条件を適正に設定することにより、上記エッチピットの
頂部と谷部に形成される半導体被膜についてその膜特性
の改善を図ることが可能になるからである。When the above-mentioned substrate having a high degree of texture is applied, a method of applying a thermal CVD method instead of the above-mentioned low temperature film forming method such as the sputtering method or the plasma CVD method may be considered. That is, by applying this thermal CVD method and appropriately setting the film forming conditions, it is possible to improve the film characteristics of the semiconductor film formed on the top and the valley of the etch pit. is there.
【0008】しかし、この熱CVD法は、上記スパッタ
リング法やプラズマCVD法等低温成膜法に較べて熱エ
ネルギを多量に必要としかつ成膜条件の管理が繁雑にな
るため、その分、成膜コストが割高になる欠点を有して
おり安価な太陽電池等を製造する方法としては不向きで
あった。However, the thermal CVD method requires a large amount of heat energy as compared with the low-temperature film forming method such as the sputtering method or the plasma CVD method, and the control of the film forming conditions becomes complicated. It is disadvantageous in that the cost is high and is not suitable as a method for manufacturing an inexpensive solar cell or the like.
【0009】本発明はこのような問題点に着目してなさ
れたもので、その課題とするところは、表面にテクスチ
ャ溝を備えかつ低温成膜手段により欠陥の少ない半導体
被膜を均一に成膜できる光電変換装置用基板の製造方法
を提供することにある。The present invention has been made by paying attention to such a problem, and a problem thereof is that a semiconductor film having a texture groove on the surface and having a low number of defects can be uniformly formed by a low temperature film forming means. It is to provide a method for manufacturing a substrate for a photoelectric conversion device.
【0010】[0010]
【課題を解決するための手段】すなわち、請求項1に係
る発明は、テクスチャ溝を備えた光電変換装置用基板の
製造方法を前提とし、上記テクスチャ溝を構成するエッ
チピットが形成された単結晶シリコンの表面に低温成膜
法により薄膜を形成し、かつ、結晶シリコンに対するエ
ッチングレートが上記薄膜に対するエッチングレートよ
り高いエッチング剤を用いて薄膜と単結晶シリコン表面
をエッチング処理し、上記エッチピットの頂部と谷部を
それぞれ曲面形状に加工することを特徴とするものであ
る。That is, the invention according to claim 1 is premised on a method for manufacturing a substrate for a photoelectric conversion device having a textured groove, and a single crystal in which an etch pit forming the textured groove is formed. A thin film is formed on the surface of silicon by a low temperature film-forming method, and the thin film and the single crystal silicon surface are etched using an etchant having an etching rate for crystalline silicon higher than the etching rate for the thin film, and the top of the etch pit is etched. It is characterized in that the valley and the valley are each processed into a curved shape.
【0011】このような技術的手段において単結晶シリ
コン表面にエッチピットを形成する方法としては、従来
と同様、例えば(100)の結晶方位を有する単結晶シ
リコンをKOHのような強アルカリ等でエッチング処理
する方法が挙げられる。As a method of forming an etch pit on the surface of single crystal silicon by such a technical means, for example, single crystal silicon having a (100) crystal orientation is etched with a strong alkali such as KOH as in the conventional method. The method of processing is mentioned.
