Nothing Special   »   [go: up one dir, main page]

JPH07507688A - diphtheria toxin vaccine - Google Patents

diphtheria toxin vaccine

Info

Publication number
JPH07507688A
JPH07507688A JP6501475A JP50147594A JPH07507688A JP H07507688 A JPH07507688 A JP H07507688A JP 6501475 A JP6501475 A JP 6501475A JP 50147594 A JP50147594 A JP 50147594A JP H07507688 A JPH07507688 A JP H07507688A
Authority
JP
Japan
Prior art keywords
polypeptide
dna
toxin
amino acid
glu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6501475A
Other languages
Japanese (ja)
Other versions
JP3428646B2 (en
Inventor
コリアー アール ジョーン
ケビン キリーン
メカラノス ジョーン
Original Assignee
プレジデント アンド フェローズ オブ ハーバードカレッジ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by プレジデント アンド フェローズ オブ ハーバードカレッジ filed Critical プレジデント アンド フェローズ オブ ハーバードカレッジ
Publication of JPH07507688A publication Critical patent/JPH07507688A/en
Application granted granted Critical
Publication of JP3428646B2 publication Critical patent/JP3428646B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/385Haptens or antigens, bound to carriers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/05Actinobacteria, e.g. Actinomyces, Streptomyces, Nocardia, Bifidobacterium, Gardnerella, Corynebacterium; Propionibacterium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/646Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent the entire peptide or protein drug conjugate elicits an immune response, e.g. conjugate vaccines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/34Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Corynebacterium (G)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/60Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
    • A61K2039/6031Proteins
    • A61K2039/6037Bacterial toxins, e.g. diphteria toxoid [DT], tetanus toxoid [TT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S424/00Drug, bio-affecting and body treating compositions
    • Y10S424/832Drug, bio-affecting and body treating compositions involving bacterial toxin that has modified amino acid sequence

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Mycology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Virology (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Saccharide Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 ジフテリア毒素ワクチン 発明の背旦 この出願に記載される本発明は国立アレルギー・感染症研究所からの公衆衛生総 局助成金Al−22021およびAl22848により少なくとも部分的には資 金援助された研究中になされたものであった。米国政府は、本発明にいくつかの 権利を有している。[Detailed description of the invention] diphtheria toxin vaccine Invention The invention described in this application was published by the Public Health Service from the National Institute of Allergy and Infectious Diseases. Funded at least in part by Bureau grants Al-22021 and Al22848. This was done during financially supported research. The U.S. government has approved several have the right.

本発明はジフテリア毒素に対し保護するワクチンに関する。The present invention relates to vaccines that protect against diphtheria toxin.

ジフテリア毒素(DT)は細菌コリネバクテリア・ジフセリエにより産生される タンパク質外毒素である。DT分子は、容易にニックされる中−のポリペプチド として産生され、残基190.192または193での切断の結果として、ジス ルフィド結合により結合された2つのサブユニット、フラグメントA(N末端− 21K)およびフラグメントB(C末端−37K)を形成する(Moskaug ら、Biol Chem、264:15709−15713.1989;C。Diphtheria toxin (DT) is produced by the bacterium Corynebacterium diphtheriae It is a protein exotoxin. DT molecules are easily nicked medium polypeptides. as a result of cleavage at residues 190.192 or 193. Two subunits, fragment A (N-terminus- 21K) and fragment B (C-terminus -37K) (Moskaug et al., Biol Chem, 264:15709-15713.1989;C.

11ierら、Biol Chem、246:1496−1503.1971) 。11ier et al., Biol Chem, 246:1496-1503.1971) .

フラグメントAはDTの触奴活性部分である。それは延長因子2 (EF−2) と呼ばれるタンパク質合成因子を特異的に標的とする(その結果、中毒された細 胞におけるEF−2を不活性化しタンパク質合成を停止させる)NAD依存AD Pリボース転移酵素である。DTのフラグメントBは、多くの型の哺乳動物細胞 の表面に見い出だされる特定のレセプター構造を認工し、毒素分子を結合させる レセプター結合ドメインを有する。DTがこのレセプター構造を介して細胞に結 合された場合、レセプター/DT1合体はレセプター介在エンドサイトーンスに より細胞に取り込まれる。フラグメントBの第2の機能領域はエンドサイト−シ ス作用性小胞の膜を通してDTを転移させ、触媒活性のあるフラグメントAを細 胞のサイドシルに放出する動きがある。単一のフラグメントA分子は所定の細胞 におけるタンパク質合成機構を不活性化するのに十分である。Fragment A is the tentacle active portion of DT. It is elongation factor 2 (EF-2) specifically targets protein synthesis factors called NAD-dependent AD (inactivates EF-2 in cells and stops protein synthesis) P-ribose transferase. Fragment B of DT is present in many types of mammalian cells. The specific receptor structure found on the surface of the toxin is modified to bind toxin molecules. It has a receptor binding domain. DT connects to cells via this receptor structure. When combined, receptor/DT1 association leads to receptor-mediated endocytosis. taken up by cells. The second functional region of fragment B is the endocytic DT is translocated through the membrane of the catalytically active vesicle and the catalytically active fragment A is transferred to the cell. There is a movement of release into the side sill of the vacuole. A single fragment A molecule is isolated from a given cell is sufficient to inactivate the protein synthesis machinery in

DTのような細菌毒素に対する免疫は、感染の過程で自然に、または無心化した 形態の毒素(トキソイド)の注射により人工的に獲得される(Ge rma n  ier編集、Bacterial Vaccines、Academic P ress、0rlando、Fl、、1984)。トキソイドは伝統的に、天然 の毒素の化学修飾[例えばホルマリンまたはホルムアルデヒドによるCLing o。Immunity to bacterial toxins such as DT may be spontaneous or ablated during the course of infection. Artificially obtained by injection of toxoids in the form of Edited by ier, Bacterial Vaccines, Academic P ress, Orlando, Fl., 1984). Toxoids are traditionally Chemical modification of toxins [e.g. CLing with formalin or formaldehyde] o.

dら、Br1t、J、Exp、Path、44:177.1963)]により調 製され、自然の毒素による後に続く攻撃に対して予防接種を受けた動物を保護す る抗原性を保持しながら毒素を無毒化する。化学的に不活性化されたDTの例は 、Michel およびDirkx (Biochem、Biophys、Ac ta491 :286−295.1977)により記載されたもの(フラグメン トAのTrp−153は修飾された残基である)である。しかしながら、そのよ うに化学修飾された毒素は、時々、付加された化学基または基類を失い、その活 性な毒素形態に復帰し、その結果、ワクチンとしてそれを使用することは被接種 者に危険の可能性を引き起こす。d et al., Brlt, J. Exp, Path, 44:177.1963)]. to protect animals that have been produced and vaccinated against subsequent attack by natural toxins. detoxifies toxins while retaining their antigenicity. An example of chemically inactivated DT is , Michel and Dirkx (Biochem, Biophys, Ac ta491:286-295.1977) (fragment Trp-153 of Trp-A is a modified residue). However, that Toxins chemically modified by sea urchins sometimes lose their attached chemical groups or groups, reducing their activity. It reverts to the sexually toxin form and as a result, using it as a vaccine is poses a potential danger to persons.

トキソイドを産生する他の方法は遺伝子技術の使用によるものである。コリネバ クテリウム ジフセリエ突然変異体、CRM−197(Uchidaら、J。Another method of producing toxoids is through the use of genetic technology. Korineba C. diphtherium mutant, CRM-197 (Uchida et al., J.

Biol、Chem、248:3838−3844,1973;Uchidaら 、Nature 233:8−11.1971)(CRMは交差反応物質の略で ある)はランダム突然変異により生成され、抗DT免疫応答を生しる天然の毒素 に充分対応する酵素的に不活性なりTタンパク質を含むことが示された。Co1 1ierら(米国特許第4.709,017号:本出願に参照文献として編入し た)はジフテリア毒素のGlu−148に欠失変異を担持する遺伝子操作による ジフテリア毒素変異体を開示している。Glu−148は先親和性[3により活 性部位残基として、最初は、同定された(Carrollら、Proc、Nat l。Biol, Chem, 248:3838-3844, 1973; Uchida et al. , Nature 233:8-11.1971) (CRM is an abbreviation for cross-reacting substance. ) is a natural toxin produced by random mutation that produces an anti-DT immune response. It was shown to contain an enzymatically inactive T protein that is fully compatible with . Co1 1ier et al. (U.S. Pat. No. 4,709,017, incorporated herein by reference) ) is a gene engineered to carry a deletion mutation in Glu-148 of diphtheria toxin. Diphtheria toxin variants are disclosed. Glu-148 is activated by antitropism [3] was initially identified as a sex site residue (Carroll et al., Proc., Nat. l.

Acad、Sci、USA 81:3307.1984;Carrollら、P roc、Natl、Acad、Sci、USA 82ニア237,1985;C arrollら、J、Biol、Chem、262:8707,1987)、こ の部位でのAsp、GlnまたはSetとの置換は酵素活性および細胞毒性活性 を2−3程度の大きさで減少し、Glu−148側鎖の空間的(立体的)(H〔 位置および化学的性質がこれらの活性に著しい影響を与えることを示している( Cglasら、J、Bacteriol、169:4967.1987)o同様 に、Greenfieldら(米国特許第4,950,740号:本出願に参照 文献として編入された)は、Glu−148残基を欠失するが、またはAsnと 置換し、かつAja−158残基をctyと置換したDTの遺伝子操作変異体を 開示している。野生型ジフテリア毒素のDNA配列および対応するアミノ酸配列 を図1に示す(配列番号=1)。Acad, Sci, USA 81:3307.1984; Carroll et al., P roc, Natl, Acad, Sci, USA 82 Near 237, 1985; C (Arroll et al., J. Biol. Chem. 262:8707, 1987). Substitution with Asp, Gln or Set at the site results in enzymatic and cytotoxic activity. is reduced by about 2-3 times, and the spatial (steric) (H[ show that position and chemistry significantly influence these activities ( Cglas et al., J. Bacteriol, 169:4967.1987) , Greenfield et al. (U.S. Pat. No. 4,950,740; (incorporated as a reference) delete the Glu-148 residue or with Asn. and a genetically engineered mutant of DT in which the Aja-158 residue was replaced with cty. Disclosed. DNA sequence and corresponding amino acid sequence of wild-type diphtheria toxin is shown in FIG. 1 (SEQ ID NO: 1).

発明の要約 予防接種への近年のアプローチは、変異体ZX、遺伝子を発現する生きている遺 伝子操作された微生物(細胞またはウィルス)を使用する。被接種者の中で生ワ クチンは、遺伝子操作されたトキソイドをコードする遺伝子を含むワクチンの遺 伝子を増殖させるので、理論上は、予防接種を受ける人の中で時の経過とともに 変異する。そのような自然発生的突然変異が遺伝子操作されたトキソイドを毒性 に復帰させる場合、被接種者の疾患および/または死が生じる。出願人は遺伝子 操作されたジフテリアトキソイドの強力な挨捕者である、Co11ierら(米 国特許第4,709,017号)に開示されたDT Glu−148欠失変異体 が、小さいが恐らく部分的毒性に復帰する著しい危険性を有していることを発見 している。さらに、出願人らは得られたポリペプチドの抗原性または安定性を過 度に危険にさらすことなくこの危険性を減少させる方法を発見している。本発明 のトキソイドおよびそれらをコードするDNAはCo11ierらのGlu−1 48欠失変異体よりも著しく少ない復帰の危険性を有し、従って被接種者の中で 増殖可能な、生きた遺伝子操作されたワクチン細胞に使用するために実質的によ り良い候補である。Summary of the invention Recent approaches to vaccination include mutant ZX, a living organism expressing the gene. Using genetically engineered microorganisms (cells or viruses). Among the vaccinated people, raw Cutin is a vaccine that contains genetically engineered genes encoding toxoids. It allows the genes to multiply, so in theory, over time, the mutate. Such naturally occurring mutations make genetically engineered toxoids toxic. If reversion occurs, illness and/or death of the vaccinated person will result. Applicant is genetic A powerful scavenger of engineered diphtheria toxoid, Colier et al. DT Glu-148 deletion mutant disclosed in Japanese Patent No. 4,709,017) found that there was a small but possibly significant risk of reversion to partial toxicity. are doing. Additionally, Applicants have determined that the antigenicity or stability of the resulting polypeptides has not been exceeded. We have discovered ways to reduce this risk without exposing ourselves to more risks. present invention The toxoids and the DNA encoding them are Glu-1 of Colier et al. has a significantly lower risk of reversion than the 48 deletion mutant and therefore Substantially better for use in live, genetically engineered vaccine cells that can be propagated. This is a good candidate.

本発明は、ジフテリア’di1gフラグメントAの免疫学的交差反応型をコード するDNA、または自然に存在するジフテリア毒素のVa 1−147およびG lu−148(図1:配列番号1)にχ・1応するコドンがDNAに17(Eし ないフラグメントAおよびフラグメントB両者をコードするDNAを特徴として いる。さらに、自然に存在する毒素の第三のアミノ酸残基に対応するコドンが欠 失されるか、または自然に存在する毒素のそれと異なるアミノ酸残基をコードす るように改変されることがてき、1〕然に存在する毒素のこの第三のアミノ酸残 基の存在は自然に存在する毒素の完全な毒素活性に不欠失である。第三アミノ酸 残基はジフテリア毒素のフラグメントA部分にあってもよく、この場合において 自然に/Y在する毒素の第三アミノ酸残基は、例えば、G I Y−52、G  I Y−79、cly−128、A!a−158またはGlu−162である。The present invention encodes an immunologically cross-reactive form of diphtheria'di1g fragment A. or the naturally occurring diphtheria toxin Va 1-147 and G Codon 17 (E characterized by DNA encoding both fragment A and fragment B. There is. In addition, a codon corresponding to the naturally occurring third amino acid residue of the toxin is missing. or encode amino acid residues that are different from those of the naturally occurring toxin. 1) This third amino acid residue of the naturally occurring toxin can be modified to The presence of the group is essential for full toxin activity of naturally occurring toxins. tertiary amino acid The residue may be in the fragment A portion of diphtheria toxin, in which case The naturally occurring third amino acid residue of the toxin is, for example, GI Y-52, G I Y-79, cly-128, A! a-158 or Glu-162.

