Nothing Special   »   [go: up one dir, main page]

JPH0750104A - Conductive particle and connection member using conductive particle - Google Patents

Conductive particle and connection member using conductive particle

Info

Publication number
JPH0750104A
JPH0750104A JP19436293A JP19436293A JPH0750104A JP H0750104 A JPH0750104 A JP H0750104A JP 19436293 A JP19436293 A JP 19436293A JP 19436293 A JP19436293 A JP 19436293A JP H0750104 A JPH0750104 A JP H0750104A
Authority
JP
Japan
Prior art keywords
layer
conductive
connection
conductive particles
connecting member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19436293A
Other languages
Japanese (ja)
Inventor
Isao Tsukagoshi
功 塚越
Mitsugi Fujinawa
貢 藤縄
Naoyuki Shiozawa
直行 塩沢
Yasushi Goto
泰史 後藤
Tomohisa Ota
共久 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP19436293A priority Critical patent/JPH0750104A/en
Publication of JPH0750104A publication Critical patent/JPH0750104A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To provide conductive particles having no necessity to strictly control connecting conditions, excellent in connecting reliability and possible to control its deformability and a connecting member using the conductive particles. CONSTITUTION:A conductive particle has a soft layer formed on the surface of a hard core 1 and a conductive layer 3 formed outside thereof, and a connecting member is constructed by dispersing the conductive particles into adhesive components such as epoxy resin. A resin layer 4 fusible under connecting conditions may be formed outside the conductive layer 3. Material for the hard core 1 may be metallic or polymeric base. The hard core 1 is relatively harder than the soft layer 2 under circumstances where the conductive particles are used such as under connecting conditions in electrode or circuit connecting use.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は例えば電極の接続などに
好適な、変形度の制御が可能な導電性粒子とこれを用い
た接続部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to conductive particles suitable for connecting electrodes, etc., whose degree of deformation can be controlled, and a connecting member using the conductive particles.

【0002】[0002]

【従来の技術】回路素子と回路基板、回路基板同士を、
エポキシ樹脂などの接着成分中に導電性粒子を分散した
接続部材で接着し、回路素子と回路基板、回路基板同士
を加圧方向にのみ電気的に接続する異方導電性接続部材
がある。この接続部材において、接着成分中に分散させ
る導電性粒子として、高分子重合体を核体(高分子核
体)とし、その表面を金属薄層で被覆してなる導電性粒
子が知られている。この粒子は、比重が小さいため、接
着成分が液状であるとき、沈降しにくい。またこのよう
な接続部材を用いて、例えば電子部品の微小電極などを
接続するときに、接続時の温度や圧力で高分子核体が変
形、導電性粒子と電極との接触面積を大きくすることが
できるなどの特徴がある。この場合、上記導電性粒子が
変形しすぎないようにするため、硬質のスペーサ粒子を
混合することも提案されている。
2. Description of the Related Art Circuit elements, circuit boards, and circuit boards are
There is an anisotropic conductive connecting member that is bonded by a connecting member in which conductive particles are dispersed in an adhesive component such as an epoxy resin to electrically connect the circuit element to the circuit board and the circuit boards to each other only in the pressing direction. In this connecting member, as the conductive particles to be dispersed in the adhesive component, there are known conductive particles in which a polymer is used as a core (polymer core) and the surface thereof is covered with a thin metal layer. . Since these particles have a small specific gravity, they are unlikely to settle when the adhesive component is liquid. Further, when using such a connecting member, for example, when connecting a microelectrode of an electronic component, the polymer core is deformed by the temperature and pressure at the time of connection, and the contact area between the conductive particles and the electrode is increased. There are features such as being able to. In this case, it is also proposed to mix hard spacer particles in order to prevent the conductive particles from being excessively deformed.

【0003】[0003]

【発明が解決しようとする課題】高分子核体の表面を金
属薄層で被覆してなる導電性粒子は、接続時の温度や圧
力が高くなると、高分子核体の変形が大きくなり、金属
薄層が高分子核体から剥離したり、部分的に破壊したり
して離散し、離散した金属片が接続電極と接触して隣接
電極間の絶縁性を損なうことがあった。このため、接続
条件を厳密にコントロールする必要があり、条件の変動
を考慮し接続後の検査工程が必須な状況であった。
The conductive particles formed by coating the surface of the polymer core with a thin metal layer, the deformation of the polymer core becomes large when the temperature and pressure at the time of connection increase, and The thin layer may be separated from the polymer core by being separated or partially broken, and the separated metal pieces may come into contact with the connection electrode to impair the insulation between adjacent electrodes. For this reason, it is necessary to strictly control the connection conditions, and in consideration of fluctuations in the conditions, an inspection process after connection is essential.