【0012】また、このエッチピットが形成された単結
晶シリコンの表面に低温成膜法により酸化シリコン(S
iO2 )等の薄膜が形成される。この薄膜は低温成膜法
により形成されているため、従来技術で述べたようにそ
のエッチピットの頂部と谷部に形成された薄膜は上記エ
ッチピットの傾斜面に形成された薄膜に較べて多くの欠
陥を有している。そして、結晶シリコンに対するエッチ
ングレートが上記薄膜に対するエッチングレートより高
いエッチング剤を用いて薄膜と単結晶シリコン表面をエ
ッチング処理すると、エッチピットの頂部と谷部に形成
された薄膜は、エッチピットの傾斜面に形成された薄膜
に較べて膜特性が悪いためエッチング剤によりエッチン
グを受け易く、かつ、このエッチング剤が薄膜内の欠陥
を通ってエッチピットの頂部と谷部をエッチングするこ
とになる。これに対し、エッチピットの傾斜面に形成さ
れた薄膜の膜特性は、エッチピットの頂部と谷部に形成
された薄膜に較べて良好なため上記エッチング剤により
エッチングを受け難く、従って、この薄膜で覆われたエ
ッチピットの傾斜面もエッチングを受け難くなる。この
ため、エッチピットの頂部と谷部が選択的にエッチング
されるため、テクスチャ溝を残したままで上記エッチピ
ットの頂部と谷部をそれぞれ曲面形状に加工することが
可能となる。そして、上記薄膜に適用できる材料として
は、上述した酸化シリコンに加えて、例えば窒化シリコ
ン(SiNX )、酸化スズ(SnO2)、酸化チタン
(TiO2 )、及び、酸化亜鉛(ZnO)等が挙げられ
る。On the surface of the single crystal silicon in which the etch pits are formed, silicon oxide (S
A thin film such as iO 2 ) is formed. Since this thin film is formed by the low temperature film forming method, as described in the prior art, the thin film formed on the top and valley of the etch pit is larger than the thin film formed on the inclined surface of the etch pit. Have defects. When the thin film and the surface of the single crystal silicon are subjected to an etching treatment with an etchant having an etching rate for crystalline silicon higher than the etching rate for the thin film, the thin film formed at the top and the valley of the etch pit has a sloped surface of the etch pit. Since the film characteristics are worse than those of the thin film formed in the above step, they are more likely to be etched by the etching agent, and this etching agent passes through the defects in the thin film and etches the tops and valleys of the etch pits. On the other hand, the film characteristics of the thin film formed on the inclined surface of the etch pit are better than those of the thin film formed on the top and the bottom of the etch pit, and thus are less susceptible to etching by the above-mentioned etching agent. The sloped surface of the etch pit covered with is also less susceptible to etching. Therefore, since the tops and valleys of the etch pits are selectively etched, it is possible to process the tops and valleys of the etch pits into curved shapes while leaving the texture grooves. In addition to the above-described silicon oxide, examples of materials applicable to the thin film include silicon nitride (SiN x ), tin oxide (SnO 2 ), titanium oxide (TiO 2 ), and zinc oxide (ZnO). Can be mentioned.
【0013】尚、上記エッチング剤として結晶シリコン
に対するエッチングレートが酸化シリコン等の薄膜に対
するエッチングレートより低いエッチング剤を適用した
場合、上記薄膜の膜特性の良否に拘らず薄膜が一様にエ
ッチングされてしまうため、テクスチャ溝を残したまま
でエッチピットの頂部と谷部を曲面形状に加工すること
が困難となる。従って、結晶シリコンに対するエッチン
グレートが上記薄膜に対するエッチングレートより高い
エッチング剤を適用することを要する。このようなエッ
チング剤としては、上記薄膜を構成する材料の種類に応
じて以下のようなものを例示できる。すなわち、上記薄
膜が酸化シリコン(SiO2 )の場合には高濃度のアル
カリ水溶液(例えば、KOH、NaOH等の水溶液)や
HFとHNO3 の混合系(HF:HNO3 =1:5〜
1:10)等が、また、薄膜が窒化シリコン(Si
NX )や酸化チタン(TiO2 )の場合には上記HFと
HNO3の混合系等が適用できる。また、上記薄膜が酸
化スズ(SnO2 )の場合には5%程度の希アルカリ
(KOHやNaOH等)水溶液等が適用でき、また、薄
膜が酸化亜鉛(ZnO)の場合には1%程度の希アルカ
リ(KOHやNaOH等)水溶液等が利用できる。When an etching agent having a lower etching rate for crystalline silicon than a thin film such as silicon oxide is applied as the etching agent, the thin film is uniformly etched regardless of the film characteristics of the thin film. Therefore, it becomes difficult to process the top and valley of the etch pit into a curved shape while leaving the texture groove. Therefore, it is necessary to apply an etching agent having an etching rate for crystalline silicon higher than that for the thin film. Examples of such an etching agent include the following, depending on the type of material forming the thin film. That is, when the thin film is silicon oxide (SiO 2 ), a highly concentrated alkaline aqueous solution (for example, an aqueous solution of KOH, NaOH, etc.) or a mixed system of HF and HNO 3 (HF: HNO 3 = 1: 5 to 5).