第三アミノ酸残基は1代わりに、ジフテリア毒素のフラグメント8部分にあって もよく、自然に存在する毒素の第三アミノ酸残基は、例えばGlu−349、A sp−352またはl1e−364である。好ましくは、Glu 142にに一 1応するコドユ・は存在しないか、またはGlu以外のアミノ酸をコードするよ うに改変されるか、またはGlu−142からGju−148までのコドン全て が存在しないことである。″自然に存在する°とは、図1(配列番号1)に示す アミノ酸配列を有する野生型ジフテリア毒素を意味する。自然に存在する“完全 な毒素活性”とは、下に記載したように14的な細胞死滅アッセイで1llll 定される野生型ジフテリア毒素が細胞に付むし、浸通し、殺す能力が1009. 、であること意味する。The third amino acid residue is found in fragment 8 of diphtheria toxin instead of 1. The third amino acid residue of a naturally occurring toxin may be, for example, Glu-349, A sp-352 or l1e-364. Preferably, Glu 142 is The corresponding Kodoyu does not exist or encodes an amino acid other than Glu. or all codons from Glu-142 to Gju-148 does not exist. ``Naturally existing °'' is shown in Figure 1 (SEQ ID NO: 1) refers to wild type diphtheria toxin having the amino acid sequence. “Perfect” that exists in nature ``Toxin activity'' means 1llllll in 14 cell killing assays as described below. The ability of wild-type diphtheria toxin to attach to, penetrate and kill cells is 1009. , means.

本発明は本出願に記載されたフラグメントA変異体をコードするDNA配列を含 むベクター(すなわちプラスミド、ファージおよびウィルス)も含む。本発明の ジフテリアトキソイド ポリペプチドの発現は異型のプロモーターの制御下であ り、および/または発現されたアミノ酸がシグナル配列と連繋している。“異型 のプロモーター°とは、自然に/j在するジフテリア毒素遺伝子に見い出だされ るプロモーター領域と同一でないプロモーター領域を意味する。プロモーター領 域は遺伝子の転写開始部位の5′のDNAセグメントであり、ここにRNAポリ メラーゼが遺伝子の転写開始前に結合する。本発明の基本的に純粋な核酸の調製 品は、本発明の核酸を含む調製品であり、ジフテリア毒素をコードする核酸が自 然[f4ではコリネバクテリウムに結合している他の核酸分子を実質的に含まな い。The present invention includes DNA sequences encoding the Fragment A variants described in this application. Also includes vectors (ie, plasmids, phage, and viruses) that contain of the present invention Expression of diphtheria toxoid polypeptide is under the control of a heterologous promoter. and/or the expressed amino acids are linked to a signal sequence. “Atypical The promoter ° is the promoter found in the naturally occurring diphtheria toxin gene. means a promoter region that is not identical to the promoter region of Promoter territory region is the DNA segment 5' of the transcription start site of a gene, where the RNA polypeptide is inserted. Merase binds to genes before transcription begins. Preparation of essentially pure nucleic acids of the invention A product is a preparation containing the nucleic acid of the present invention, in which the nucleic acid encoding diphtheria toxin is naturally present. However, f4 contains substantially no other nucleic acid molecules bound to Corynebacterium. stomach.

本発明のジフテリアトキソイドをコードするDNAは細胞中または間柱の細胞群 、好ましくは、B、サブチリス、バチルス 力ルメットーゲラン(BCG) 、 サルモネラ種、ビブリオ コレレ、コリネバクテリウム ジフセリエ、リステリ エ、エルシニエ、ストレプトコッカス、またはE、coli細胞に含まれる。細 胞は、本発明のジフテリアトキソイドを発現できることが好ましい。The DNA encoding the diphtheria toxoid of the present invention is present in cells or cell groups in the stroma. , preferably B. subtilis, Bacillus bacilli (BCG), Salmonella species, Vibrio cholera, Corynebacterium diphtheriae, Listeri Contained in E. yersiniae, Streptococcus or E. coli cells. Thin Preferably, the cells are capable of expressing a diphtheria toxoid of the invention.

本出願に用いられている用語、“免疫学的交差反応°ジフテリアトキソイドは自 然に存在するジフテリア毒素に共通する少なくともひとつの抗原決定基を保持し 、その結果、それらは、自然に存在するジフテリア毒素に特異性を有する、少な くともひとつの抗体によりそれぞれ結合される。本出願に定義されるように゛本 発明のジフテリアトキソイド”は自然に存在するジフテリア毒素と免疫学的に交 差反応するジフテリアトキソイドを意味し、本出願で例示され、または請求され た改変のひとつを保持している。“ジフテリア毒素フラグメントAの免疫学的交 差反応型°は免疫学的に交差反応するジフテリア毒素ポリペプチドを包含し、そ して自然に存在するフラグメントAと少なくとも40%の相同性を有する。The term “immunological cross-reactivity” used in this application indicates that diphtheria toxoid is retains at least one antigenic determinant common to naturally occurring diphtheria toxins; , as a result, they contain a small number of molecules that have specificity for naturally occurring diphtheria toxins. Each is bound by at least one antibody. “Book” as defined in this application The diphtheria toxoid of the invention is immunologically compatible with naturally occurring diphtheria toxin. means a diphtheria toxoid that reacts differentially and is exemplified or claimed in this application. It retains one of the modifications made. “Immunological interaction of diphtheria toxin fragment A” Differentially reactive ° includes diphtheria toxin polypeptides that immunologically cross-react; It has at least 40% homology with naturally occurring fragment A.

本発明のワクチンは本発明のジフテリアトキソイドをコードする種々の任意のD NAの、または本発明のDNAを含む細胞またはウィルス、好ましくは生ワクチ ン細胞、さらに好ましくはB、サブチリス、BCG、サルモネラ種、ビブリオコ レレ、リステリエ、エルシニエ ストレプトコッカス、コリネバクテリウムジフ セリエまたはE、coli細胞を含む。本出願に用いられる“生ワクチン細胞゛ は免疫原を発現する自然に存在する無毒の生きた微生物か、または低い毒性ある いは弱み化された毒性を有する生きた微生物である。The vaccine of the invention can be any of a variety of D cells or viruses, preferably live vaccines, containing NA or the DNA of the present invention cells, more preferably B. subtilis, BCG, Salmonella sp., Vibrioco Lele, Listeria, Yersiniae, Streptococcus, Corynebacterium zifu seria or E. coli cells. “Live vaccine cells” used in this application are naturally occurring non-toxic live microorganisms that express the immunogen or have low toxicity. or live microorganisms with weakened virulence.

本発明のワクチンを製造するひとつの方法は、本発明のジフテリアトキソイドを コードするDNAを含む細胞を細胞の増殖を可能にする条件下で培養することを 含み、細胞が生きている細胞ワクチンとして動物に導入するために適切なもので ある。ワクチンはジフテリアに対して哺乳動物、好ましくはヒトを免疫化する方 法(本発明のワクチンの免疫処置量を哺乳動物に導入することを含む方法)に使 用できる。本発明のジフテリアトキソイドをコードするDNAを倉む無細胞ワク チンを投与するひとつの、し力化唯−ではない方法は、バイオリスティック(b iolisLic)運搬[関心のある免疫原をコードするDNAをHするミクロ プロジェクタイル(microprojectile)の塗布と被覆されたミク ロプロジェクタイルを直接レシピエンドの細胞に注入を行う配達の方法(Tan gら、Nature 356:152−154,1992:本出願の参照文献に 編入)]である。続いて、本発明のジフテリアトキソイドをDNAから発現させ 、レシピエンドの免疫応答を刺激する。ジフテリア毒素に対して免疫応答を誘発 する免疫原または免疫原をコードするDNAを組み込むことにより、本発明のワ クチンはジフテリア疾患の進行に対し、また細菌フリネバクテリウム ジフセリ エによる感染に対し免疫化する。One method for producing the vaccine of the present invention is to use the diphtheria toxoid of the present invention. Cells containing the encoding DNA are cultured under conditions that allow the cells to proliferate. and the cells are suitable for introduction into animals as a live cell vaccine. be. A vaccine is a method that immunizes a mammal, preferably a human, against diphtheria. method (method comprising introducing into a mammal an immunizing amount of a vaccine of the invention). Can be used. A cell-free vaccine harboring DNA encoding the diphtheria toxoid of the present invention One non-restrictive method of administering chloride is biolistic (b. iolisLic) transport [microcells that carry DNA encoding the immunogen of interest] Application of projectile (microprojectile) and coated Miku A delivery method in which the projectile is injected directly into the cells at the end of the recipe (Tan g et al., Nature 356:152-154, 1992: in the references of this application. (incorporation)]. Subsequently, the diphtheria toxoid of the present invention is expressed from DNA. , to stimulate the immune response of the recipe end. elicits an immune response against diphtheria toxin By incorporating an immunogen or a DNA encoding an immunogen, the vaccine of the present invention can be prepared. Cutin is effective against the progression of diphtheria disease and against the bacterium Frynebacterium diphtheriae. immunize against infection by E.

他の実施態様において、本発明は、ジフテリア毒素フラグメントAの免疫学的交 差反応型であるポリペプチド、または、好ましくは、自然に存在するジフテリア 毒素のVal−147およびGlu−148(配列番号1)に対応するアミノ酸 がポリペプチドに存在しないフラグメントAおよびフラグメントBの免疫学的交 差反応型であるポリペプチドを特徴とする。好ましくは、トキソイドはTyr− 149を保持する。好ましくは、自然に存在する毒ス・1の第三アミノ酸残基は 欠失されるか、または自然に存在する毒素の第三アミノ酸残基と異なるアミノ酸 残基をコードするように改変されており、そして自然に/1’6ニする毒素のこ の第三アミノ酸残基の存在は自然に存在する4素の完全な毒素活性に不可欠であ る。第三アミノ酸残基はジフテリア毒素のフラグメントA部分にあり、好ましく はHis−21、Glu−22、Lys−39、CI !−52、G I V− 79、c+y−128、Ala−158またはGlu−162、またはジフテリ ア毒素のフラグメント8部分にあり、好ましくはアミノ酸Glu−349、As 1)−352、またはl1e−364である。さらに、ポリペプチドのGlu− 142は存在しないか、またはGlu以外のアミノ酸に改変される。または、G lu−142からG l u−1,48までのアミノ酸すべてが存在しないこと も可能である。ポリペプチドは任意の適切な方法により、好ましくは本発明のジ フテリアトキソイドをコードするDNAを含む、任意の種々の細胞をDNAの発 現を可能にする条1′F下で培養することにより産生される。本発明に含まれる のは、本発明のポリペプチドの実質的に純粋な調製物である。実質的に純粋とは 、調製物中に(j在するタン/(り質の少なくとも5096(重量で)が本発明 のジフテリアトキソイド ポリペプチドである。好ましい実施態様において、調 製物中にh4するタン/ぐり質の少なくとも759o、さらに好ましくは少なく とも9096、最も好ましくは少なくとも9996(重量で)が本発明のジフテ リアトキソイド ポリペプチドであることである。In other embodiments, the invention provides immunological crosslinking of diphtheria toxin fragment A. Polypeptides that are differentially reactive or, preferably, naturally occurring diphtheria Amino acids corresponding to toxin Val-147 and Glu-148 (SEQ ID NO: 1) is present in the polypeptide. It is characterized by polypeptides that are differentially reactive. Preferably, the toxoid is Tyr- Hold 149. Preferably, the naturally occurring third amino acid residue of Toxin 1 is Amino acids that are deleted or different from the naturally occurring third amino acid residue of the toxin The toxin has been modified to encode a residue and is naturally The presence of a third amino acid residue is essential for the full toxin activity of the naturally occurring four elements. Ru. The third amino acid residue is in the fragment A portion of the diphtheria toxin and is preferably are His-21, Glu-22, Lys-39, CI! -52, G I V- 79, c+y-128, Ala-158 or Glu-162, or diphtheria Fragment 8 of atoxin, preferably amino acids Glu-349, As 1)-352 or l1e-364. Furthermore, the polypeptide Glu- 142 is either absent or modified to an amino acid other than Glu. Or, G All amino acids from lu-142 to G l u-1,48 are absent is also possible. Polypeptides are preferably prepared according to the present invention by any suitable method. Any of a variety of cells containing DNA encoding phtheria toxoid can be cultured to produce DNA. It is produced by culturing under row 1'F, which allows for included in the invention is a substantially pure preparation of a polypeptide of the invention. What is substantially pure? According to the invention, at least 5096 (by weight) of tan/(phosphorus) present in the preparation diphtheria toxoid polypeptide. In a preferred embodiment, the preparation At least 759o, more preferably less, of h4 tongue/extract in the product at least 9096, most preferably at least 9996 (by weight) of the diphthene of the present invention. It is a liatoxoid polypeptide.