【0004】また、硬質のスペーサ粒子を混合する場
合、これら混合粒子を均一に分散させる必要があるが、
比重の差や表面電荷の相違により微小部分における均一
分散性が困難である。特に最近では、この種の接着剤の
適用分野が、IC、LSIなどの集積回路類や液晶やE
L、プラズマなどの表示素子類と電子回路類との接続と
いった、微細な電極や回路の接続用途に接続部材として
多用され、そのため、広い接続条件で安定した接続信頼
性が得られることや、大量生産における接続後の検査工
程を不要にしたいといった要望が強く、一層使いやすい
接続部材が求められるようになっている。
When mixing hard spacer particles, it is necessary to disperse the mixed particles uniformly.
Due to the difference in specific gravity and the difference in surface charge, it is difficult to uniformly disperse in a minute portion. In particular, recently, the application fields of this kind of adhesives are integrated circuits such as IC and LSI, liquid crystal and E.
It is often used as a connecting member for connecting minute electrodes and circuits such as connecting display elements such as L and plasma to electronic circuits, and therefore stable connection reliability can be obtained under a wide range of connection conditions and a large amount There is a strong demand for eliminating the inspection step after connection in production, and a connection member that is easier to use has been demanded.

【0005】[0005]

【課題を解決するための手段】本発明は、硬質核1の表
面に軟質層2を形成し、その外側に導電層3を形成して
なる導電性粒子である。
The present invention is a conductive particle in which a soft layer 2 is formed on the surface of a hard nucleus 1 and a conductive layer 3 is formed on the outer side thereof.

【0006】本発明を以下図面を用いて説明する。図1
(a)は、本発明の一実施例を示す断面模式図である。
硬質核1の材料は、金属でも高分子類でもよい。ここ
で、硬質の意味は、導電性粒子の使用環境下例えば電極
や回路の接続用途の場合の接続条件下で、軟質層2と比
べての相対的な硬さの関係を意味する。一定温度におけ
る弾性率や硬度などの一般的な硬さの指標や、例えば融
点やガラス転移温度及び軟化転などの熱的変態点の差を
目安とすることができる。
The present invention will be described below with reference to the drawings. Figure 1
FIG. 3A is a schematic sectional view showing an example of the present invention.
The material of the hard core 1 may be a metal or a polymer. Here, the meaning of “hard” means a relationship of relative hardness as compared with the soft layer 2 under the use environment of the conductive particles, for example, under the connection condition in the case of connecting the electrodes or circuits. A general index of hardness such as elastic modulus and hardness at a constant temperature, or a difference in thermal transformation point such as melting point, glass transition temperature and softening point can be used as a standard.

【0007】硬質核1の粒径は、平均して、0.1〜2
0μm、好ましくは0.3〜10μm、より好ましくは
0.5〜6μmとすることが、接続後の電極間距離を狭
めて接続信頼性を向上する点から好ましい。硬質核1の
粒径は均一とすることが好ましい。また硬質核1の粒形
は略球状が好ましいが、(b)に示すように、表面に多
数の凹凸をがあるなどの任意の形でよい。硬質核1は導
電性でも非導電性でもよい。
The particle size of the hard core 1 is 0.1 to 2 on average.
The thickness is preferably 0 μm, preferably 0.3 to 10 μm, and more preferably 0.5 to 6 μm from the viewpoint of reducing the distance between electrodes after connection and improving the connection reliability. The particle size of the hard core 1 is preferably uniform. Further, the grain shape of the hard core 1 is preferably substantially spherical, but as shown in (b), it may have any shape such as a large number of irregularities on the surface. The hard core 1 may be conductive or non-conductive.

【0008】軟質層2はポリスチレンやナイロン、各種
ゴム類などの高分子類が好ましく、これらは架橋体であ
ると耐溶剤性が向上するので、接着成分中に溶剤が含ま
れている場合、溶出がなく、特性に影響が少ないことか
らより好ましい。また軟質層2を高分子とすると変形性
を得やすく、導電層や核体との接着性もよい。そのため
接続部材とした時、低抵抗で信頼性に優れた接続が得ら
れる。また、接続電極や基板の耐熱性や硬さに応じて、
適宜組み合わせを設定可能である。
Polymers such as polystyrene, nylon and various rubbers are preferable for the soft layer 2, and when these are cross-linked, solvent resistance is improved. Therefore, when a solvent is contained in the adhesive component, elution occurs. It is more preferable because it has no effect on the characteristics. If the soft layer 2 is made of a polymer, it is easy to obtain deformability, and the adhesiveness to the conductive layer and the core is good. Therefore, when it is used as a connecting member, a connection having low resistance and excellent reliability can be obtained. Also, depending on the heat resistance and hardness of the connection electrode and the substrate,
A combination can be set as appropriate.