1:10), and the thin film is silicon nitride (Si
In the case of N x ) or titanium oxide (TiO 2 ), the mixed system of HF and HNO 3 can be applied. When the thin film is tin oxide (SnO 2 ), about 5% dilute alkaline (KOH, NaOH, etc.) aqueous solution can be applied, and when the thin film is zinc oxide (ZnO), about 1%. A dilute alkaline (KOH, NaOH, etc.) aqueous solution or the like can be used.
【0014】また、上記エッチピットの頂部と谷部が曲
面形状に加工された後、単結晶シリコン表面に残留する
薄膜を除去するエッチング剤としては、酸化シリコン薄
膜に対してはHF等が、窒化シリコン薄膜や酸化チタン
薄膜に対しては1%程度の希アルカリ(KOHやNaO
H等)水溶液等が利用でき、また、酸化スズ薄膜に対し
ては塩酸、硫酸、硝酸等の強酸水溶液等が、酸化亜鉛薄
膜に対しては1%程度の希酸水溶液等が適用できる。Further, as an etching agent for removing the thin film remaining on the surface of the single crystal silicon after the top and the valley of the etch pit are processed into a curved surface shape, HF or the like for the silicon oxide thin film is used. About 1% dilute alkali (KOH or NaO) for silicon thin film and titanium oxide thin film
H or the like), an aqueous solution of a strong acid such as hydrochloric acid, sulfuric acid or nitric acid can be applied to the tin oxide thin film, and a diluted acid aqueous solution of about 1% can be applied to the zinc oxide thin film.
【0015】次に、エッチピットの頂部と谷部に膜特性
の悪い薄膜を意図的に形成できる低温成膜法としては、
真空蒸着法、スパッタリング法、イオンビームデボジッ
ション法等のPVD(物理気相成膜)法やプラズマCV
D法等が挙げられる。請求項2に係る発明は上記低温成
膜法を特定した発明に関する。Next, as a low temperature film forming method capable of intentionally forming a thin film having bad film characteristics on the top and the valley of the etch pit,
PVD (Physical Vapor Deposition) method such as vacuum deposition method, sputtering method, ion beam devolution method and plasma CV
D method etc. are mentioned. The invention according to claim 2 relates to the invention which specifies the above-mentioned low temperature film forming method.
【0016】すなわち、請求項2に係る発明は、請求項
1記載の発明に係る光電変換装置用基板の製造方法を前
提とし、上記低温成膜法がPVD法又はプラズマCVD
法であることを特徴とするものである。That is, the invention according to claim 2 is premised on the method for manufacturing a substrate for a photoelectric conversion device according to claim 1, wherein the low temperature film forming method is PVD or plasma CVD.
It is characterized by being a law.
【0017】尚、エッチピットを形成した単結晶シリコ
ン表面に形成される上記薄膜の膜厚、及び、薄膜と単結
晶シリコン表面のエッチング処理時間については、予め
形成されたエッチピットの深さ寸法、適用されるエッチ
ング剤の種類、及び、エッチピットの頂部と谷部の曲面
形状等を考慮して適宜値に設定すればよい。Regarding the film thickness of the thin film formed on the surface of the single crystal silicon on which the etch pits are formed and the etching treatment time for the thin film and the surface of the single crystal silicon, the depth of the previously formed etch pits is It may be set to an appropriate value in consideration of the type of etching agent applied and the curved shapes of the top and valley of the etch pit.
【0018】また、得られた基板の適用対象としては成
膜型太陽電池やイメージセンサ等の基板が例示できる。Further, examples of application of the obtained substrate include substrates such as film-forming solar cells and image sensors.