ジフテリア毒素に対するワクチンは、本発明のジフテリアトキソイド ポリペプ チドおよびアジュバントを含む組成物からつくられる。アジュバントは、任意の 現在知られているアジュバントの種類、例えばアルミニウム塩、細菌の内毒素、 バチルス 力ルメットーゲラン(BCG) 、リポソーム、ミクロフェア(すな わち、経口投与のワクチンに用いられるマイクロカプセルのポリマー)およびフ ロイント完全または不完全アジュバント等を含む。本出願に用いられる“アジュ バント”は抗原の免疫原性を増加させることができる物質である。The vaccine against diphtheria toxin is the diphtheria toxoid polypep of the present invention. made from a composition that includes a compound and an adjuvant. Adjuvant is optional Currently known types of adjuvants, e.g. aluminum salts, bacterial endotoxins, Bacillus Bacillus Lumette-Guerlain (BCG), liposomes, microspheres (suna Specifically, microcapsule polymers used in orally administered vaccines) and fluoride Contains complete or incomplete adjuvant, etc. “Adjus” used in this application "Bant" is a substance that can increase the immunogenicity of an antigen.

本発明のジフテリアトキソイド ポリペプチドは、例えば多糖またはもう一つの ポリペプチド部分に共有結合により結合していてもよい。この部分はポリペプチ ドの担体物質として働く、また、代わりに本発明のジフテリアトキソイド ポリ ペプチドがこれら部分の担体物質として働き、好ましくはこれら部分の免疫原性 を強化する。“担体物質”は結合した分子に安定性を付与し、および/または結 合した分子の運搬または免疫原性を助け、または強化する物質である。The diphtheria toxoid polypeptide of the present invention may be a polysaccharide or another diphtheria toxoid polypeptide. It may also be covalently attached to the polypeptide moiety. This part is polypeptide The diphtheria toxoid polysaccharide of the present invention can also serve as a carrier material for the diphtheria toxoid of the invention. The peptides act as carrier substances for these moieties and preferably reduce the immunogenicity of these moieties. strengthen. A “carrier material” confers stability to the bound molecules and/or Substances that aid in or enhance the delivery or immunogenicity of combined molecules.

本発明のジフテリアトキソイドは、ペプチド結合により別のポリペプチドに結合 された本発明のジフテリアトキソイド ポリペプチドから成る融合ポリペプチド の部分でもある。好ましくは、融合ポリペプチドはワクチンに含まれ、ジフテリ ア毒素に対して人間の患者を免疫化するために使用される。本発明のジフテリア トキソイド ポリペプチドは付加されたポリペプチドの担体物質として働き、好 ましくはその付加されたポリペプチドの免疫原性を強化する。融合ポリペプチド をコードするDNAはワクチンとして直接使用でき、または、細胞に組み込まれ 、好ましくは融合ポリペプチドを発現できる細胞(例えば生ワクチン細胞)がジ フテリア毒素に対してワクチンとして使用される。本出願で用いられる゛融合ポ リペプチド”は、本発明のジフテリアトキソイドをコードするDNAが、遺伝子 操作により第二のポリペプチド配列をコードする第二のDNAに結合されている ハイブリッドDNAの発現により産生されるタンパク質分子を意味する。The diphtheria toxoid of the present invention binds to another polypeptide through a peptide bond. A fusion polypeptide consisting of the diphtheria toxoid polypeptide of the present invention It is also a part of Preferably, the fusion polypeptide is included in a vaccine and Used to immunize human patients against atoxins. Diphtheria of the present invention The toxoid polypeptide acts as a carrier material for the attached polypeptide and is a preferred Preferably, the immunogenicity of the added polypeptide is enhanced. fusion polypeptide The DNA encoding the can be used directly as a vaccine or can be integrated into cells. , preferably cells capable of expressing the fusion polypeptide (e.g. live vaccine cells) are Used as a vaccine against phtheria toxin. ``Fusion point'' used in this application "ripeptide" means that the DNA encoding the diphtheria toxoid of the present invention is derived from a gene. operatively linked to a second DNA encoding a second polypeptide sequence Refers to a protein molecule produced by expression of hybrid DNA.

本出願に適用される“相同性”は2つのポリペプチド分子間の配列の同一性また は2つの核酸分子間の配列の同一性を意味する。2つの比較される配列両者の所 定の位置が同しアミノ酸モノマーのサブユニットにより占められる場合、例えば 2つのポリペプチド分子におけるそれぞれの位置がアスパラギン酸により占めら れる場合、その時分子はその位置で相同である。2つの配列間の相同性は2つの 配列に共通の適合した位置の数の関数である。例えば、2つの配列において10 の位置のうち6つが適合または相同ならば、その時2つの配列は60?o相同で ある。例を挙げると、アミノ酸配列LTVSFRとLPVSATは50%相同性 を共9する。本発明の好ましい実施態様として、ジフテリア毒素フラグメントA またはフラグメントBの免疫学的交差反応型は、自然に存在する、それぞれフラ グメントAまたはBに少なくとも4096、好ましくは5096、さらに好まし くは少なくとも6096、最も好ましくは少なくとも8096相同である。“Homology” as applied to this application refers to the sequence identity or sequence identity between two polypeptide molecules. refers to sequence identity between two nucleic acid molecules. the location of both the two compared sequences If a given position is occupied by a subunit of the same amino acid monomer, e.g. Each position in the two polypeptide molecules is occupied by aspartic acid. , then the molecules are homologous at that position. The homology between two sequences is It is a function of the number of matched positions common to the array. For example, 10 in two arrays If 6 of the positions are compatible or homologous, then the two sequences are 60? o homologous be. For example, the amino acid sequences LTVSFR and LPVSAT are 50% homologous. 9 together. In a preferred embodiment of the invention, diphtheria toxin fragment A or immunologically cross-reactive forms of fragment B are naturally occurring, respectively at least 4096, preferably 5096, more preferably or at least 6096 homologs, most preferably at least 8096 homologs.

出願人は、本発明のトキソイドを発現する生きた弱毒化ワクチン株の形態で人間 の忠石に投与しても安全なジフテリア毒素フラグメントAの変異型の構築の方法 を示している。生ワクチン株の使用はジフテリアトキソイドlJt独で免疫処置 することよりも多くの利点がある。生きた生物はレシピエンド中で増殖し、クロ ーン化された保護タンパク質抗原を発現する。生きた弱毒化ワクチンは注射され るポリペプチドよりも長く被接種者の中に残り、in 5ituで遺伝子操作さ れたタンパク質を継続的に産生ずる。そのような生ワクチンは効果的な免疫処置 のために少ない注射または追加免疫しか必要でない可能性があり、多くの場合経 口的に投与され、−回に段数の抗原を投与するために使用できる。Applicant intends to administer the toxoid of the invention to humans in the form of a live attenuated vaccine strain. Method for constructing a variant of diphtheria toxin fragment A that is safe to administer to Tadateshi It shows. Use of live vaccine strain immunizes with diphtheria toxoid lJt There are many advantages to doing so. Living creatures multiply in the recipe end and become clowns. Expresses encoded protective protein antigens. A live attenuated vaccine is injected It remains in the recipient for a longer time than polypeptides that can be genetically engineered in 5 in situ. Continuously produces the protein that is produced. Such live vaccines are effective immunization treatments. may require fewer injections or boosters, and are often given orally. It is administered orally and can be used to administer multiple doses of antigen.

この目的のために、出願人はADPリボース転移酵素活性の活性部位近辺のアミ ノ酸、すなわち図1(配列番号1)のGlu−148のNH2末端側のアミノ酸 を実験的に欠失または置換した。そのように行うことにおいて、Glu残括に変 異された場合、重要な残基Glu−148か欠失しているDT)キソイトに毒素 活性を回復させるのはどのアミノ酸の位置であるかを彼等は決定した。この認識 で、表現型の復帰がin vivoて起こる可能性を減少するように、これらの 残基を欠失または改変する。このようにして、出願人は継続的に増殖する微生物 宿主においてさえ、酵素的に機能不全て実質的にi(帰の危険性のないジフテリ ア毒素の変異体を設二1した。For this purpose, Applicants have proposed amino acids near the active site of ADP ribose transferase activity. amino acid, that is, the amino acid on the NH2-terminal side of Glu-148 in FIG. was experimentally deleted or replaced. In doing so, it changes to Glu residual When the key residue Glu-148 is deleted (DT) They determined which amino acid positions restored activity. this recognition In order to reduce the possibility that phenotypic reversion occurs in vivo, Deleting or modifying residues. In this way, the applicant Even in the host, enzymatically dysfunctional We created 21 mutants of atoxin.

咽乳動物に接種されるワクチン組成を形成するために医薬的に適切な担体と組み 合わせた、?11られたトキソイドはジフテリア’tAに対して免疫的保護を発 生する。トキソイドはトキソイドをコードするDNAおよびその発現を行うこと ができる調@ D N Aを有するDNA伝播体を含む細胞を培養することによ り産生される。In combination with a pharmaceutically suitable carrier to form a vaccine composition to be administered to mammals. Combined? 11 Toxoids exert immunoprotection against diphtheria'tA. live. The toxoid is the DNA encoding the toxoid and its expression. By culturing cells containing a DNA propagator with a DNA that can be is produced.

本発明の他の特徴および利点は次の詳細な説明および請求の範囲から明らかであ ろう。Other features and advantages of the invention will be apparent from the following detailed description and from the claims. Dew.

発明の詳細な説明 我々は初めに筒中に図面を説明する。Detailed description of the invention We will first explain the drawing inside the cylinder.

図面 図1は野生型ジフテリア、![をコードするDNA (配列番号1)のヌクレオ チド配列および対応するアミノ酸配列の表示である。drawing Figure 1 shows wild type diphtheria! [Nucleo of DNA encoding (SEQ ID NO: 1) 1 is a representation of the sequence and the corresponding amino acid sequence.

図2はGlu−148が存在する2次構造の略図的表示である。図はDTダイマ ーの以前に記載されたX線結晶学的モデルに基づいている(Collierら、 U、S、S、 N、第07/881,394号3本出願の参照文献に編入HCh 。FIG. 2 is a schematic representation of the secondary structure in which Glu-148 exists. The diagram shows DT Dyma (Collier et al., U, S, S, N, No. 07/881,394 3 Incorporated into the references of this application HCh .

eら、Nature 357:216−222.1992)、Glu−148( E14g)はβ鎖に存在するのが見られ、ループから1残基除かれて隣接するN H2近位β鎖とこの鎖を接続する。これら2つの項内のバックボーンN(−m− )およびカルボニルO(□)原子間の水素結合を示す。et al., Nature 357:216-222.1992), Glu-148 ( E14g) is found to be present in the β-strand, with one residue removed from the loop and the adjacent N Connect this strand with the H2 proximal β strand. Backbone N(-m- ) and carbonyl O (□) atoms.

復帰して毒性を生じるGlu−148欠失変異体構築物(DTデルタ−148と 呼ぶ)中の変異の可能性のある第二部位に関する研究が行イつれた。2つの変異 のどちらによっても活性が部分的に回復されることが見い出だされた:バリンー 147をグルタミン酸に変える(2塩基の変化)か、またはアミノ酸末端方向に 5残基の欠失(15ヌクレオチドの欠失)、これによりGlu−142をTyr −149に隣接した位置に位置させる。従って、Glu−148のような重要な 残基を単に欠失させることは第二部位の変異が組換え体トキソイドに部分的活性 を回復させないという保証はない。Glu-148 deletion mutant constructs (DT delta-148 and Research has been carried out on the second possible site of mutation in the protein. two mutations It was found that the activity was partially restored by both: valine. 147 to glutamic acid (two base change), or towards the amino acid end. Deletion of 5 residues (15 nucleotide deletion), which converts Glu-142 to Tyr -149. Therefore, important proteins such as Glu-148 Simply deleting a residue may result in a second-site mutation resulting in partial activity in recombinant toxoids. There is no guarantee that it will not recover.

このことは、DTにおいてさらに別の遺伝的異常(毒性を回復するために、さら に充分な変異を必要とし、その結果、自然には起こりそうにない)をつくりだす ように出願人を促した。第一に、2つのアミノ酸欠失(残基147.148)を DTの活性部位につくった。この変異だけでタンパク質合成阻害に関してDTト キソイドの毒性を野生型のそれより10−4以下にした。さらに、残2!+14 6が変異してグルタミン酸になり検出可能な活性を回復するためには適切な3塩 基の変異が起きなければならない。第二に、364の位置のイソロイシン残基を リジンに変化させた。この残基はトランスローケーションドメインに位置してお り、エンドサイトーンス作用の小胞からサイドシルへのDTのトランスローケー ンヨンにおいて重要な役割を果たしている。この変異は、独自に、野生型DTに 比較してタンパク質合成の阻害において500倍欠損のあるトキソイドを産生ず る。This suggests that further genetic abnormalities (in order to restore toxicity) may be necessary in DT. (requires sufficient mutations such that it is unlikely to occur naturally) The applicant was urged to do so. First, two amino acid deletions (residues 147.148) It was created at the active site of DT. This mutation alone causes DT to inhibit protein synthesis. The toxicity of the xoid was reduced to 10-4 or less than that of the wild type. Furthermore, only 2 left! +14 In order for 6 to mutate to glutamate and restore detectable activity, the appropriate 3-salt A radical mutation must occur. Second, the isoleucine residue at position 364 Converted to lysine. This residue is located in the translocation domain. and the translocation of DT from the endocytotic vesicle to the side sill. plays an important role in the country. This mutation uniquely affects wild-type DT. In comparison, it produces toxoids that are 500 times more deficient in inhibiting protein synthesis. Ru.

364のリシンが変異してイソロイシンになり、毒性を回復するためには適切な 2つの塩基の変異が起こらなければならない。364 lysine mutates to isoleucine, and to restore toxicity, the appropriate Two base mutations must occur.