【0009】軟質層2の厚みは、0.1〜10μm程度
が好適である。0.1μm未満では変形量が十分に得ら
れず信頼性が不足し、10μmを超えると変形量が過剰
となり金属薄層の被覆が剥離し易くなる。このような理
由から、0.3〜5μmが好ましく0.5〜3μmより
好ましい。
The thickness of the soft layer 2 is preferably about 0.1 to 10 μm. If it is less than 0.1 μm, a sufficient deformation amount cannot be obtained and reliability is insufficient, and if it exceeds 10 μm, the deformation amount becomes excessive and the coating of the thin metal layer easily peels off. For this reason, 0.3 to 5 μm is preferable, and 0.5 to 3 μm is more preferable.

【0010】また、軟質層2の厚みは、硬質核1の粒径
以下、より好ましくは1/2以下とすると、導電粒子の
変形量が制御しやすく回路の接続部材料として好まし
い。軟質層2は、図1(c)に示すように粒子状で存在
してもよく、単層又は複層以上の構成とすることもでき
る。複層以上の構成の場合、強度保持性、耐溶剤性、接
着性、柔軟性、耐熱性、耐めっき液性などの機能を分担
することも可能なため好適である。軟質層2は、例えば
噴霧法、高速撹拌法、スプレードライヤーなど任意の方
法で形成できる。
When the thickness of the soft layer 2 is less than or equal to the particle diameter of the hard core 1, more preferably less than 1/2, the amount of deformation of the conductive particles is easy to control, which is preferable as the material for the connecting portion of the circuit. The soft layer 2 may be present in the form of particles as shown in FIG. 1 (c), and may have a single-layer structure or a multi-layer structure or more. In the case of a structure having a plurality of layers or more, it is possible to share functions such as strength retention, solvent resistance, adhesiveness, flexibility, heat resistance, and plating solution resistance, which is preferable. The soft layer 2 can be formed by an arbitrary method such as a spraying method, a high-speed stirring method, or a spray dryer.

【0011】導電層3は導電性を有する各種の金属や合
金、酸化物などである。導電性と耐腐食性を加味して好
ましく用いられる材料としては、Ni、Cu、Al、S
n、Zn、Au、Pd、Ag、Co、Pb、などであ
り、これらは単層もしくは複層以上の構成とすることも
できる。
The conductive layer 3 is made of various conductive metals, alloys, oxides and the like. Materials preferably used in consideration of conductivity and corrosion resistance include Ni, Cu, Al and S.
n, Zn, Au, Pd, Ag, Co, Pb, and the like, and these may have a single-layer structure or a multi-layer structure or more.

【0012】導電層3の形成手段としては、蒸着法、ス
パッタリング法、イオンプレーティング法、溶射法、め
っき法、などの一般的な方法でよいが、無電解めっき法
が均一厚みの被覆層のえられることから好ましい。
The conductive layer 3 may be formed by a general method such as a vapor deposition method, a sputtering method, an ion plating method, a thermal spraying method or a plating method, but the electroless plating method is used for forming a coating layer having a uniform thickness. It is preferable because it can be obtained.

【0013】図1(d)に示すように、必要に応じて導
電層3の表面に接続条件で溶融可能な樹脂層4を形成し
てもよい。この場合、前記した微細電極の接続用とした
場合、加熱加圧下において電極との接触面においては樹
脂層が溶融し接続が可能となるが、隣接電極方向は熱量
が不十分なため樹脂層が溶融し難いので絶縁性の低下が
少なく、より高密度の実装が可能となる。
As shown in FIG. 1 (d), a resin layer 4 which can be melted under connection conditions may be formed on the surface of the conductive layer 3 if necessary. In this case, in the case of connecting the fine electrodes described above, the resin layer melts and can be connected on the contact surface with the electrode under heating and pressurization, but since the amount of heat is insufficient in the direction of the adjacent electrode, the resin layer is Since it is difficult to melt, there is little deterioration in insulation, and higher density mounting is possible.

【0014】上記した各層間には必要に応じて、密着性
向上のためのカップリング剤などの補助層を形成でき
る。
If necessary, an auxiliary layer such as a coupling agent for improving adhesion can be formed between the above layers.

【0015】本発明の導電性粒子を微細電極の接続用と
するためには、その粒径を隣接配線パターン間距離の最
小幅よりも小さくすることが、隣接配線パターンとのシ
ョートを防止し配線の細線化に対応する上で必要であ
る。
In order to use the conductive particles of the present invention for connecting fine electrodes, it is necessary to make the particle size smaller than the minimum width of the distance between adjacent wiring patterns to prevent short circuit with the adjacent wiring patterns. It is necessary to support the thinning of.