【0019】[0019]
【作用】請求項1〜2に係る発明によれば、エッチピッ
トが形成された単結晶シリコンの表面に低温成膜法によ
り薄膜を形成しているため、エッチピットの傾斜面に形
成された薄膜に較べてエッチピットの頂部と谷部に形成
された薄膜は多くの欠陥を有している。そして、結晶シ
リコンに対するエッチングレートが上記薄膜に対するエ
ッチングレートより高いエッチング剤を用いて薄膜と単
結晶シリコン表面をエッチング処理すると、欠陥の多い
薄膜で覆われたエッチピットの頂部と谷部が選択的にエ
ッチングを受けることになるため、テクスチャ溝を残し
たままで上記エッチピットの頂部と谷部を曲面形状に加
工することが可能となる。According to the first and second aspects of the invention, since the thin film is formed on the surface of the single crystal silicon in which the etch pits are formed by the low temperature film forming method, the thin film formed on the inclined surface of the etch pits. In comparison with the above, the thin film formed on the top and the valley of the etch pit has many defects. Then, when the thin film and the single crystal silicon surface are subjected to an etching treatment with an etching agent having an etching rate for crystalline silicon higher than the etching rate for the thin film, the tops and valleys of the etch pits covered with the thin film having many defects are selectively removed. Since it is subjected to etching, it is possible to process the tops and valleys of the etch pits into curved surfaces while leaving the textured grooves.
【0020】[0020]
【実施例】以下、本発明の実施例について詳細に説明す
る。EXAMPLES Examples of the present invention will be described in detail below.
【0021】まず、(100)の結晶方位を有し、か
つ、厚さ0.6mmでn型の単結晶シリコン(比抵抗1
〜10Ω・cm)1を、5重量%のKOH水溶液中に8
0℃で20分間浸漬して、1.0〜3.0μmのピラミ
ッド状のエッチピット10を形成した(図1A参照)。First, n-type single crystal silicon having a (100) crystal orientation and a thickness of 0.6 mm (specific resistance 1
10 Ω · cm) 8 in 5% by weight KOH aqueous solution
It was immersed at 0 ° C. for 20 minutes to form 1.0 to 3.0 μm pyramid-shaped etch pits 10 (see FIG. 1A).
【0022】このエッチピット10が形成された単結晶
シリコン1を高周波マグネトロンスパッタリング装置内
に導入し、下記成膜条件によるスパッタリング法により
単結晶シリコン1表面に厚さ0.1μmの酸化シリコン
薄膜2を成膜した(図1B参照)。The single crystal silicon 1 in which the etch pits 10 are formed is introduced into a high frequency magnetron sputtering apparatus, and a silicon oxide thin film 2 having a thickness of 0.1 μm is formed on the surface of the single crystal silicon 1 by a sputtering method under the following film forming conditions. A film was formed (see FIG. 1B).
【0023】[成膜条件] スパッタリングターゲット;Si 反応ガスの種類;O2 反応ガスの供給速度;1SCCM〜20SCCM 反応ガスの圧力;1mTorr〜10mTorr 放電電力;50W〜200W 単結晶シリコンの加熱温度;100℃〜300℃ 次に、酸化シリコン薄膜2が成膜された単結晶シリコン
1を30重量%KOH水溶液のエッチング剤を用いて約
1分間エッチング処理し、エッチピット10傾斜面に成
膜された酸化シリコン薄膜21に較べ膜特性が悪い酸化
シリコン薄膜22を介してエッチピット10の頂部と谷
部をそれぞれ曲面形状に加工した後、エッチング剤をH
Fに代えて再度エッチング処理を施し、残留する酸化シ
リコン薄膜2を溶解除去して図1(C)に示すような基
板3を製造した。[Film Forming Conditions] Sputtering target; Si reactive gas type; O 2 reactive gas supply rate; 1 SCCM to 20 SCCM reactive gas pressure; 1 mTorr to 10 mTorr discharge power; 50 W to 200 W single crystal silicon heating temperature; 100 C.-300.degree. C. Next, the single crystal silicon 1 on which the silicon oxide thin film 2 is formed is etched for about 1 minute using an etching agent of a 30 wt% KOH aqueous solution, and the oxidation formed on the inclined surface of the etch pit 10 is performed. The top and the valley of the etch pit 10 are processed into a curved surface shape through the silicon oxide thin film 22 having poor film characteristics as compared with the silicon thin film 21, and then an etchant of H is added.
Instead of F, an etching process was performed again, and the remaining silicon oxide thin film 2 was dissolved and removed to manufacture a substrate 3 as shown in FIG. 1 (C).