実験情報 方法 変異体ジフテリアトキソイドの調製および分析欠失および置換は下に記載したよ うにジフテリア毒素フラグメントA (DTA)遺伝子のオリゴヌクレオチド特 異的突然変異誘発によりつくられる。続いて、変異遺伝子は標準的な方法により E、coltまたは他の任意の標準的発現系中で発現され、下に記載されたよう に抽出物をNAD:EF−2ADPリボース転移酵素活性についてアッセイし、 ウェスタンプロット分析によりDT特特異的タンパ雪質調べる。Experiment information Method Preparation and Analysis of Mutant Diphtheria Toxoids Deletions and substitutions were made as described below. Oligonucleotide characteristics of sea urchin diphtheria toxin fragment A (DTA) gene Created by aberrant mutagenesis. Subsequently, the mutant gene was isolated using standard methods. E., colt or any other standard expression system, as described below. extracts were assayed for NAD:EF-2 ADP ribose transferase activity; DT-specific proteins are examined by Western blot analysis.

実施例 DTのF2フラグメントをコードするプラスミド、pBRptacBamHIA TGF2をGreenfieldら(Greenfieldら、PNAS、80 : 6853−6857.1983)の方法に従い横築した。DTのF2フラグ メントは自然に存在するDTリーダー配列、全フラグメントA、およびフラグメ ントBのN末端189アミノ酸残基を含み、その結果最終的な構築物は配列番号 1のアミノ酸1−382を含む。Example A plasmid encoding the F2 fragment of DT, pBRptacBamHIA TGF2 was derived from Greenfield et al. (Greenfield et al., PNAS, 80 : 6853-6857.1983). DT F2 flag The fragment contains the naturally occurring DT leader sequence, all Fragment A, and Fragment A. contains the N-terminal 189 amino acid residues of B, such that the final construct has SEQ ID NO. Contains amino acids 1-382 of 1.

プラスミドF2をBamHIおよびC1alで消化した。得られた949塩基対 のフラグメントをBamHIおよびAccl制限酵素処理されたMl 3mp  19と連結し、M13mp19−F2を得た。F2の翻訳開始コドンにまたがる Ndel制限部位、およびF2のArg−192での翻訳終了コドンを5aye rSら(Nucleic Ac1ds Res、16:791,198g)によ り記載された部位特異的突然変異誘発法によりつくり、M13mp19−DTA を得た。M13mp19−DTAの968塩基対のNdel−Hindlllフ ラグメントをNdelおよびHindlll制限酵素処理されたpT7−7 ( Tab。Plasmid F2 was digested with BamHI and C1al. Obtained 949 base pairs The fragment was treated with BamHI and Accl restriction enzymes. 19 to obtain M13mp19-F2. Spanning the F2 translation start codon Ndel restriction site, and a translation stop codon at Arg-192 of F2. rS et al. (Nucleic Ac1ds Res, 16:791, 198g) M13mp19-DTA was created by the site-directed mutagenesis method described in I got it. The 968 base pair Ndel-Hindlll block of M13mp19-DTA The fragment was treated with Ndel and Hindll restriction enzymes in pT7-7 ( Tab.

r、Current Protocols in Mo1ecular Bi。r, Current Protocols in Molecular Bi.

1ogy、Au5ube Iら編集、Greene、Wi Iey−1nter science、New York、1991、pages 16.2.1−1 6゜2.11)と連結し、得られたプラスミドpT7−DTAをクローニング  ベクターとして用い1表1に示したDTAの部位特異的突然変異構築物のそれぞ れを調製した。全ての部位特異的突然変異体はM13mp19−DTAT型DN Aおよび適切なオリゴヌクレチドを用いて構築された。適切な活性部位変異にま たがるMl 3mp19−DTAの539塩基対Apa l−Ba I 1制限 フラグメントをApalおよびBa1l制限pT7−DTAと連結し、コンピテ ントE、c。1ogy, edited by Au5ube I et al., Greene, Wi Iey-1nter science, New York, 1991, pages 16.2.1-1 6゜2.11) and clone the resulting plasmid pT7-DTA Each of the DTA site-directed mutation constructs shown in Table 1 was used as a vector. This was prepared. All site-directed mutants are M13mp19-DTAT type DN A and appropriate oligonucleotides. for appropriate active site mutations. 539 base pair Apa l-Ba I 1 restriction of Tagaru Ml 3mp19-DTA The fragment was ligated with Apal and Ba1l restricted pT7-DTA and the competent nt E, c.

1i BL21 (DE3) (Studierら、J、Mo1.Biol、1 89:113.1986)を形質転換するために用いた。形質転換体をルリア  ブロス(100μg/mlアンピシリン)中で一晩培養し、M9最小培地(10 0μg/mlアンピシリン)中で1150に希釈し、ODl、0になるまで培養 し、1mVIPTGを用いて3時間誘導し、遠心(3000x g、5分)によ り収集した。細胞ベレットを10mM)リス、1mM EDTA、pH8,0( TE)+5mM CaC15mM MgCl2中に1/30容息で再懸濁し、凍 結2ゝ 融解を3回繰り返し、O,1mg/m+リゾチームおよびlμg/ml DNア ーゼIとともに15分間インキュベートし、遠心(10,000x g、10分 )により不純物を除去し、以前記載(DouglasらJ、Bacteri。1i BL21 (DE3) (Studier et al., J. Mo1. Biol, 1 89:113.1986) was used for transformation. Luria the transformant Cultured overnight in broth (100 μg/ml ampicillin) and M9 minimal medium (10 μg/ml ampicillin). Diluted to 1150 in 0 μg/ml ampicillin) and incubated until ODl, 0. The cells were induced using 1 mVIPTG for 3 hours, and centrifuged (3000xg, 5 minutes). collected. Cell pellets (10mM), 1mM EDTA, pH 8,0 ( Resuspend in 1/30 volume of TE) + 5mM CaC, 15mM MgCl2, and freeze. Conclusion 2ゝ Repeat thawing three times and add O, 1 mg/m + lysozyme and 1 μg/ml DNA Incubate with enzyme I for 15 minutes and centrifuge (10,000 x g, 10 minutes). ) to remove impurities as previously described (Douglas et al. J, Bacteri.

1.169;4967.1987)されたようにG−25セフアゾ・ツクスで脱 塩した。続いて、DTAタンパク質をウェスタンプロット分析により測定し、A DPリボース転移酵素活性を、記載されたように(Twetenら、J、Bio l。1.169; 4967.1987) I salted it. Subsequently, DTA protein was measured by Western blot analysis and A DP ribose transferase activity was determined as described (Tweten et al., J. Bio. l.

Chem、260:10392,1985)アッセイした。Chem, 260:10392, 1985) assayed.

完全長のジフテリア毒素 デルタ147.148 ; 3641 >x(およびデルタ146−148;3 641>Kの構築 PT7−DTATルタ147.148およびPT7−DTATルタ146−14 8をApal、Msclで消化した。各活性部位欠失にまたがる539bpAp al−Msclフラグメントを1?6アガローズゲルから*#L、Apa I。full length diphtheria toxin Delta 147.148; 3641 > x (and Delta 146-148; 3 Construction of 641>K PT7-DTAT router 147.148 and PT7-DTAT router 146-14 8 was digested with Apal and Mscl. 539 bp Ap spanning each active site deletion The al-Mscl fragment was extracted from a 1-6 agarose gel *#L, ApaI.

Mscl消化したptac DT 5er148;3641>Kに別々に連結し 、ptacDTデルタ147.148:3641>KおよびptacDTデルり 146−148;3641>Kを得た。6ブラスミドを用いてコンピテントE、 coliTG−1を形質転換した。形質転換体をルリア ブロス+100μg/ mlアンビリシリン(L−amp)中で一晩培養し、L−ampで1750に希 釈し、ODl、0まで培養し、IPTGで3時間誘導し、遠心(3000xg、 5分)により収集した。細胞ベレットを10mMトリス、1mM EDTA。separately ligated to Mscl-digested ptac DT 5er148;3641>K. , ptacDT delta 147.148:3641>K and ptacDT delta 146-148; 3641>K was obtained. Competent E using 6 plasmids, E. coli TG-1 was transformed. Transformants were added to Luria broth + 100μg/ ml Ambilicillin (L-amp) overnight and diluted to 1750 with L-amp. diluted, cultured to ODl 0, induced with IPTG for 3 hours, and centrifuged (3000xg, 5 minutes). Cell pellets were washed with 10mM Tris, 1mM EDTA.

pH8,0(TE)+ 5mM CaCl2.5mM MgCl2中で1/30 容量で再懸濁し、凍結融解を3同繰り返し、O,1mg/m+リゾチームおよび 1μg/m1DNアーゼ1とともに15分インキュベートし、遠心(10,00 QXg、1.0分)により清澄化し、上記引用したG−25セフアゾ・ノクスに よる脱塩と同様の方法で、G−50セフアゾ・ノクスて脱塩した。pH 8,0 (TE) + 5mM CaCl2.5mM MgCl2 1/30 Resuspend in volume, freeze and thaw 3 times, add O, 1 mg/m + lysozyme and Incubate for 15 minutes with 1 μg/ml DNase 1 and centrifuge (10,000 QXg, 1.0 min) to the G-25 Cefazo Nox cited above. Desalination was carried out using G-50 Cefazo Nox in the same manner as the desalination using G-50 Cefazo Nox.

結果 Glu−1,48C表1、変異1)の欠失後、得られたDTAの変異型に(ま特 異的NAD : EF−2ADPリボース転移酵素活性は検出てきなかつtこ( 野生型DTAの10−4以下)。し力化ながら、Glu残基によるVa l−1 47の置換と組み合わせた場合、この欠失は野生型活性の6%を有する産物を生 成した(表1、変異7)。対照的に、Tyr−149のGlu変異と組み合わせ たGlu−148の欠失(表1、変異12)は不活性な産物を生じた。result After deletion of Glu-1,48C Table 1, mutation 1), the resulting DTA mutant Heterogeneous NAD: EF-2 ADP ribose transferase activity cannot be detected ( 10-4 of wild-type DTA). Va l-1 by Glu residue When combined with the 47 substitution, this deletion produced a product with 6% of wild-type activity. (Table 1, mutation 7). In contrast, in combination with the Glu mutation of Tyr-149 Deletion of Glu-148 (Table 1, mutation 12) resulted in an inactive product.

Glu−148からNH2末端へ144番目の残基までにも及ぶより長い欠失( 表1、変異2−5)は検出可能なADPリボシル化活性のない産物を生じた。A longer deletion extending from Glu-148 to residue 144 to the NH2 terminus ( Table 1, mutations 2-5) yielded products with no detectable ADP ribosylation activity.

しかしながら、残M143−148 (両端残基を含む)の欠失を含む、この系 の次の構築物(表1、変異6)は検出可能な活性(野生型の0.6%)を有する タンパク質を産生じた。変異6において、変異1−5と異なり、欠失に隣接して (1組み合わせた(変異1−5)場合、野生型DTAの0.696〜9%の範囲 の活性が観察された。However, this system containing the deletion of residues M143-148 (including both terminal residues) The following construct (Table 1, mutation 6) has detectable activity (0.6% of wild type) produced protein. In mutation 6, unlike mutations 1-5, adjacent to the deletion (1 combination (mutations 1-5) ranges from 0.696 to 9% of wild type DTA activity was observed.

特異的活性部位の欠失と膜トランスロケーションドメイン改変の付加を有する完 全長のジフテリア毒素構築物もまた、全体的なタンプくり質の安定性に関して評 価された。完全長ジフテリア毒素構築物(デルタ147.148;3641>K およびデルタ146−148 ; 3641 >K)両者のウェスタンプロ・ソ ト分析により、分解産物の少な、ひとつの完全長のタン、(り質)(ンドが明ら かになり、タンパク質の構造的完全性が保(jされていることが示唆された。Completed with deletion of specific active site and addition of membrane translocation domain modification Full-length diphtheria toxin constructs were also evaluated for overall protein stability. was valued. Full-length diphtheria toxin construct (delta 147.148; 3641>K and Delta 146-148; 3641>K) Both Western Pro Software A full-length tongue, with few degradation products, was revealed by the This suggests that the structural integrity of the protein is preserved.

これらの活性部位変異の結果は、Glu−148のNH2近位側側面の局所のポ リペプチドがC0OH近位側側面の局所のペプチドよりも柔軟で、堅く固定され ていないというモデルと一致する。DTダイマーのX線結晶満造(Collie rら、U、S、S、 N、第07/881,394号)はこのモデルに支持を与 える。Glu−148残基は活性部位の割れ目に境界をつけている逆平行βシー ト内に存在し、Glu−148β鎖を隣接するNH2近位β鎖(図2)(こ接続 する大きな10残基のループ(残基137−146)から1残基だけ除去して( する。The result of these active site mutations is the localization of the NH2-proximal flank of Glu-148. The repeptide is more flexible and tightly fixed than the local peptide on the proximal side of C0OH. Consistent with the model that it is not. Collie X-ray crystal of DT dimer r et al., U, S, S, N, No. 07/881,394) lend support to this model. I can do it. The Glu-148 residue forms an antiparallel β-sea bordering the active site cleft. NH2 proximal β chain (Fig. 2), which is present in the Glu-148 β chain and adjacent to the Glu-148 β chain. By removing only one residue from the large 10-residue loop (residues 137-146) do.