【0016】この場合の接着成分としては、熱可塑性材
料でもよいが、熱、光、電子線などのエネルギーによる
硬化性材料が耐熱性や耐湿性に優れることから好ましく
適用できる。形態は液状、ペースト状、フィルム状など
の何れでもよい、それぞれの特徴を生かして使いわけ
る。例えばフィルム状であると一定の厚みが得やすく塗
布作業も不要であり、また液状やペースト状の場合、微
小面積の必要部のみに形成できるなどの特徴がある。
As the adhesive component in this case, a thermoplastic material may be used, but a curable material by energy of heat, light, electron beam or the like is preferably applied because it has excellent heat resistance and moisture resistance. The form may be a liquid form, a paste form, a film form, or the like, and the respective features are used to the proper use. For example, in the case of a film, it is easy to obtain a certain thickness, and a coating operation is not necessary. In the case of a liquid or paste, it can be formed only in a necessary portion of a minute area.

【0017】接続部材中に占める導電性粒子の割合は、
用途により任意に設定できる。厚み方向のみに導電性の
必要な微細電極用の接続部材の場合、0.1〜15体積
%、好ましくは0.2〜10体積%、より好ましくは
0.5〜6体積である。配合量が少ないと、接続すべき
電極上の導電性粒子数が減少するため信頼性が低下し、
過多であると隣接電極の絶縁性が低下し微細電極の接続
が困難となる。
The proportion of conductive particles in the connecting member is
It can be set arbitrarily according to the purpose. In the case of a connecting member for a fine electrode which requires conductivity only in the thickness direction, it is 0.1 to 15% by volume, preferably 0.2 to 10% by volume, more preferably 0.5 to 6% by volume. If the compounding amount is small, the number of conductive particles on the electrodes to be connected decreases, so the reliability decreases,
If the amount is too large, the insulating property of the adjacent electrodes is deteriorated, and it becomes difficult to connect the fine electrodes.

【0018】面方向にも導電性が必要な塗料用の場合1
0〜35体積%が用いられる。
In the case of a paint that requires conductivity in the surface direction as well 1
0-35% by volume is used.

【0019】本発明になる導電性粒子を用いた接続部材
の電極接続構造を、図2に示す。基板12、12に設け
られた電極13、13間で、接続時の加熱加圧により導
電性粒子11は、核の粒径で制御させて接続部材14で
接続される。この時硬質核1上の軟質層2は変形性を有
するので、導電層3の剥離がない。電極の横方向は、導
電性粒子の添加量や粒径の制御により絶縁性を保てる。
FIG. 2 shows an electrode connecting structure of a connecting member using the conductive particles according to the present invention. Between the electrodes 13, 13 provided on the substrates 12, 12, the conductive particles 11 are connected by the connecting member 14 while being controlled by the particle size of the nucleus by heating and pressurizing at the time of connection. At this time, since the soft layer 2 on the hard core 1 is deformable, the conductive layer 3 is not peeled off. In the lateral direction of the electrode, the insulating property can be maintained by controlling the added amount of conductive particles and the particle size.

【0020】[0020]

【作用】本発明になる導電性粒子は、導電層3が、軟質
層2の上に形成されており、この軟質層2が接続時に変
形追随する。そして、その最大変形量は、核1の粒径で
制御されるので、過度の変形を生じない。このため、接
続作業時に、導電層3が剥離しない。
In the conductive particles according to the present invention, the conductive layer 3 is formed on the soft layer 2, and the soft layer 2 follows deformation during connection. The maximum amount of deformation is controlled by the grain size of the nucleus 1, so that excessive deformation does not occur. Therefore, the conductive layer 3 does not peel off during the connection work.

【0021】核1は、電極接続時の加熱加圧の際に軟質
な層に比べ硬質としたことにより変形がほとんど無い
か、あっても僅かとすることができる。そのため、加熱
加圧による接続後の電極間距離を硬質核の粒径に制御可
能なので、接続条件の考慮が少なくても安定した接続が
得られる。よく知られているように、電極間距離の制御
が接続信頼性向上に大きく影響する。
The nucleus 1 has little or no deformation when it is heated and pressed during electrode connection so that it is harder than a soft layer, and therefore there is little deformation. Therefore, the distance between the electrodes after connection by heating and pressurization can be controlled to the particle size of the hard core, so that stable connection can be obtained even if the connection conditions are not taken into consideration. As is well known, control of the distance between electrodes has a great influence on the improvement of connection reliability.

【0022】[0022]

【実施例】以下実施例でさらに詳細に説明するが、本発
明はこれに限定されない。 実施例1 平均粒径3μmの硬化エポキシ粒子(ガラス転移点19
0℃)の表面に、被覆層としてポリスチレン/ジビニル
ベンゼン=100/0.5(ガラス転移点115℃)よ
りなる平均粒径1μmの粒子を、アルコールを分散剤と
してスプレイドライヤで被覆し、125℃に加熱し、固
定化した。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto. Example 1 Cured epoxy particles having an average particle size of 3 μm (glass transition point 19
(0 ° C.), a coating layer having polystyrene / divinylbenzene = 100 / 0.5 (glass transition point 115 ° C.) having an average particle size of 1 μm is coated with a spray dryer using alcohol as a dispersant, and the temperature is 125 ° C. It was heated and fixed.