【0024】そして、得られたこの基板3を成膜型太陽
電池の基板として適用した。すなわち、上記基板3の表
面に下記成膜条件によるプラズマCVD法により厚さ2
00Åのp型非晶質シリコン層4を成膜した(図1D参
照)。Then, the obtained substrate 3 was applied as a substrate for a film-forming solar cell. That is, a thickness of 2 is formed on the surface of the substrate 3 by the plasma CVD method under the following film forming conditions.
A 00Å p-type amorphous silicon layer 4 was formed (see FIG. 1D).
【0025】[成膜条件] 反応ガスの種類;B2H6 / SiH4 =0.05%〜5
% 反応ガスの供給速度;5SCCM〜100SCCM 反応ガスの圧力;50mTorr〜1Torr 放電電力;5W〜100W 単結晶シリコンの加熱温度;100℃〜300℃ 次に、上記p型非晶質シリコン層4上に銀ペーストによ
り櫛歯状電極を形成すると共に、n型の単結晶シリコン
から成る基板3の背面側にスパッタリング法によりアル
ミニウムを一様に成膜して裏面電極を形成し、成膜型太
陽電池を製造した。[Film forming conditions] Kind of reaction gas: B 2 H 6 / SiH 4 = 0.05% to 5
% Reaction gas supply rate; 5 SCCM to 100 SCCM Reaction gas pressure; 50 mTorr to 1 Torr discharge power; 5 W to 100 W Heating temperature of single crystal silicon; 100 ° C. to 300 ° C. Next, on the p-type amorphous silicon layer 4 A comb-teeth-shaped electrode is formed of silver paste, and aluminum is uniformly deposited on the back surface side of the substrate 3 made of n-type single crystal silicon by a sputtering method to form a back surface electrode. Manufactured.
【0026】そして、得られた成膜型太陽電池につい
て、AM1:100mW/cm2 のソーラーシュミレー
タを用いて電流−電圧測定を行った結果、Vocは0.5
7ボルト、Jscは35mA/cm2 、FFは0.71で
あり、光電変換効率ηは14.2%と良好であった。Then, the film-forming solar cell thus obtained was subjected to current-voltage measurement using a solar simulator of AM1: 100 mW / cm 2 , and as a result, V oc was 0.5.
The voltage was 7 V, J sc was 35 mA / cm 2 , FF was 0.71, and the photoelectric conversion efficiency η was 14.2%.
【0027】また、この太陽電池の表面反射特性を測定
したところ、全波長域にわたって反射率が低減してお
り、テクスチャ溝に起因する光閉じ込め作用が機能して
いることが確認できた。Further, when the surface reflection characteristics of this solar cell were measured, it was confirmed that the reflectance was reduced over the entire wavelength range, and that the light trapping function due to the texture groove was functioning.
【0028】[比較例1]次に、実施例に係る基板の効
果を確認するため、エッチピットの頂部と谷部が曲面形
状に加工されていないp型の単結晶シリコンを用いて実
施例と同一構造の成膜型太陽電池を製造した。[Comparative Example 1] Next, in order to confirm the effect of the substrate according to the embodiment, a p-type single crystal silicon in which the tops and valleys of the etch pits are not processed into a curved shape is used. A film-forming solar cell having the same structure was manufactured.
【0029】そして、この成膜型太陽電池について、実
施例と同様にAM1:100mW/cm2 のソーラーシ
ュミレータを用いて電流−電圧測定を行った結果、Voc
は0.54ボルト、Jscは35mA/cm2 、FFは
0.70であり、光電変換効率ηは13.2%であっ
た。[0029] Then, this film forming solar cell, similar to the Example AM1: current by using a solar simulator of 100 mW / cm 2 - result of voltage measurement, V oc
Was 0.54 V, J sc was 35 mA / cm 2 , FF was 0.70, and photoelectric conversion efficiency η was 13.2%.
【0030】また、この太陽電池の表面反射特性を測定
したところ全波長域にわたって反射率が低減しており、
実施例と同様にテクスチャ溝に起因する光閉じ込め作用
が機能していることも確認できた。When the surface reflection characteristics of this solar cell were measured, the reflectance was reduced over the entire wavelength range,
It was also confirmed that the light confinement function due to the texture groove was functioning as in the example.