Glu−148の直後の4残基のポリペプチド )(ツクボーン(残基149− 152)は逆平行βシートに典型的な水素結合を伴い、他の折りたたみ相互作用 とともにこの結合がタンパク質内にこのポリペプチドの領域をしつかり固定する 。Polypeptide of 4 residues immediately after Glu-148) (Tsukubone (residues 149- 152) with hydrogen bonds typical of antiparallel β-sheets and other folding interactions. Together, this bond firmly fixes this region of the polypeptide within the protein. .

これらの結果は2つの別個の遺伝的変化を説明し、ひとつは置換を伴い、他のひ とつはさらに別の欠失を伴い、それぞれが酵素的に不活性なジフテリア毒素活性 部位欠失変異体を部分的に毒性のある状態に復帰口!能である。回復した活性の レベルは、すべての場合において野生型の10%以下であるが、タンパク質が生 ワクチンによりin vivoで発現される場合明らかに懸念となる。Val− 147のGluへの置換はVal:lトン(GTT)からGluコドン(GAA またはGAG)への2通り=J能な2つの塩基対トランスバージョンのどちらに よっても起こり得る。対照的に、Val−147コドンおよびGlu−148コ ドン両者の欠失はTyr−149の間近の5er−146を残す;Ser AG Cコドンは3つのヌクレオチド全ての変化なしに、Gluコドンに転換できない ので、この特定の6ヌクレオチド欠失変異体がいくらか活性の回復を有する変異 体に復帰する危険性は、Glu−148コドンだけを欠く食異体の復帰の危険性 よりも若しく少ない(恐ら< 10−10/細胞/世代)。These results explain two separate genetic changes, one involving a substitution and the other and additional deletions, each with enzymatically inactive diphtheria toxin activity. Reversion of site deletion mutants to a partially toxic state! It is Noh. of recovered activity Levels are in all cases less than 10% of wild type, but the protein is not produced. This is clearly a concern if it is expressed in vivo by a vaccine. Val- The substitution of Glu at 147 changes Val:lton (GTT) to Glu codon (GAA or GAG) = Which of the two J-capable base pair transversions It can also happen. In contrast, the Val-147 and Glu-148 codons Deletion of both Don leaves 5er-146 near Tyr-149; Ser AG A C codon cannot be converted to a Glu codon without changing all three nucleotides. Therefore, this particular 6-nucleotide deletion mutant is a mutation with some recovery of activity. The risk of returning to the body is the risk of returning a variant lacking only the Glu-148 codon. (probably <10-10/cell/generation).

さらに、活性部位欠失と、別の独立した異常(W1トランスロケーション機能不 全)両者を9する遺伝子のジフテリアトキソイドの横築物は、毒性への復帰の危 険をさらに減少させる。3641>Kと組み合わせたDTデルタ147.148 またはデルタ146−148は、検出可能な毒性を回復するために適切な5つの 塩基の変異(残、!!146または145の3つおよび残基364の2つ)を必 要とする。Additionally, active site deletion and another independent abnormality (W1 translocation dysfunction) All) The side effects of diphtheria toxoid in the genes that cause both are at risk of reversion to toxicity. further reduce risk. DT Delta 147.148 combined with 3641>K or delta 146-148, the appropriate five to restore detectable toxicity. Requires base mutations (3 residues, !!146 or 145 and 2 residues 364) Essential.

この組換えトキソイド、DTデルタ147.148 ; 3641 >Kをクロ ーン化し、):、coliて発現し、全体的なタンパク質の安定性およびリボー ス転移酵素活性を評価した。ウェスタンプロット分析は分解産物の少ない単一の 完全長、タンパク質を明らかにし、タンパク質の安定性および全体的構造の完全 性か維持′されていることを示唆した。予期されたように、組換えトキソイドは 活性か全く無かった(野生型毒素の10−4以下)。This recombinant toxoid, DTdelta 147.148; 3641>K, was cloned. ): expressed in coli to determine overall protein stability and riboprotein stability. Transferase activity was evaluated. Western blot analysis is used to analyze single samples with few degradation products. Reveals the full-length protein, completeness of protein stability and overall structure This suggests that the sex is maintained. As expected, recombinant toxoids There was little or no activity (less than 10-4 of the wild type toxin).

免疫原性 以上のように産生された変異タンパク質が検出i」能な酵素活性を欠くことを確 認した後、続いて変異体を以下のように免疫原性について分析した:モルモット (またはジフテリア毒素の細胞死滅効果に対して生来感受性のある他の種)を以 下のプロトコールに従い本発明の組換えトキソイドで免疫化する:フロイント完 全アジュバント50−100μlに懸濁した組換えトキソイド1〜50μgを1 0.12日、240目にモルモットに皮下注射した。続いて、自然に存在するジ フテリア毒素に対する反応度を連続希釈法により検査することにより血液試料を 抗毒素抗体に関してアッセイする。抗体が保護するかどうか調べるために、抗ト キソイド形成を誘発するために十分に高い用量のトキソイドを受けたそれらの動 物を野生型ジフテリア毒素で免疫性をテストする。上記アッセイで陽性応答を誘 発する本発明のそれらのトキソイドは、生ワクチンへの組み込みにa望な候補で ある。immunogenicity We confirmed that the mutant protein produced as described above lacks detectable enzymatic activity. After identification, the mutants were subsequently analyzed for immunogenicity as follows: guinea pig (or other species naturally susceptible to the cell-killing effects of diphtheria toxin): Immunize with the recombinant toxoid of the invention according to the protocol below: 1-50 μg of recombinant toxoid suspended in 50-100 μl of total adjuvant On day 0.12 and day 240, guinea pigs were injected subcutaneously. Next, naturally occurring di Blood samples are tested for reactivity to phtheria toxin by serial dilution. Assay for antitoxin antibodies. To find out if antibodies protect, Those who received a sufficiently high dose of toxoid to induce xoid formation Test for immunity with wild-type diphtheria toxin. elicit a positive response in the above assay. Those toxoids of the invention that emit are desirable candidates for incorporation into live vaccines. be.

候補のワクチンをDTに感受性のある動物に注射し、2−3ケ月のインキュベー ション期間後、獲ir>免疫の範囲を測定するためにa)致死量の自然に存在す るDT、 またはb)自然に存在するDTの反複連続投tjシ動物の免疫性をテ ストすることにより本発明のトキソイドを発現するために遺伝子操作された適切 な生ワクチン微生物(細胞またはウィルス)を検査した。Candidate vaccine is injected into DT-susceptible animals and incubated for 2-3 months. After the immunization period, to determine the extent of immunity, a) a lethal dose of naturally occurring or b) Repeated continuous administration of naturally occurring DT to test the immunity of the animal. Suitable cells that have been genetically engineered to express the toxoids of the invention by Live vaccine microorganisms (cells or viruses) were tested.

ジフテリアトキソイドをコードするDNAの調製および使用本発明のジフテリア トキソイドをコードするDNA配列は原核宿主細胞中で標準的方法により発現で きる。本発明のジフテリアトキソイドをコードするDNAは、原核宿主中で発現 を行うことができる制御シグナルと作動するように連結したベクターに担持され る。望むならば、コード配列は、その5゛末端に宿主細胞の細胞周辺腔に発現し たタンパク質の分泌を行うことが111能な、任意の既知のシグナル配列をコー ドする配列を含み、その結果タンパク質の回収を容易にする。Preparation and Use of DNA Encoding Diphtheria Toxoid Diphtheria of the Invention DNA sequences encoding toxoids can be expressed in prokaryotic host cells by standard methods. Wear. The DNA encoding the diphtheria toxoid of the present invention can be expressed in a prokaryotic host. carried by a vector operably linked with control signals capable of Ru. If desired, the coding sequence can be expressed in the periplasmic space of the host cell at its 5' end. Coding any known signal sequence capable of effecting secretion of a protein. contains sequences that encode the protein, thereby facilitating protein recovery.

例を挙げると、本発明のジフテリアトキソイドを発現するベクターまたは本発明 のポリペプチドを含む融合タンパク質は(i)E、col i中で機能する、プ ラスミドpBR322から得られた復製開始点;(ii)同じ<pBR322か ら得られた選択可能なテトラサイクリン耐性遺伝子;(iii)転写終了領域、 例えばE、coli trpオペロンの終了(転写リードスルーがtrpプロモ ーター領域に入るのをUiぐためにテトラサイクリン耐性遺伝子の末端に設置) :(iV)転写プロモーター、例えばtrpオペロンプロモーターまたはジフテ リア毒素プロモーター; (V)本発明のタンパク質コード鎮域:そして(v  i)転写ターミネータ−1例えばE、coliのリボームRNA D rnB) 座からのTIT2配列、から成る。担体分子の配列、DNA配列の合成に用いら れる方法、融合遺伝子の構築、および適切なベクターと発現系は当業者にすべて よく知られているものである。類似の発現系を融合または非融合ポリペプチド( すなわち本発明のポリペプチドの発現だけのため)のために設=1できる。これ らの処置は、・本発明の方法の例ではあるがそれらに限定されるものではない。For example, a vector expressing a diphtheria toxoid of the invention or a vector expressing a diphtheria toxoid of the invention or The fusion protein containing the polypeptide (i) functions in E. coli. Reproduction starting point obtained from lasmid pBR322; (ii) same < pBR322? a selectable tetracycline resistance gene obtained from; (iii) a transcription termination region; For example, termination of E. coli trp operon (transcriptional read-through is caused by trp promo (placed at the end of the tetracycline resistance gene to prevent entry into the protein region) :(iV) Transcriptional promoter, such as trp operon promoter or diphte riatoxin promoter; (V) protein-encoding promoter of the present invention: and (v) i) Transcription terminator-1 e.g. E. coli riboma RNA DrnB) TIT2 sequence from the locus. Used in the synthesis of carrier molecule arrays and DNA sequences. methods, construction of fusion genes, and appropriate vectors and expression systems are all within the skill of the art. It is well known. Similar expression systems can be used to generate fused or non-fused polypeptides ( ie for the expression of the polypeptide of the invention only). this These treatments are examples of, but not limited to, the methods of the present invention.

最も頻繁に用いられる原振生物は):、coltの種々の株に代表される。しか しながら、他の微生物株、例えばC,ジフテリアも用いることができる。復製開 始点、選択可能なマーカー、および微生物宿主に適合する種から得られた制御配 列を含むプラスミド ベクターを用いる。例えば、Bolivarら(Gene 2:95.1977)により構築されたプラスミド、pBR322の誘導体を用 い、3つの自然に存在するプラスミド(2つはサルモネラ種から単離、そしてひ とつはE、coliから単離)から得られたフラグメントを用いてE、coli を形質転換できる。pBR322はアンピシリンおよびテトラサイクリン耐性の 遺伝子を含み、その結果、所望の発現ベクターの構築に維持されるかまたは破壊 される複数の選択可能なマーカーを提供する。通常用いられる原核生物発現制御 配列(また、″調節因子゛とも呼ぶ)は、本出願ではリポソーム結合部位配列と ともに選択的にオペレーターを6する転写開始のためのプロモーターを含むと定 義される。タンパク質発現を指示するために通常用いられるプロモーターはβ− ラクタマーゼ(ベニンリナーゼ)、ラクトース(lac)(Changら、Na ture 198:1056,1977)およびトリプトファン(trp)プロ モーター系(Goeddelら、Nucl、Ac1ds Res、8+4057 .1980)ならびにラムダから得られたPLプロモーターおよびN−遺伝rリ ポソーム結合部位(Shimatakeら、Nature 292+128゜1 981)を含む。微生物株、ベクター、および関連調節配列の例は、説明のため に本出願に示すが、本出願を限定するものではない。The most frequently used progenitors are represented by various strains of Colt. deer However, other microbial strains can also be used, such as C. diphtheriae. Reopening Starting points, selectable markers, and control sequences obtained from species compatible with the microbial host. A plasmid vector containing the sequence is used. For example, Bolivar et al. 2:95.1977), a derivative of pBR322 was used. three naturally occurring plasmids (two isolated from Salmonella sp. using the fragment obtained from E. coli (isolated from E. coli). can be transformed. pBR322 is ampicillin and tetracycline resistant. containing the gene and resulting in the construction of the desired expression vector, either maintained or disrupted. provides multiple selectable markers to be used. Commonly used prokaryotic expression control Sequences (also referred to as "regulators") are herein referred to as liposome binding site sequences. Both are determined to contain a promoter for transcription initiation that selectively activates the operator 6. be justified. The promoter commonly used to direct protein expression is β- Lactamase (beninlinase), lactose (lac) (Chang et al., Na ture 198:1056, 1977) and tryptophan (trp) pro- Motor system (Goeddel et al., Nucl, Ac1ds Res, 8+4057 .. (1980) and the PL promoter and N-gene r link obtained from lambda. Posome binding site (Shimatake et al., Nature 292+128°1 981). Examples of microbial strains, vectors, and associated regulatory sequences are included for illustrative purposes. are shown in this application, but are not intended to limit this application.

ポリペプチド ワクチンの調製および使用本発明の変異ジフテリアトキソイドは 任意の即知のタンパク質発現系において発現され、続いて標準的方法により精製 される。例えば、本発明のジフテリアトキソイドは有機化学合成により合成でき 、または生合成ポリペプチドとして産生できる。q機化学合成は従来の自動化ペ プチド合成方法により、または伝統的な有機化合技術により行うことができる。Preparation and use of polypeptide vaccine The mutant diphtheria toxoid of the present invention is Expressed in any known protein expression system and subsequently purified by standard methods be done. For example, the diphtheria toxoid of the present invention can be synthesized by organic chemical synthesis. , or can be produced as a biosynthetic polypeptide. Q-mechanical chemical synthesis is performed using conventional automated processes. It can be carried out by peptide synthesis methods or by traditional organic compounding techniques.