【0023】この粒子を水中に分散し、塩化パラジウム
系の活性化処理の後、無電解Niめっき液を用いてNi
めっきを90℃で行った後、Auめっき液を用い置換め
っきを70℃で行った。時Ni/Auの厚さは0.2/
0.02μmであった。
The particles are dispersed in water, and after a palladium chloride-based activation treatment, an electroless Ni plating solution is used to obtain Ni.
After plating was performed at 90 ° C., displacement plating was performed at 70 ° C. using an Au plating solution. The thickness of Ni / Au is 0.2 /
It was 0.02 μm.

【0024】高分子量エポキシを主成分とする接着成分
に、前記導電性粒子を2体積%添加し、厚み50μmの
ポリテトラフルオロエチレンフィルム上に、厚み20μ
mとなるように塗布して接続部材を得た。得られた接続
部材を、100℃の純水で、10時間抽出した後の抽出
水のナトリウムイオン及び塩素イオンは、それぞれ10
ppm以下であった。
2% by volume of the above-mentioned conductive particles was added to an adhesive component containing a high molecular weight epoxy as a main component, and a 20 μm thick layer was formed on a 50 μm thick polytetrafluoroethylene film.
m was applied to obtain a connection member. The sodium ion and the chlorine ion of the extracted water after extracting the obtained connecting member with pure water at 100 ° C. for 10 hours respectively contained 10
It was below ppm.

【0025】厚み75μmのポリイミド基板上に、厚み
15μmの接着剤層を介し厚み18μmで回路上にSn
薄層を有するのCu回路電極と、厚み1.1mmのガラ
ス上に形成した酸化インジウム(ITO、表面抵抗20
Ω/□)の薄層電極との間に、前記接続部材を1.5m
m幅で載置し両電極を位置合わせ後、接続した。
Sn is formed on a circuit with a thickness of 18 μm on a polyimide substrate having a thickness of 75 μm with an adhesive layer having a thickness of 15 μm interposed.
Cu circuit electrode having a thin layer and indium oxide (ITO, surface resistance 20
Ω / □) 1.5m above the connecting member between the thin layer electrode
The electrodes were placed with a width of m and the electrodes were aligned and then connected.

【0026】なお、回路ピッチ100μm、電極幅50
μmの平行回路の電極で、試験片1枚で300本の電極
接続部を有する。接続部の温度を、150℃、170
℃、190℃、また、圧力を、0.5MPa、2MP
a、10MPaと広く変動させた。このように広範囲の
接続条件下で、電極間距離は、核体の平均粒径である3
μmに制御され、良好な接続信頼性を示した。また接続
条件の異なる接続部の導電性粒子を走査型電子顕微鏡で
観察したところ、いずれも電極との接触部に微小なクラ
ックが見られ菊の花状となっているものの、金属層の剥
離がみられなかった。
A circuit pitch of 100 μm and an electrode width of 50
It is a parallel circuit electrode of μm, and one test piece has 300 electrode connecting portions. The temperature of the connection is 150 ℃, 170
℃, 190 ℃, pressure 0.5MPa, 2MP
a, widely varied to 10 MPa. Under such a wide range of connection conditions, the distance between the electrodes is the average particle size of the nucleus 3
It was controlled to μm and showed good connection reliability. In addition, when observing the conductive particles in the connection part under different connection conditions with a scanning electron microscope, in all cases, minute cracks were seen in the contact part with the electrode and chrysanthemum-shaped, but the metal layer peeled off. I couldn't see it.

【0027】比較例1 平均粒径5μmの硬化エポキシ粒子の表面に、直接Ni
/Au層(厚さは0.2/0.02μm)を形成した導
電性粒子を用い以下実施例1と同様にして接続部材を
得、同様に評価した。接続条件の変動により電極間距離
は4〜15μmと変動し接続抵抗のばらつき幅が大き
く、実用化のためにはごく狭い温度圧力の範囲内で接続
条件の厳密なコントロールが必要であった。
Comparative Example 1 Ni was directly applied to the surface of cured epoxy particles having an average particle size of 5 μm.
/ Au layer (thickness: 0.2 / 0.02 μm) was used to obtain a connecting member in the same manner as in Example 1 using conductive particles, and the same evaluation was performed. The distance between the electrodes fluctuates to 4 to 15 μm due to the variation of the connection conditions, and the variation width of the connection resistance is large. Therefore, for practical use, it was necessary to strictly control the connection conditions within a very narrow temperature and pressure range.