【0031】[比較例2]比較例1と同様、実施例に係
る基板の効果を確認するため、酸化シリコン薄膜を形成
せずにエッチピットの頂部と谷部についてエッチング処
理により曲面形状に加工した従来のp型単結晶シリコン
を用いて実施例と同一構造の成膜型太陽電池を製造し
た。[Comparative Example 2] As in Comparative Example 1, in order to confirm the effect of the substrate according to the example, the top and valley of the etch pit were processed into a curved shape by etching without forming a silicon oxide thin film. A film-forming solar cell having the same structure as that of the example was manufactured using conventional p-type single crystal silicon.
【0032】そして、この成膜型太陽電池について、実
施例と同様にAM1:100mW/cm2 のソーラーシ
ュミレータを用いて電流−電圧測定を行った結果、Voc
は0.58ボルト、Jscは32mA/cm2 、FFは
0.71であり、光電変換効率ηは13.2%であっ
た。[0032] Then, this film forming solar cell, similar to the Example AM1: current by using a solar simulator of 100 mW / cm 2 - result of voltage measurement, V oc
Was 0.58 V, J sc was 32 mA / cm 2 , FF was 0.71, and photoelectric conversion efficiency η was 13.2%.
【0033】また、この太陽電池の表面反射特性を測定
したところ全波長域にわたって反射率が増大しており、
実施例と相違して光閉じ込め作用が充分に機能していな
いことが確認できた。When the surface reflection characteristics of this solar cell were measured, the reflectance increased over the entire wavelength range,
It was confirmed that the optical confinement function did not function sufficiently unlike the examples.
【0034】[0034]
【発明の効果】請求項1〜2に係る発明によれば、テク
スチャ溝を残したままでエッチピットの頂部と谷部が曲
面形状に加工された光電変換装置用基板を製造すること
が可能となる。According to the first and second aspects of the present invention, it becomes possible to manufacture a photoelectric conversion device substrate in which the tops and valleys of the etch pits are processed into a curved shape while leaving the texture grooves. .
【0035】従って、この基板表面に欠陥の少ない膜特
性良好な半導体被膜を簡便に成膜することが可能になる
ため、得られた光電変換装置の光電変換効率を向上でき
る効果を有している。Therefore, it becomes possible to easily form a semiconductor film having few defects and good film characteristics on the surface of the substrate, and thus it is possible to improve the photoelectric conversion efficiency of the obtained photoelectric conversion device. .
【図1】図1(A)〜(C)は実施例に係る光電変換装
置用基板の製造工程を示す説明図、図1(D)は得られ
た基板上に半導体被膜が成膜された状態を示す説明図。1A to 1C are explanatory views showing a manufacturing process of a substrate for a photoelectric conversion device according to an embodiment, and FIG. 1D shows a semiconductor film formed on the obtained substrate. Explanatory drawing which shows a state.
【図2】成膜型太陽電池の概略斜視図。FIG. 2 is a schematic perspective view of a film-forming solar cell.
【図3】図3(A)は図2のIII−III面断面図、また、
図3(B)は図3(A)の部分拡大図。3 (A) is a sectional view taken along line III-III in FIG.
FIG. 3B is a partially enlarged view of FIG.
【図4】テクスチャ度の高い単結晶シリコン基板表面に
成膜された半導体被膜の膜特性を示す概念図。FIG. 4 is a conceptual diagram showing film characteristics of a semiconductor film formed on the surface of a single crystal silicon substrate having a high texture.
1 単結晶シリコン 2 酸化シリコン薄膜 3 基板 4 非晶質シリコン層 10 エッチピット 21 酸化シリコン薄膜 22 酸化シリコン薄膜 1 Single Crystal Silicon 2 Silicon Oxide Thin Film 3 Substrate 4 Amorphous Silicon Layer 10 Etch Pit 21 Silicon Oxide Thin Film 22 Silicon Oxide Thin Film
Claims (2)
の製造方法において、 上記テクスチャ溝を構成するエッチピットが形成された
単結晶シリコンの表面に低温成膜法により薄膜を形成
し、かつ、結晶シリコンに対するエッチングレートが上
記薄膜に対するエッチングレートより高いエッチング剤
を用いて薄膜と単結晶シリコン表面をエッチング処理
し、上記エッチピットの頂部と谷部をそれぞれ曲面形状
に加工することを特徴とする光電変換装置用基板の製造
方法。1. A method for manufacturing a substrate for a photoelectric conversion device having a textured groove, wherein a thin film is formed by a low temperature film forming method on the surface of single crystal silicon in which the etch pits forming the textured groove are formed, and The photoelectric conversion device characterized in that the thin film and the surface of the single crystal silicon are etched using an etchant having an etching rate for crystalline silicon higher than the etching rate for the thin film, and the tops and valleys of the etch pits are each processed into a curved shape. A method for manufacturing a substrate for a conversion device.