当業上教育を受けた者は、タンパク質lit離の従来方法、例えば沈殿、クロマ トグラフィー、免疫吸着、または親和技術等の方法、これらに限るわけてはない が、を用いて本発明のジフテリアトキソイドポリペプチドを精製できる。本発明 のジフテリアトキソイドを発現するために遺伝子操作された微生物株の細胞、ま たは細胞の培地から、ポリペプチドを精製できる。Those trained in the art will be familiar with conventional methods of protein isolation, such as precipitation, chroma methods such as, but not limited to, totography, immunoadsorption, or affinity techniques. can be used to purify the diphtheria toxoid polypeptides of the invention. present invention cells of a microbial strain genetically engineered to express diphtheria toxoid, or The polypeptide can be purified from the cell culture medium or from the culture medium of the cells.

精製されたポリペプチドをトキソイドの免疫原性を増大するアジュバント[例え ば、アルミニウム塩、細菌内毒素または弱4化細菌株(例えばBCGまたはボル デテラ・ベルツッシス)、弱毒化ウィルス、リポソーム、ミクロスフェア、また はフロイント完全または不完全アジュバント]および/またはさらに別のトキソ イドまたは殺したまたは弱み化したワクチン生物(多価ワクチンを形成するため に)を有する適切な担体(生理食塩水のような)と混合できる。続いて、そのよ うなワクチンを経口、非経口、経皮的、経粘膜配達等の任意の許容される方法、 これらに限定されないが、によりヒト被験者に投与する。投与は、ミクロフェア のような生分解性の生体適合性ポリマーを用いる除放性製剤で、またはミセル、 ゲル、またはリポソームを用いる現場配達により、またはトランスジェニック彰 !![例えばTangら(Nature 356:152−154,1992; 本出願の参照文献に編入されている)に記載されたように直接患者の細胞に本発 明のDNAのバイオリスティック投与による]により行う。The purified polypeptide can be used as an adjuvant to increase the immunogenicity of the toxoid [e.g. For example, aluminum salts, bacterial endotoxins or weakly quaternized bacterial strains (e.g. BCG or Vol. Deterra vertussis), attenuated viruses, liposomes, microspheres, and Freund's complete or incomplete adjuvant] and/or further toxo ids or killed or weakened vaccine organisms (to form multivalent vaccines) ) with a suitable carrier (such as saline). Next, that's it. Such vaccines can be delivered by any acceptable method, including oral, parenteral, transdermal, and transmucosal delivery; administration to human subjects, including but not limited to. Administration of micropheres or in sustained release formulations using biodegradable and biocompatible polymers such as micelles, by in situ delivery using gels, or liposomes, or by transgenic ! ! [For example, Tang et al. (Nature 356:152-154, 1992; directly into the patient's cells as described in the incorporated references of this application). by biolistic administration of Ming DNA].

生きた組換えワクチンの調製および使用適切な生きた担体生物は、BCG、サル モネラ種、ビブリオ コレレ、ストレプトコッカス、リステリエおよびエルンニ エのような弱4化微生物を含む。本発明のDNAを標準的方法(Sambroo kら、Mo1ecular Cloning:A Laboratory Ma nual、Co1d SpringHarbor Lab、Press、New  York、1989)により、このような微生物株に安定的にトランスフェク トし、続いて、例えば経口または非紅口投1>により患者に導入される。轡者に 導入されると、細菌は増殖し、患者の中でジフテリア毒素の変異型を発現し、患 者に変異毒素に対して保護レベルの抗体を維11させる。類似の方法において、 アデノウィルス、ヘルペスウィルス、ワクシニアウィルス、ポリオ、鶏痘ウィル スのような弱毒化動物ウィルスまたはレインユマニアのような弱毒化真核生物寄 生体でさえ担体生物として用いることができる。本発明の変異DNAを遺伝子工 学の手法により、任意の適切なウィルスのゲノムに組み込み、続いて標準的方法 により人間の工・防接種を受ける人に導入する。本発明の生ワクチンを、例えば 約10’−108生物/用量または保護レベル抗毒素を安定的に誘発するのに十 分な用量、投すする。そのようなワクチンの実際の用量はワクチン技術の分野に おける通常の当業乙により容易に決定される。Preparation and Use of Live Recombinant Vaccines Suitable live carrier organisms include BCG, monkey Monera species, Vibrio cholerae, Streptococcus, Listeria and Erunni Contains weakly tetramorphic microorganisms such as E. The DNA of the invention was prepared using standard methods (Sambroo k et al. Molecular Cloning: A Laboratory Ma nual, Co1d Spring Harbor Lab, Press, New York, 1989) to stably transfect such microbial strains. and subsequently introduced into the patient, eg, orally or by oral administration. to a cheater Once introduced, the bacterium multiplies and expresses a variant form of diphtheria toxin in the patient, causing the disease to become infected. subjects to maintain protective levels of antibodies against the mutant toxin. In a similar way, Adenovirus, herpesvirus, vaccinia virus, polio, fowlpox virus Attenuated animal viruses such as P. spp. or attenuated eukaryotic parasites such as R. Even living organisms can be used as carrier organisms. Genetically engineer the mutant DNA of the present invention into the genome of any suitable virus, followed by standard methods. The virus is introduced into humans and those who receive vaccinations. The live vaccine of the present invention, for example Approximately 10'-108 organisms/dose or protective level sufficient to stably induce antivenom. Administer a sufficient dose. The actual dosage of such vaccines remains in the field of vaccine technology. easily determined by a person of ordinary skill in the art.

細胞死滅アッセイ ジフテリア毒素変異体の毒性をアッセイする標準的方法は、ジフテリア毒素レセ プターをHする細胞系(例えばピロ(viro)またはB5C1細胞)であるジ フテリア毒素感受性組織培養細胞系を使用する。細胞を既知の量の変異体ジフテ リア毒XN補を用いて、または、自然に存在するジフテリア毒素を用いて(陽性 対照として)、またはラン血清アルブミンを用いて(陰性対照として)処理する 。インキュヘーンヨン後、生存しているコロニーを数えて生存アッセイを行う( Yama i z um t、M、ら、Ce1l 15:245−250.19 78)。Cell killing assay The standard method for assaying the toxicity of diphtheria toxin variants is the diphtheria toxin receptor. cell line (e.g. viro or B5C1 cells) that A phtheria toxin sensitive tissue culture cell line is used. cells with a known amount of mutant diphteate with liatoxin XN supplement or with naturally occurring diphtheria toxin (positive (as a control) or treated with orchid serum albumin (as a negative control) . After incubation, perform a survival assay by counting the surviving colonies ( Yama i z um t, M, et al. Ce1l 15:245-250.19 78).

または、細胞死滅の程度は、タンパク質合成の阻害の度合いをilF+定するこ とにより決定できる。上記のジフテリア毒素試料のうちのひとつとインキュベー ション後、放射標識されたアミノ酸(例えば[’C] Leu)を細胞培養の増 殖培地に加え、新規タンパク質合成の減少をTCA沈降沈降タンパクシンチレー ション計数により1111定する。そのような方法は日常業務であり当業者に知 られている。Alternatively, the degree of cell death can be determined by determining the degree of inhibition of protein synthesis. It can be determined by Incubation with one of the diphtheria toxin samples listed above. After lysis, radiolabeled amino acids (e.g. ['C]Leu) were added to the cell culture. In addition to the growth medium, TCA-precipitated protein scintillator reduces de novo protein synthesis. 1111 is determined by tion counting. Such methods are routine and known to those skilled in the art. It is being

他の実施態様 他の実施態様は下記の特許請求の範囲である。例えば、Glu−142ならび1 :Val−147およびGlu−148を欠いているジフテリア 毒素フラグメ ントAの変異型、またはGlu−142からGlu−148(両端アミノ酸を含 む)の残基すべてを欠いているジフテリア毒素フラグメントAの変異型を産生で きる。そのような欠失変異体は部位特異的突然変異誘発(上記5ayersら) によりつくり、上記のように酵素話性および免疫原性を分析する。ジフテリア毒 素の生物学的活性に不iiJ欠であることが示されている他のアミノ酸残基は、 ジフテリア毒素のフラグメントA部分の残基、H45−21、Glu−22、L ys−39、Gly−52、GI Y−79、Gly−128、Ala−158 およびGly−162そしてフラグメント8部分の残基、Glu−349、As p−352、および1ie−364を含む。Va l−147およびGlu−1 48の両名を欠失するのに加えて、これらのIAMのひとつ以上を欠いている変 異体は当業上教育を受けた者に知られている[lF的な部位特異的突然変異誘発 方法によりつくることができる。Other embodiments Other embodiments are within the scope of the claims below. For example, Glu-142 and 1 : Diphtheria toxin fragment lacking Val-147 and Glu-148 mutant form of client A, or Glu-142 to Glu-148 (including amino acids at both ends). It is possible to produce a mutant form of diphtheria toxin fragment A that lacks all residues of Wear. Such deletion mutants can be generated by site-directed mutagenesis (5ayers et al., supra). and analyzed for enzymatic properties and immunogenicity as described above. diphtheria poison Other amino acid residues that have been shown to be lacking in natural biological activity are: Residues of fragment A portion of diphtheria toxin, H45-21, Glu-22, L ys-39, Gly-52, GI Y-79, Gly-128, Ala-158 and Gly-162 and residues of fragment 8, Glu-349, As p-352, and 1ie-364. Va l-147 and Glu-1 In addition to missing both of the 48 IAMs, there are mutations missing one or more of these IAMs. Variants are known to those trained in the art [IF site-directed mutagenesis It can be made by a method.

配列リスト (1) 一般情報二 (i)出願人: R,John Co11ierKevin P、K11lee n John J、Mekalanos (1、発明の名称、ジフテリア毒素ワクチン(iii)配列の数:1 (1v)住所: (A)受イ;人:Fish & Richardson(B)aす:225 F ranklin 5treet(C)都市:Boston (D)州:Massachusetts(E)国:U、 S、 A。array list (1) General information 2 (i) Applicant: R, John Co11ierKevin P, K11lee n John J, Mekalanos (1. Title of the invention, diphtheria toxin vaccine (iii) Number of sequences: 1 (1v) Address: (A) Pass; Person: Fish & Richardson (B) a: 225 F ranklin 5tree(C) City: Boston (D) State: Massachusetts (E) Country: U, S, A.

(F)ZIPコード: 02110−2804(V)コンピュータ及びO5の名 前及び型:(A)ディスク:3,5インチ ディスク、1.44Mb(B)機器 :IBM PS/2 モデル502又は55SX(C)O3: IBM P、C ,DOS ()(−ジうン3.−30)(D)ソフト:ワードパーフェクト(/ <−ジョン5.0)(vl)本出願データ: (A)出願番号: (B)出願口。(F) ZIP code: 02110-2804 (V) Computer and O5 name Front and model: (A) Disk: 3.5 inch disk, 1.44Mb (B) Device : IBM PS/2 Model 502 or 55SX (C) O3: IBM P, C , DOS () (-Jiun 3.-30) (D) Software: Word Perfect (/ <- John 5.0) (vl) This application data: (A) Application number: (B) Application opening.

(C)分類・ (v i i)先願データ: (A)出願番号: (B)出願口・ (v i i i)代理人等の情報。(C) Classification/ (v i i) Prior application data: (A) Application number: (B) Application opening/ (v i i i) Information about agents, etc.