【0028】実施例2 核として平均粒径3μmのカルボニル法で得た導電性の
Ni粒子(融点1455℃)を使用し、実施例1と同様
にして、図1(b)の構成の導電性粒子を得、実施例1
と同様にして接続部材を得、同様な評価を行った。ただ
し、電極の表面を、SnからSn/Pb=10/90の
はんだ薄層に変更した。
Example 2 Conductive Ni particles (melting point 1455 ° C.) obtained by the carbonyl method having an average particle size of 3 μm were used as nuclei, and the conductivity of the structure shown in FIG. Particles were obtained, Example 1
A connection member was obtained in the same manner as in, and the same evaluation was performed. However, the surface of the electrode was changed from Sn to a thin solder layer of Sn / Pb = 10/90.

【0029】実施例1と同様に広範囲の接続条件下で良
好な接続信頼性を得、電極間距離は核体の平均粒径であ
る3μmに制御されていた。本例においては、硬質核を
融点の高い金属粒子としたことで、電極の表面がはんだ
のような酸化物質であっても酸化層に食い込む形で良好
な接続が得られた。
Similar to Example 1, good connection reliability was obtained under a wide range of connection conditions, and the distance between the electrodes was controlled to 3 μm, which is the average particle size of the nucleus. In this example, the hard nuclei were made of metal particles having a high melting point, so that even if the surface of the electrode was an oxidizing substance such as solder, a good connection was obtained by cutting into the oxide layer.

【0030】実施例3 実施例1で得られた導電性粒子をナイロン(ガラス転移
点110℃)のアルコールの溶液で処理後、60℃で乾
燥し表面に厚み1〜2μmのナイロン層を有する図1
(d)に示す構造の導電性粒子を得た。この導電性粒子
を実施例1と同様の接着成分中に、6体積%配合分散さ
せ、以下同様な評価を行った。
Example 3 The conductive particles obtained in Example 1 were treated with a solution of nylon (glass transition point 110 ° C.) in alcohol and then dried at 60 ° C. to form a nylon layer having a thickness of 1-2 μm on the surface. 1
The conductive particles having the structure shown in (d) were obtained. The conductive particles were mixed and dispersed in the same adhesive component as in Example 1 by 6% by volume, and the same evaluation was performed below.

【0031】この場合も広範囲の接続条件下で良好な接
続信頼性を得、電極間距離は核体の平均粒径である3μ
mに制御されていた。本例においては導電性粒子の配合
量を6体積%と増加したにもかかわらず、隣接方向の絶
縁性は良好であった。
Also in this case, good connection reliability is obtained under a wide range of connection conditions, and the distance between the electrodes is 3 μ which is the average particle size of the nucleus.
It was controlled by m. In this example, the insulating property in the adjoining direction was good even though the content of the conductive particles was increased to 6% by volume.

【0032】実施例4及び比較例2 実施例1及び比較例1の接続部材を用いて、基板並びに
接続条件を変更した。すなわち一方の回路基板を厚み
1.1mmのガラスに代えて、厚み0.2mmのポリエ
チレンテレフタレートのフィルム基板とした。ガラスに
比べフィルム基板では耐熱性が大きく異なるので、接続
条件を130℃、1MPa、30秒として同様に接続評
価した。
Example 4 and Comparative Example 2 Using the connecting members of Example 1 and Comparative Example 1, the substrate and the connecting conditions were changed. That is, one circuit board was replaced with a glass having a thickness of 1.1 mm, and a film substrate made of polyethylene terephthalate having a thickness of 0.2 mm was used. Since the heat resistance of the film substrate is significantly different from that of glass, the connection condition was set to 130 ° C., 1 MPa, and 30 seconds, and the connection was similarly evaluated.

【0033】実施例4(実施例1の接続部材)の場合、
電極間距離が核体の平均粒径である3μmに制御され、
良好な接続信頼性を示した。一方比較例2(比較例1の
接続部材)の場合、フィルム基板上のITO回路にクラ
ックが発生した。
In the case of Example 4 (connecting member of Example 1),
The distance between the electrodes is controlled to 3 μm, which is the average particle size of the nucleus,
It showed good connection reliability. On the other hand, in the case of Comparative Example 2 (the connecting member of Comparative Example 1), cracks occurred in the ITO circuit on the film substrate.

【0034】両者の比較から実施例4の場合、ポリスチ
レン系軟質層が接続時に衝撃緩衝材として作用し、加え
て最大変形量が硬質核の粒径で制御されたことから、I
TO回路にクラックの発生が無かったのに対し、比較例
2では接続温度と粒子のガラス転移点との差が大きく、
硬質核が軟質フィルム上のITO回路に食い込む形でク
ラックが発生したものと考えられる。
From the comparison of the two, in the case of Example 4, since the polystyrene-based soft layer acted as an impact cushioning material at the time of connection, and in addition, the maximum deformation amount was controlled by the grain size of the hard core.
While no crack was generated in the TO circuit, in Comparative Example 2, the difference between the connection temperature and the glass transition point of the particles was large,
It is considered that cracks occurred because the hard nuclei dig into the ITO circuit on the soft film.