VD法であることを特徴とする請求項1記載の光電変換
装置用基板の製造方法。2. The low temperature film forming method is a PVD method or a plasma C method.
The method for manufacturing a substrate for a photoelectric conversion device according to claim 1, which is a VD method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5213627A JPH0766437A (en) | 1993-08-30 | 1993-08-30 | Manufacture of substrate for photoelectric transducer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5213627A JPH0766437A (en) | 1993-08-30 | 1993-08-30 | Manufacture of substrate for photoelectric transducer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0766437A true JPH0766437A (en) | 1995-03-10 |
Family
ID=16642291
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5213627A Pending JPH0766437A (en) | 1993-08-30 | 1993-08-30 | Manufacture of substrate for photoelectric transducer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0766437A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100433342C (en) * | 2003-08-20 | 2008-11-12 | 索尼株式会社 | Photo-electric converting device and its driving method, and its manufacturing method, solid-state image pickup device and its driving method and its manufacturing method |
US20110003423A1 (en) * | 2008-06-12 | 2011-01-06 | Smith David D | Trench Process And Structure For Backside Contact Solar Cells With Polysilicon Doped Regions |
JP2011061030A (en) * | 2009-09-10 | 2011-03-24 | Kaneka Corp | Crystal silicon-based solar cell |
RU2474008C2 (en) * | 2008-03-14 | 2013-01-27 | Норут Нарвик Ас | Method to texture silicon surfaces |
JP2013518425A (en) * | 2010-01-27 | 2013-05-20 | コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブ | Method for producing photovoltaic cell including pretreatment of the surface of a crystalline silicon substrate |
CN104078567A (en) * | 2014-07-16 | 2014-10-01 | 中国科学院物理研究所 | Organic and inorganic mixed solar battery and manufacturing method and hole-transporting-layer forming method of organic and inorganic mixed solar battery |
KR101484737B1 (en) * | 2007-02-15 | 2015-01-22 | 메사추세츠 인스티튜트 오브 테크놀로지 | Solar cells with textured surfaces |
US10276738B2 (en) | 2010-01-27 | 2019-04-30 | Commissariat à l'Energie Atomique et aux Energies Alternatives | Photovoltaic cell, including a crystalline silicon oxide passivation thin film, and method for producing same |
-
1993
- 1993-08-30 JP JP5213627A patent/JPH0766437A/en active Pending
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100433342C (en) * | 2003-08-20 | 2008-11-12 | 索尼株式会社 | Photo-electric converting device and its driving method, and its manufacturing method, solid-state image pickup device and its driving method and its manufacturing method |
KR101484737B1 (en) * | 2007-02-15 | 2015-01-22 | 메사추세츠 인스티튜트 오브 테크놀로지 | Solar cells with textured surfaces |
RU2474008C2 (en) * | 2008-03-14 | 2013-01-27 | Норут Нарвик Ас | Method to texture silicon surfaces |
US8772894B2 (en) * | 2008-06-12 | 2014-07-08 | Sunpower Corporation | Trench process and structure for backside contact solar cells with polysilicon doped regions |
US9437763B2 (en) * | 2008-06-12 | 2016-09-06 | Sunpower Corporation | Trench process and structure for backside contact solar cells with polysilicon doped regions |
US10396230B2 (en) * | 2008-06-12 | 2019-08-27 | Sunpower Corporation | Backside contact solar cells with separated polysilicon doped regions |
US8450134B2 (en) * | 2008-06-12 | 2013-05-28 | Sunpower Corporation | Trench process and structure for backside contact solar cells with polysilicon doped regions |
US8460963B2 (en) * | 2008-06-12 | 2013-06-11 | Sunpower Corporation | Trench process and structure for backside contact solar cells with polysilicon doped regions |
US20110059571A1 (en) * | 2008-06-12 | 2011-03-10 | Denis De Ceuster | Trench Process and Structure for Backside Contact Solar Cells with Polysilicon Doped Regions |