(A)名前 Janis K、Fraser(B)登録番号:34,819 (C)処理番号: 00246/137001(ix)通信情報・ (A)電話: (617)542−5070(B)電話ファックス: (617 )542−8906(C)テレックス:200154 (2) 配列番号1に関する情報 (l−)配列の特徴・ (Δ)長さ・1942 (B)型:核酸 (C)鎖の数二二本鎖 (D)トポロジー・直鎖状 (xl)配列:配列番号=1 165 1i0175 C丁^C丁ACCGAC?ATTCC’rGCAkAGCTGGACGτTAA ?AAG丁CCAAGA(”rllLsu L@u Pro 丁hr 11m  Pro Gly Lys Leu ^@p Val ^sn Lys Sat  Lys 丁hr4コS 440 44% c″ 0′ り! 七ご Uお 8=80>ao a> aa C)Q gtn  gtn−+基ぎ 話ま腎と ■ 眩 03 ぺ> にコ υコOの■ 0コ ロー (5C5(JtJ (J−−べr ao u<■ 婁コ %S ヨ託Uコ 話 ヨ3 妊3 口3 妊5 iト葺÷ <> E−1−H> t−1Φ ロo octn(5Qh C5> uc:)  E−IQI (JQI CJCI−+ゴ」。ご8 号シ と; i; にシ8u ar−(JQI <Ha> (!l> <−一■ u$藻召 韮 ■Hト ギ訃 81 乏ヨ8 足月 8= 乏ヨa< Ill:F−I C3C5−1a o hcn C5C5べ−0F−I CJr6 Quuq )−1m h−hr rJ ?111 t)s hOJ−CJs hc+10> 0> oc <x− C5g+: o>1茨 話 F、5 C5拍3I ha、 ao (J、−1(J> QコOoコ ベト ←−<ロ (5LI F 41’ll C5−ベーク <、−+ hm hma< << Ll> oo  oacv LIC5a> ロ〉8柑 と; シ訃 ギこ む= 1七 む8 詣 50C5FI C5> C:)< CJ:e )l(1) ?IJN UL ( JC53; o、2z g、2 3; 65 g; 2.H; u;■ ミ5  誕狂ヨ3 l ジδ ジさ 目韮ヨ3 拍 ’5 E胚ヨ3 韮 詰 瑚コトΦ  hm o:I ぺSJI/I u−ベコ トコ ロート; ロー トΦ C) Jニー1 ocu ←Φ トΦ 〇−←Q、 a< )4− ベトへ ベコ ロ ー 〇−0ベミ5 ジy 韮 卦 珪狂睦 韮 U 軒本Fト 葺茨 l ヨ3 ヨ斥韮 瑚三i母 2訃Uぎ ヨ3 ミコ ヨ3  を鯨■H1路 口花B、oa 話 ■ 韮 粒E韮 擬写 口茨 打;匠 ヨ3  ■ ■i; 8: ご「 iシ む8繁 ゴヨ 4冗 と芸(J> u< C J< <HCJQlri g3 υ工←−= g 鴬 = : 2 :: : 讐 = 0 二 二 二 = = 韮 眠 捉コ 耘臼■ I 吋 目茨 C)、−4hu IIC@ t−tトoowhり O−f4m C)J: [− 1,−1(5F−1a) υl!l F−IQI CJ(DO〉 ぺ? べh4  ua寸 トψ 0− −の′5コ 四ご 8ピツ 七−仁呂 瓢: シ含 8 薯粗CIL+0c5tJ<−y トCJ tJ−L)(j (51: <tlJ v+■ 眠 胚ぎ Euミ互 ミ三 本 I足f シ==; 足陪 8;召 E α 足f シ=ピSl 母ヨ 本 H;H韮I 邦 3B 肘s iji F;、、Qa F E# E l;、#りδ 自S 軒市 ■ 証ぎ ヨ3 詩 EuFIG、 2 フロントページの続き (51) Int、 C1,6識別記号 庁内整理番号C07H21104B  8615−4CCO7K 14/34 8318−4HC12N 1/21 8 828−4B C12P 21102 C9282−4B//(C12N 1/21 C12RIJ9) (C12P 21102 C12R1:19) (81)指定国 EP(AT、BE、CH,DE。(A) Name: Janis K, Fraser (B) Registration number: 34,819 (C) Processing number: 00246/137001 (ix) Communication information/ (A) Telephone: (617) 542-5070 (B) Telephone Fax: (617) ) 542-8906 (C) Telex: 200154 (2) Information regarding sequence number 1 (l-) Characteristics of array・ (Δ) Length・1942 (B) type: Nucleic acid (C) Number of strands: 2 strands (D) Topology/linear (xl) Array: Sequence number = 1 165 1i0175 C Ding ^ C Ding ACCGAC? ATTCC’rGCAkAGCTGGACGτTAA ? AAG Ding CCAAGA (”rllLsu L@u Pro Ding hr 11m Pro Gly Lys Leu ^@p Val ^sn Lys Sat Lys Ding hr4ko S 440 44% c″ 0′ Ri! Seven go U 8=80>ao a> aa C)Q gtn gtn-+Kiwaki Ma Kidney and ■ Dazzling 03 Pe>niko υkoO ■ 0ko low (5C5(JtJ (J--ber ao u》 Yo 3 Pregnancy 3 Mouth 3 Pregnancy 5 i Tobuki ÷ <> E-1-H> t-1Φ Ro octn(5Qh C5> uc:)  E-IQI (JQI CJCI-+go). ar-(JQI <Ha> (!l> <-1■ u$Mozo ■Ht GI 81 Hoyo 8 Ashizuki 8 = Hoyo a < Ill: F-I C3C5-1a ohcn C5C5be-0F-I CJr6 Quuq)-1m h-hr rJ? 111 t)s hOJ-CJs hc+10>0>oc<x- C5g+: o>1 thorn story F, 5 C5 beat 3I ha, ao (J, -1 (J> Q Ko Oo Ko Beto ← - < B (5LI F 41'll C5-Bake <, -+ hm hma<<<Ll> oo oacv LIC5a> ro 8 kan and; shi gikomu = 17 mu 8 pilgrimage 50C5FI C5>C:)<CJ:e)l(1)? IJN UL ( JC53; o, 2z g, 2 3; 65 g; 2. H; u;■ Mi5  birth crazy yo 3 l ji δ ji sa eyes nigar yo 3 beats ’5 E embryo yo 3 ni tsume gokoto Φ hm o: I Pe SJI/I u-beko toko rot; rotto Φ C) J knee 1 ocu ←Φ トΦ 〇-←Q, a< ) 4- Betohe Bekoro - 〇-0 Bemi 5 Ji y Nigu Trigram Keikyou Mutsu Nigu U Eavesmoto F to Thatched Thorn l Yo3 Yo Kanagi Gosani Mother 2 Fang Ugi Yo3 Miko Yo3 Kujira ■ H1 Road Kuchibana B, oa story ■ Niragi Grain E Nibaru imitation Kuchibara hit; Takumi Yo3 ■ ■i; 8:     ■  8  Goyo 4 和訳 (J> u< C J< <HCJQlri g3 υ工←−= g 鴬 =         :: : Enemy = 0 two two two = = Night Sleep Capture Ko Usu C), -4hu IIC@t-ttoowhri O-f4m C) J: [- 1, -1 (5F-1a) υl! l F-IQI CJ(DO〉pe?beh4 ua size t ψ 0--'5 4 pieces 8 pits 7-Niro gourd: shi included 8 CIL+0c5tJ<-y CJ tJ-L) (j (51:<tlJ v+■ Sleep embryo Eu Mitsu Mi I foot f Sh==; foot attendant 8;called E α Foot f Si-Pi Sl Mother Yo Hon H; H Ni I Kuni 3B Elbow s iji F;,, Qa F E# E l;, #riδ own S Kenichi ■ Testimony Yo3 Poetry EuFIG, 2 Continuation of front page (51) Int, C1, 6 identification symbol Internal reference number C07H21104B 8615-4CCO7K 14/34 8318-4HC12N 1/21 8 828-4B C12P 21102 C9282-4B//(C12N 1/21 C12RIJ9) (C12P 21102 C12R1:19) (81) Designated countries EP (AT, BE, CH, DE.

DK、ES、FR,GB、GR,IE; IT、LU、MC,NL、 PT、  SE)、 AtJ、 BB、 BG、 BR,CA、CZ、FI、HU、JP、 KP、KR,LK、MGI (72)発明者 メカラノス ジョーンアメリカ合衆国 マサチューセッツ州  ケンブリッジ フレッシュ ボンド ロードDK, ES, FR, GB, GR, IE; IT, LU, MC, NL, PT, SE), AtJ, BB, BG, BR, CA, CZ, FI, HU, JP, KP, KR, LK, MGI (72) Inventor: Mechananos Joan, Massachusetts, United States Cambridge Fresh Bond Road

Claims (29)

【特許請求の範囲】[Claims] 1.自然に存在するジフテリア毒素(図1;配列番号:1)のVal−147お よびGIu−148に対応するコドンがDNAに存在しない、ジフテリア毒素フ ラグメントAの免疫学的交差反応型をコードするDNA。1. Val-147 of the naturally occurring diphtheria toxin (Figure 1; SEQ ID NO: 1) and diphtheria toxin phthalate, in which the codons corresponding to GIu-148 and GIu-148 are not present in the DNA. DNA encoding an immunologically cross-reactive form of fragment A. 2.前記DNAがジフテリア毒素フラグメントBの一部またはすべてをコードす る核酸配列をさらに含む請求項1記載のDNA。2. the DNA encodes part or all of diphtheria toxin fragment B; The DNA according to claim 1, further comprising a nucleic acid sequence. 3.GIu−142(図1:配列番号:1)に対応するコドンが存在しないか、 またはGlu以外のアミノ酸をコードするように改変されている請求項1記載の DNA。3. There is no codon corresponding to GIu-142 (Figure 1: SEQ ID NO: 1), or modified to encode an amino acid other than Glu. DNA. 4.Glu−142からGlu−148までのコドン(図1:配列番号:1)す べてが存在しない請求項3記載のDNA。4. Codons from Glu-142 to Glu-148 (Figure 1: SEQ ID NO: 1) 4. The DNA according to claim 3, wherein all of the DNA is absent. 5.前記自然に存在する毒素の第三アミノ酸残基に対応するコドンが欠失されて いるか、または前記自然に存在する毒素の前記第三アミノ酸残基と異なるアミノ 酸残基をコードするように改変されており、前記自然に存在する毒素の前記第三 アミノ酸残基の存在が前記自然に存在する毒素の完全な毒素活性に不可欠である 請求項1記載のDNA。5. A codon corresponding to the third amino acid residue of the naturally occurring toxin is deleted. or a different amino acid residue from said third amino acid residue of said naturally occurring toxin. The third of the naturally occurring toxins has been modified to encode an acid residue. The presence of amino acid residues is essential for the full toxin activity of the naturally occurring toxin. The DNA according to claim 1. 6.前記第三アミノ酸残基がジフテリア毒素のフラグメントA部分にある請求項 5記載のDNA。6. Claim in which the third amino acid residue is in the fragment A portion of diphtheria toxin. The DNA described in 5. 7.前記自然に存在する毒素の前記第三アミノ酸残基がHis−21、Glu− 22、Lys−39、Gly−52、Gly−79、Gly−128、またはG lu−162(図1:配列番号:1)である請求項6記載のDNA。7. The third amino acid residue of the naturally occurring toxin is His-21, Glu- 22, Lys-39, Gly-52, Gly-79, Gly-128, or Gly The DNA according to claim 6, which is lu-162 (Figure 1: SEQ ID NO: 1). 8.前記第三アミノ酸残基がジフテリア毒素のフラグメントB部分にある請求項 5記載のDNA。8. Claim in which the third amino acid residue is in the fragment B portion of diphtheria toxin. The DNA described in 5. 9.前記自然に存在する毒素の前記第三アミノ酸残基がGlu−349、Asp −352、または11e−364である請求項8記載のDNA。9. The third amino acid residue of the naturally occurring toxin is Glu-349, Asp 9. The DNA according to claim 8, which is -352 or 11e-364. 10.前記DNAが自然に存在するジフテリア毒素のTyr−149をコードす るコドンを含む請求項1記載のDNA。10. The DNA encodes the naturally occurring diphtheria toxin Tyr-149. The DNA according to claim 1, comprising a codon. 11.請求項1記載のDNAによりコードされるポリペプチド。11. A polypeptide encoded by the DNA according to claim 1. 12.請求項11記載のポリペプチドの実質的に純粋な調整物。12. 12. A substantially pure preparation of the polypeptide of claim 11. 13.請求項1記載のDNAを含む細胞。13. A cell containing the DNA according to claim 1. 14.前記細胞がB.サブチリス、BCG、サルモネラ種、ビブリオコレレ、リ ステリエ、エルシニエ、ストレプトコッカス、コリネバクテリウムジフセリエ、 または、E.coli細胞である請求項13記載の細胞。14. The cells are B. subtilis, BCG, Salmonella species, Vibrio cholerae, Li Stelliae, Yersiniae, Streptococcus, Corynebacterium diphuselia, Or E. 14. The cell according to claim 13, which is an E. coli cell. 15.請求項1記載のDNAを含むワクチン。15. A vaccine comprising the DNA according to claim 1. 16.請求項13記載の細胞を含むワクチン。16. A vaccine comprising the cell according to claim 13. 17.請求項11記載のポリペプチドおよびアジュバントを含む組成物。17. A composition comprising the polypeptide of claim 11 and an adjuvant. 18.請求項13記載の細胞を前記DNAの発現を可能にする条件下で培養する ことを含む、ポリペプチドをつくる方法。18. The cell according to claim 13 is cultured under conditions that allow expression of the DNA. A method of making a polypeptide, including. 19.方法が請求項13記載の細胞を前記細胞の増殖を可能にする条件下で培養 することを含み、前記細胞が生きている細胞ワクチンとして動物に導入するため に適切である、ワクチンを製造する方法。19. The method comprises culturing the cells of claim 13 under conditions that allow proliferation of said cells. introducing said cells into an animal as a live cell vaccine, A method of manufacturing a vaccine that is suitable for. 20.前記ポリペプチドが多糖または第二のポリペプチドを含む半分に共有結合 で付着されている請求項11記載のポリペプチド。20. the polypeptide is covalently linked to a polysaccharide or a second polypeptide-containing half; 12. The polypeptide of claim 11, wherein the polypeptide is attached with 21.前記半分が担体物質を含む請求項20記載のポリペプチド。21. 21. The polypeptide of claim 20, wherein said half comprises a carrier material. 22.ペプチド結合により第二のポリペプチドに結合された請求項11記載のポ リペプチドを含む融合ポリペプチド。22. 12. The polypeptide of claim 11, which is linked to the second polypeptide by a peptide bond. A fusion polypeptide containing a polypeptide. 23.請求項22記載の融合ポリペプチドまたは前記融合ポリペプチドをコード するDNAを含むワクチン。23. A fusion polypeptide according to claim 22 or encoding said fusion polypeptide. Vaccines containing DNA that 24.請求項22記載の融合ポリペプチドをコードするDNA。24. A DNA encoding the fusion polypeptide according to claim 22. 25.請求項24記載のDNAを含む細胞。25. A cell comprising the DNA according to claim 24. 26.前記ポリペプチドが前記半分の担体物質として働く請求項20記載のポリ ペプチド。26. 21. The polypeptide of claim 20, wherein said polypeptide serves as a carrier material for said half. peptide. 27.前記ポリペプチドが前記第二ポリペプチドの担体物質として働く請求項2 2記載のポリペプチド。27. Claim 2, wherein said polypeptide acts as a carrier material for said second polypeptide. Polypeptide according to 2. 28.前記担体物質が前記半分の免疫原性を強化する請求項26記載のポリペプ チド。28. 27. The polypeptide of claim 26, wherein said carrier material enhances the immunogenicity of said half. Chido. 29.前記担体物質が前記第二ポリペプチドの免疫原性を強化する請求項27記 載のポリペプチド。29. 28. The carrier material enhances the immunogenicity of the second polypeptide. polypeptides.
JP50147594A 1992-06-18 1993-05-17 Diphtheria toxin vaccine Expired - Fee Related JP3428646B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US90171292A 1992-06-18 1992-06-18
US901,712 1992-06-18
PCT/US1993/004606 WO1993025210A1 (en) 1992-06-18 1993-05-17 Diphtheria toxin vaccines