【0035】従って、本発明の導電性粒子及び接続部材
を用いることで、例えばポリエチレンフタレートやポリ
カーボネート、ポリエーテルサルホン、ポリアリレート
などの、いわゆる軟質・軽量で耐熱性のないプラスチッ
ク基板類の場合にも、良好な接続を得ることが可能とな
った。
Therefore, by using the conductive particles and the connecting member of the present invention, in the case of so-called soft / lightweight and non-heat-resistant plastic substrates such as polyethylene phthalate, polycarbonate, polyether sulfone, polyarylate, etc. Even now it is possible to get a good connection.

【0036】[0036]

【発明の効果】以上詳述したように、本発明によれば広
い接続条件下で安定した接続信頼性が得られ、一層使い
やすい導電性粒子及び接続部材を得ることが可能とな
る。
As described above in detail, according to the present invention, stable connection reliability can be obtained under a wide range of connection conditions, and it is possible to obtain conductive particles and a connection member which are easier to use.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例になる導電性粒子の断面図で
ある。
FIG. 1 is a cross-sectional view of conductive particles according to an embodiment of the present invention.

【図2】本発明の一実施例を示す電極の接続構造の断面
図である。
FIG. 2 is a cross-sectional view of an electrode connection structure showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 硬質核 2 軟質層 3 導電層 4 樹脂層 11 導電性粒子 12 基板 13 電極 14 接続部材 1 Hard Nucleus 2 Soft Layer 3 Conductive Layer 4 Resin Layer 11 Conductive Particles 12 Substrate 13 Electrode 14 Connection Member

───────────────────────────────────────────────────── フロントページの続き (72)発明者 後藤 泰史 茨城県下館市大字小川1500番地 日立化成 工業株式会社下館研究所内 (72)発明者 太田 共久 茨城県下館市大字小川1500番地 日立化成 工業株式会社下館研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasushi Goto 1500 Ogawa, Shimodate, Ibaraki Prefecture Shimodate Laboratory, Hitachi Chemical Co., Ltd. (72) Kyohisa Ota 1500 Ogawa, Shimodate, Ibaraki Hitachi Chemical Co. Company Shimodate Institute

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 硬質核の表面に軟質層を形成し、その外
側に導電層を形成してなる導電性粒子。
1. A conductive particle having a soft layer formed on the surface of a hard nucleus and a conductive layer formed on the outer side of the soft layer.
【請求項2】 導電層の外側に、接続条件で溶融可能な
樹脂層を形成してなる請求項1記載の導電性粒子。
2. The conductive particle according to claim 1, wherein a resin layer that can be melted under a connection condition is formed outside the conductive layer.
【請求項3】 請求項1又は2の導電性粒子を、接着成
分中に0.1〜15体積%含有してなる接続部材。
3. A connecting member containing the conductive particles of claim 1 or 2 in an adhesive component in an amount of 0.1 to 15% by volume.
JP19436293A 1993-08-05 1993-08-05 Conductive particle and connection member using conductive particle Pending JPH0750104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19436293A JPH0750104A (en) 1993-08-05 1993-08-05 Conductive particle and connection member using conductive particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19436293A JPH0750104A (en) 1993-08-05 1993-08-05 Conductive particle and connection member using conductive particle

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP2003047435A Division JP3775598B2 (en) 2003-02-25 2003-02-25 Electrode connection structure
JP2003047434A Division JP3748108B2 (en) 2003-02-25 2003-02-25 Electrode connection structure of connection member using conductive particles
JP2003047433A Division JP3944849B2 (en) 2003-02-25 2003-02-25 Connecting member

Publications (1)

Publication Number Publication Date
JPH0750104A true JPH0750104A (en) 1995-02-21

Family

ID=16323322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19436293A Pending JPH0750104A (en) 1993-08-05 1993-08-05 Conductive particle and connection member using conductive particle

Country Status (1)

Country Link
JP (1) JPH0750104A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09199206A (en) * 1996-01-19 1997-07-31 Sony Chem Corp Anisotropic conductive bonding film
WO2003081606A1 (en) * 2002-03-25 2003-10-02 Sony Chemicals Corporation Conductive particle and adhesive agent
JP2004179137A (en) * 2002-10-02 2004-06-24 Sekisui Chem Co Ltd Conductive particulate, conductive particulate manufacturing method, and conductive connecting structure
US6950767B2 (en) 2002-11-15 2005-09-27 Renesas Technology Corp. Quality monitoring system for building structure, quality monitoring method for building structure and semiconductor integrated circuit device
JP2006012709A (en) * 2004-06-29 2006-01-12 Sanyo Chem Ind Ltd Conductive particulate
JP2007188727A (en) * 2006-01-12 2007-07-26 Sekisui Chem Co Ltd Conductive particle, anisotropic conductive material, and conductive connection structure
JP2008117759A (en) * 2007-10-01 2008-05-22 Catalysts & Chem Ind Co Ltd Method of manufacturing new conductive particulate, and application of new conductive particulate
WO2010032854A1 (en) * 2008-09-19 2010-03-25 株式会社日本触媒 Electroconductive particles and anisotropic electroconductive material using the same
CN102332324A (en) * 2011-08-31 2012-01-25 上海大学 Composite conducting particles and preparation method thereof
JP5051221B2 (en) * 2007-10-31 2012-10-17 日立化成工業株式会社 Circuit member connection structure and circuit member connection method
WO2017060528A1 (en) * 2015-10-09 2017-04-13 Conpart As Spacer particles for adhesives
WO2020124909A1 (en) * 2018-12-17 2020-06-25 深圳市华星光电技术有限公司 Anisotropic conductive adhesive and conducting film thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09199206A (en) * 1996-01-19 1997-07-31 Sony Chem Corp Anisotropic conductive bonding film
US7413686B2 (en) 2002-03-25 2008-08-19 Sony Chemicals Corporation Conductive particle and adhesive agent
WO2003081606A1 (en) * 2002-03-25 2003-10-02 Sony Chemicals Corporation Conductive particle and adhesive agent
JP2004179137A (en) * 2002-10-02 2004-06-24 Sekisui Chem Co Ltd Conductive particulate, conductive particulate manufacturing method, and conductive connecting structure
US6950767B2 (en) 2002-11-15 2005-09-27 Renesas Technology Corp. Quality monitoring system for building structure, quality monitoring method for building structure and semiconductor integrated circuit device
JP2006012709A (en) * 2004-06-29 2006-01-12 Sanyo Chem Ind Ltd Conductive particulate
JP2007188727A (en) * 2006-01-12 2007-07-26 Sekisui Chem Co Ltd Conductive particle, anisotropic conductive material, and conductive connection structure
JP2008117759A (en) * 2007-10-01 2008-05-22 Catalysts & Chem Ind Co Ltd Method of manufacturing new conductive particulate, and application of new conductive particulate
JP5051221B2 (en) * 2007-10-31 2012-10-17 日立化成工業株式会社 Circuit member connection structure and circuit member connection method
WO2010032854A1 (en) * 2008-09-19 2010-03-25 株式会社日本触媒 Electroconductive particles and anisotropic electroconductive material using the same
KR101368836B1 (en) * 2008-09-19 2014-02-28 가부시기가이샤 닛뽕쇼꾸바이 Electroconductive particles and anisotropic electroconductive material using the same
JP5539887B2 (en) * 2008-09-19 2014-07-02 株式会社日本触媒 Conductive fine particles and anisotropic conductive material using the same
CN102332324A (en) * 2011-08-31 2012-01-25 上海大学 Composite conducting particles and preparation method thereof
WO2017060528A1 (en) * 2015-10-09 2017-04-13 Conpart As Spacer particles for adhesives
WO2020124909A1 (en) * 2018-12-17 2020-06-25 深圳市华星光电技术有限公司 Anisotropic conductive adhesive and conducting film thereof

Similar Documents

Publication Publication Date Title
KR100559937B1 (en) Method of microelectrode connection and connected srtucture thereby
KR101193757B1 (en) Anisotropic conductive film, method for producing the same, and joined structure using the same
KR19990037268A (en) Anisotropic conductive adhesive and adhesive film
JPH0750104A (en) Conductive particle and connection member using conductive particle
JP3280139B2 (en) Display panel
KR101163436B1 (en) Insulation-coated electroconductive particles
JPH06295617A (en) Anithotropic conductive adhesive compound
JP2000133050A (en) Anisotropic conductive film and conductive connection structural body
EP1657725B1 (en) Insulation-coated electroconductive particles
JP4428400B2 (en) Electrode connection structure
JP3775598B2 (en) Electrode connection structure
JP4014111B2 (en) Electrode connection structure
JP4019328B2 (en) Electrode connection method
JP2001155539A (en) Conductive fine particle, anisotropic conductive adhesive and conductive connector
JP4466570B2 (en) Conductive particles for electrode connection
KR101157599B1 (en) Conductive particle for anisotropic conductive film and anisotropic conductive film including the conductive particle
JP3748108B2 (en) Electrode connection structure of connection member using conductive particles
JPS63231889A (en) Circuit connection member
JPH08188760A (en) Anisotropic electroconductive adhesive and anisotropic electroconductive adhesive sheet using the same
JPH11126516A (en) Anisotropic conductive adhesive and conductive connection structure
JP3944849B2 (en) Connecting member
JP2001155540A (en) Conductive fine particle, anisotropic conductive adhesive and conductive connecting structure
KR100624155B1 (en) Conductive silicon powder and Method for making the same and Anisotropic conductive film and Conductive paste using the same
JPH08249922A (en) Coated particle
JPH11134936A (en) Conductive fine grains, anisotropic conductive adhesive, and conductive connecting structure