US10128395B2 (en) * | 2008-06-12 | 2018-11-13 | Sunpower Corporation | Trench process and structure for backside contact solar cells with polysilicon doped regions |
US9929298B2 (en) * | 2008-06-12 | 2018-03-27 | Sunpower Corporation | Trench process and structure for backside contact solar cells with polysilicon doped regions |
US20110003423A1 (en) * | 2008-06-12 | 2011-01-06 | Smith David D | Trench Process And Structure For Backside Contact Solar Cells With Polysilicon Doped Regions |
US20160071991A1 (en) * | 2008-06-12 | 2016-03-10 | Sunpower Corporation | Trench process and structure for backside contact solar cells with polysilicon doped regions |
US20170330988A1 (en) * | 2008-06-12 | 2017-11-16 | Sunpower Corporation | Trench process and structure for backside contact solar cells with polysilicon doped regions |
JP2011061030A (en) * | 2009-09-10 | 2011-03-24 | Kaneka Corp | Crystal silicon-based solar cell |
US8877539B2 (en) | 2010-01-27 | 2014-11-04 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Method for producing a photovoltaic cell including the preparation of the surface of a crystalline silicon substrate |
US10276738B2 (en) | 2010-01-27 | 2019-04-30 | Commissariat à l'Energie Atomique et aux Energies Alternatives | Photovoltaic cell, including a crystalline silicon oxide passivation thin film, and method for producing same |
JP2013518425A (en) * | 2010-01-27 | 2013-05-20 | コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブ | Method for producing photovoltaic cell including pretreatment of the surface of a crystalline silicon substrate |
CN104078567A (en) * | 2014-07-16 | 2014-10-01 | 中国科学院物理研究所 | Organic and inorganic mixed solar battery and manufacturing method and hole-transporting-layer forming method of organic and inorganic mixed solar battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7212786B2 (en) | Crystalline silicon solar cell and manufacturing method thereof | |
JP3271990B2 (en) | Photovoltaic device and method for manufacturing the same | |
JP2003069061A (en) | Laminated photovoltaic transducer device | |
JPH10233518A (en) | Solar cell and its manufacturing method, and manufacturing method of semiconductor device | |
US20200220033A1 (en) | Metal-assisted etch combined with regularizing etch | |
JP2002025350A (en) | Substrate with transparent conductive film and manufacturing method of the same, etching method using the same, and light electromotive force device | |
JP5991945B2 (en) | Solar cell and solar cell module | |
CN102089884B (en) | Thin film solar cell and manufacturing method thereof | |
JP4340031B2 (en) | Surface roughening method for solar cell substrate | |
CN112133793A (en) | Back-junction back-contact solar cell and manufacturing method thereof | |
JP2003069059A (en) | Method for roughening glass substrate, and thin film polycrystalline silicon solar battery using the same | |
JPH0766437A (en) | Manufacture of substrate for photoelectric transducer | |
JP4467218B2 (en) | Surface roughening method for solar cell substrates | |
JPH0361348B2 (en) | ||
JPH1084125A (en) | Photoelectric converter and manufacture thereof | |
JP2002076404A (en) | Surface roughening method of silicon substrate | |
JP2005167291A (en) | Solar cell manufacturing method and semiconductor device manufacturing method | |
JPH07326784A (en) | Manufacture of solar battery element | |
JP2003273382A (en) | Solar cell element | |
JP2000114555A (en) | Manufacture of thin film solar cell | |
JPH0529638A (en) | Manufacture of photoelectric transducer | |
JP3776606B2 (en) | Method for producing transparent electrode substrate | |
JPH07106612A (en) | Fabrication of photoelectric converter | |
RU2687501C1 (en) | Method of making photoelectric converter with antireflection coating | |
KR101079261B1 (en) | A solar cell and method for the same |