Publications (2)

Publication Number Publication Date
JPH07507688A true JPH07507688A (en) 1995-08-31
JP3428646B2 JP3428646B2 (en) 2003-07-22

Family

ID=25414686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50147594A Expired - Fee Related JP3428646B2 (en) 1992-06-18 1993-05-17 Diphtheria toxin vaccine

Country Status (12)

Country Link
US (1) US5601827A (en)
EP (1) EP0652758B1 (en)
JP (1) JP3428646B2 (en)
AT (1) ATE188508T1 (en)
AU (1) AU671649B2 (en)
CA (1) CA2138137C (en)
DE (1) DE69327534T2 (en)
DK (1) DK0652758T3 (en)
ES (1) ES2142346T3 (en)
GR (1) GR3032862T3 (en)
PT (1) PT652758E (en)
WO (1) WO1993025210A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014512185A (en) * 2011-04-13 2014-05-22 グラクソスミスクライン バイオロジカルズ ソシエテ アノニム Fermentation process

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9513371D0 (en) * 1995-06-30 1995-09-06 Biocine Spa Immunogenic detoxified mutant toxins
US5917017A (en) * 1994-06-08 1999-06-29 President And Fellows Of Harvard College Diphtheria toxin vaccines bearing a mutated R domain
US6455673B1 (en) 1994-06-08 2002-09-24 President And Fellows Of Harvard College Multi-mutant diphtheria toxin vaccines
US5843462A (en) * 1995-11-30 1998-12-01 Regents Of The University Of Minnesota Diphtheria toxin epitopes
CA2253937A1 (en) * 1996-05-10 1997-11-20 Phylomed Corporation Methods for oxidizing disulfide bonds using ozone
US5980898A (en) * 1996-11-14 1999-11-09 The United States Of America As Represented By The U.S. Army Medical Research & Material Command Adjuvant for transcutaneous immunization
US6797276B1 (en) * 1996-11-14 2004-09-28 The United States Of America As Represented By The Secretary Of The Army Use of penetration enhancers and barrier disruption agents to enhance the transcutaneous immune response
US20060002959A1 (en) * 1996-11-14 2006-01-05 Government Of The United States Skin-sctive adjuvants for transcutaneous immuization
US20060002949A1 (en) * 1996-11-14 2006-01-05 Army Govt. Of The Usa, As Rep. By Secretary Of The Office Of The Command Judge Advocate, Hq Usamrmc. Transcutaneous immunization without heterologous adjuvant
US5910306A (en) * 1996-11-14 1999-06-08 The United States Of America As Represented By The Secretary Of The Army Transdermal delivery system for antigen
US6818222B1 (en) 1997-03-21 2004-11-16 Chiron Corporation Detoxified mutants of bacterial ADP-ribosylating toxins as parenteral adjuvants
US20040258703A1 (en) * 1997-11-14 2004-12-23 The Government Of The Us, As Represented By The Secretary Of The Army Skin-active adjuvants for transcutaneous immunization
US7790856B2 (en) * 1998-04-07 2010-09-07 Janssen Alzheimer Immunotherapy Humanized antibodies that recognize beta amyloid peptide
US7588766B1 (en) 2000-05-26 2009-09-15 Elan Pharma International Limited Treatment of amyloidogenic disease
TWI239847B (en) 1997-12-02 2005-09-21 Elan Pharm Inc N-terminal fragment of Abeta peptide and an adjuvant for preventing and treating amyloidogenic disease
US6787523B1 (en) * 1997-12-02 2004-09-07 Neuralab Limited Prevention and treatment of amyloidogenic disease
US20080050367A1 (en) * 1998-04-07 2008-02-28 Guriq Basi Humanized antibodies that recognize beta amyloid peptide
US6761888B1 (en) 2000-05-26 2004-07-13 Neuralab Limited Passive immunization treatment of Alzheimer's disease
US7964192B1 (en) 1997-12-02 2011-06-21 Janssen Alzheimer Immunotherapy Prevention and treatment of amyloidgenic disease
US20050059802A1 (en) * 1998-04-07 2005-03-17 Neuralab Ltd Prevention and treatment of amyloidogenic disease
ES2372592T3 (en) * 1999-04-08 2012-01-24 Intercell Usa, Inc. DRY FORMULATION FOR TRANSCUTANEOUS IMMUNIZATION.
GB0108364D0 (en) 2001-04-03 2001-05-23 Glaxosmithkline Biolog Sa Vaccine composition
ES2385100T3 (en) 2000-06-29 2012-07-18 Smithkline Beecham Biologicals S.A. Composition of multivalent vaccine with reduced dose of Haemophilus influenzae type B
GB0022742D0 (en) 2000-09-15 2000-11-01 Smithkline Beecham Biolog Vaccine
US7700751B2 (en) 2000-12-06 2010-04-20 Janssen Alzheimer Immunotherapy Humanized antibodies that recognize β-amyloid peptide
PE20020574A1 (en) * 2000-12-06 2002-07-02 Wyeth Corp HUMANIZED ANTIBODIES THAT RECOGNIZE THE AMYLOID PEPTIDE BETA
PT1372708E (en) * 2001-02-13 2008-09-29 Us Gov Sec Army Vaccine for transcutaneous immunization against travellers` diarrhoea
US20020177614A1 (en) * 2001-03-23 2002-11-28 Merril Carl R. Methods for treating nuerodegenerative diseases including alzheimer's
MY139983A (en) * 2002-03-12 2009-11-30 Janssen Alzheimer Immunotherap Humanized antibodies that recognize beta amyloid peptide
ES2545765T3 (en) * 2003-02-01 2015-09-15 Janssen Sciences Ireland Uc Active immunization to generate antibodies to soluble A-beta
PE20050627A1 (en) * 2003-05-30 2005-08-10 Wyeth Corp HUMANIZED ANTIBODIES THAT RECOGNIZE THE BETA AMYLOID PEPTIDE
GB0409745D0 (en) 2004-04-30 2004-06-09 Chiron Srl Compositions including unconjugated carrier proteins
PE20061152A1 (en) * 2004-12-15 2006-10-13 Neuralab Ltd HUMANIZED ANTIBODIES THAT RECOGNIZE THE BETA AMYLOID PEPTIDE
TW200635607A (en) * 2004-12-15 2006-10-16 Elan Pharm Inc Humanized Aβ antibodies for use in improving cognition
EP1838349A1 (en) * 2004-12-15 2007-10-03 Neuralab, Ltd. Amyloid beta antibodies for use in improving cognition
GB0505996D0 (en) 2005-03-23 2005-04-27 Glaxosmithkline Biolog Sa Fermentation process
WO2007026249A2 (en) 2005-09-01 2007-03-08 Novartis Vaccines And Diagnostics Gmbh & Co Kg Multiple vaccination including serogroup c meningococcus
LT2384765T (en) 2005-12-22 2017-01-10 Glaxosmithkline Biologicals S.A. Streptococcus pneumoniae vaccine
EP2357001B1 (en) 2006-03-22 2018-03-07 GlaxoSmithKline Biologicals S.A. Regimens for immunisation with meningococcal conjugates
US8784810B2 (en) * 2006-04-18 2014-07-22 Janssen Alzheimer Immunotherapy Treatment of amyloidogenic diseases
AU2007293672B2 (en) 2006-09-07 2013-06-27 Glaxosmithkline Biologicals S.A. Vaccine
US8003097B2 (en) * 2007-04-18 2011-08-23 Janssen Alzheimer Immunotherapy Treatment of cerebral amyloid angiopathy
KR20100016661A (en) * 2007-04-18 2010-02-12 얀센 알츠하이머 이뮤노테라피 Prevention and treatment of cerebral amyloid angiopathy
AR066376A1 (en) 2007-05-02 2009-08-12 Glaxosmithkline Biolog Sa VACCINE
GB2451928B (en) * 2007-06-21 2011-03-16 Angelica Therapeutics Inc Modified Toxins
EA020817B1 (en) 2007-06-26 2015-02-27 Глаксосмитклайн Байолоджикалс С.А. Vaccine, comprising streptococcus pneumoniae capsular polysaccharide conjugates
EP2182983B1 (en) 2007-07-27 2014-05-21 Janssen Alzheimer Immunotherapy Treatment of amyloidogenic diseases with humanised anti-abeta antibodies
JO3076B1 (en) * 2007-10-17 2017-03-15 Janssen Alzheimer Immunotherap Immunotherapy regimes dependent on apoe status
US8470314B2 (en) * 2008-02-29 2013-06-25 Angelica Therapeutics, Inc. Modified toxins
US9067981B1 (en) 2008-10-30 2015-06-30 Janssen Sciences Ireland Uc Hybrid amyloid-beta antibodies
GB0917647D0 (en) 2009-10-08 2009-11-25 Glaxosmithkline Biolog Sa Expression system
WO2012058726A1 (en) 2010-11-05 2012-05-10 Transbio Ltd Markers of endothelial progenitor cells and uses thereof
GB201105981D0 (en) 2011-04-08 2011-05-18 Glaxosmithkline Biolog Sa Novel process
WO2014102265A1 (en) 2012-12-27 2014-07-03 Glycovaxyn Ag Methods and compositions relating to crm197
NZ630868A (en) 2013-03-08 2017-02-24 Janssen Vaccines & Prevention Bv Acellular pertussis vaccine
US10059750B2 (en) 2013-03-15 2018-08-28 Angelica Therapeutics, Inc. Modified toxins
GB201518684D0 (en) 2015-10-21 2015-12-02 Glaxosmithkline Biolog Sa Vaccine
JP7104027B2 (en) 2016-09-02 2022-07-20 グラクソスミスクライン バイオロジカルズ ソシエテ アノニム Vaccine against gonorrhea
EP3894431A2 (en) 2018-12-12 2021-10-20 GlaxoSmithKline Biologicals SA Modified carrier proteins for o-linked glycosylation

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4709017A (en) 1985-06-07 1987-11-24 President And Fellows Of Harvard College Modified toxic vaccines
US4950740A (en) * 1987-03-17 1990-08-21 Cetus Corporation Recombinant diphtheria vaccines
US5149532A (en) * 1989-11-01 1992-09-22 Cedars Sinai Medical Center Method of vaccine or toxoid preparation and immunization by colonization with recombinant microorganisms

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014512185A (en) * 2011-04-13 2014-05-22 グラクソスミスクライン バイオロジカルズ ソシエテ アノニム Fermentation process

Also Published As

Publication number Publication date
JP3428646B2 (en) 2003-07-22
PT652758E (en) 2000-04-28
WO1993025210A1 (en) 1993-12-23
AU671649B2 (en) 1996-09-05
CA2138137A1 (en) 1993-12-23
US5601827A (en) 1997-02-11
ATE188508T1 (en) 2000-01-15
EP0652758A4 (en) 1997-02-12
EP0652758B1 (en) 2000-01-05
CA2138137C (en) 2004-11-09
GR3032862T3 (en) 2000-07-31
EP0652758A1 (en) 1995-05-17
ES2142346T3 (en) 2000-04-16
AU4376293A (en) 1994-01-04
DK0652758T3 (en) 2000-05-08
DE69327534D1 (en) 2000-02-10
DE69327534T2 (en) 2000-06-08

Similar Documents

Publication Publication Date Title
JPH07507688A (en) diphtheria toxin vaccine
JP3633933B2 (en) Expression of recombinant fusion proteins in attenuated bacteria
US6455673B1 (en) Multi-mutant diphtheria toxin vaccines
JP3755773B2 (en) Diphtheria toxin vaccine with mutant R domain
US5888799A (en) Recombinant avirulent bacterial antigen delivery system
CA2123580C (en) Antigen of hybrid m protein and carrier for group a streptococcal vaccine
JP3370672B2 (en) C. perfringens vaccine
JP5566684B2 (en) Recombinant toxin A / toxin B vaccine against Clostridium difficile
US5656488A (en) Recombinant avirulent salmonella antifertility vaccines
JP2793673B2 (en) Recombinant flagierin vaccine
JP4583607B2 (en) Attenuated microorganisms for the treatment of infectious diseases
JPH07504423A (en) Conjugates formed from heat shock proteins and oligosaccharides or polysaccharides
KR102071743B1 (en) A novel live attenuated shigella vaccine
US6737521B1 (en) Delivery and expression of a hybrid surface protein on the surface of gram positive bacteria
JPH04504656A (en) bordetella vaccine
US5098998A (en) Cholera vaccines and peptides
PT892054E (en) Clostridium perfringens vaccine
AU3919993A (en) Delivery and expression of a hybrid surface protein on the surface of gram positive bacteria
US5330753A (en) Cholera vaccines
US20020161192A1 (en) Helicobacter pylori live vaccine
EP0358692B1 (en) Cholera vaccines
JP2004529601A (en) Recombinant Haemophilus influenzae adhesin protein
EP0742829B1 (en) Expression of heterologous proteins in attenuated bacteria using the htra-promoters
CZ123699A3 (en) Recombinant weakened microbial pathogen containing at least one molecule of nucleic acid encoding antigen originating from Helicobacter microorganism

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees