Nothing Special   »   [go: up one dir, main page]

JPH0743039A - Micro wave type cooling method and its device - Google Patents

Micro wave type cooling method and its device

Info

Publication number
JPH0743039A
JPH0743039A JP20691793A JP20691793A JPH0743039A JP H0743039 A JPH0743039 A JP H0743039A JP 20691793 A JP20691793 A JP 20691793A JP 20691793 A JP20691793 A JP 20691793A JP H0743039 A JPH0743039 A JP H0743039A
Authority
JP
Japan
Prior art keywords
water
microtube
tube
gas
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20691793A
Other languages
Japanese (ja)
Inventor
Keisuke Kasahara
敬介 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP20691793A priority Critical patent/JPH0743039A/en
Publication of JPH0743039A publication Critical patent/JPH0743039A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To provide a small sized cooling system of easy maintenance, which produces no substances that are harmful to humans, other living organisms, and their environments. CONSTITUTION:Water soluble refrigerant liquid is guided in a micro-tube 3 made of uniform film through which only gas can be permeated. A space 3A around an outside part of the tube 3 is maintained at a reduced pressure, refrigerant gas in the tube 3 is deaerated and separated through the uniform film and either water or water solution left in the tube 3 is cooled under utilization of evaporating latent heat of the refrigerant gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は気体のみが透過可能な均
質膜からなるマイクロチューブを用いて成る冷却方法と
その装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling method and apparatus using a microtube composed of a homogeneous membrane that is permeable to only gas.

【0002】[0002]

【従来の技術】従来から空調用冷水を得る冷却方法とし
てフロンガスを用いて冷凍サイクルを構成する冷凍装
置、及びリチュームプロマイドを用いた吸収式冷凍装置
等がある。
2. Description of the Related Art Conventionally, as a cooling method for obtaining cold water for air conditioning, there are a refrigerating apparatus which constitutes a refrigerating cycle by using Freon gas, an absorption refrigerating apparatus which uses a lithium promide, and the like.

【0003】[0003]

【発明が解決しようとする課題】しかしながらフロンガ
ス冷凍装置に用いるフロンは、地球を取巻く紫外線を保
護するオゾン層を破壊する原因であり、近い将来全面使
用禁止の運命にある。又フロンガスの代りにアンモニヤ
冷媒を用いて構成する事も出来るが、ガス冷媒サイクル
は圧縮機、油分離器、凝縮器、熱交換器、受液器、膨張
弁、蒸発器(熱交換器)、液分離器、等の機器が存在
し、容積が大となり接置面積が大となる欠点があった。
また材料が鉄製であり重量が過大となる欠点がある。一
方吸収式冷凍機においてはリチュームプロマイドは環境
汚染の立場からみだりに廃棄はできないし、地中や下水
への廃棄は公害となる。又吸収式に於いては再生器、凝
縮器、蒸発器、吸収器、リチュームブロマイド溶液、加
熱源又はボイラーが必要となり、メンテナンスが要る等
欠点がある。この為これらの従来技術の問題をクリア
し、人類や生物、環境を破壊しない新しい冷却装置、特
に地球環境に優しく而も小型でメインテナンス等の負担
の少ない冷凍装置が望まれている。
However, the CFC used in the CFC gas refrigerating device is a cause of destroying the ozone layer that protects the ultraviolet rays surrounding the earth, and is destined to be totally prohibited in the near future. It is also possible to use an ammonia refrigerant instead of CFC gas, but the gas refrigerant cycle is a compressor, oil separator, condenser, heat exchanger, liquid receiver, expansion valve, evaporator (heat exchanger), Since there are devices such as a liquid separator, the volume is large and the contact area is large.
Further, the material is made of iron, and there is a disadvantage that the weight becomes excessive. On the other hand, in an absorption chiller, it is impossible to dispose of lithium promide carelessly from the standpoint of environmental pollution, and disposal to the ground or sewage is a pollution. Further, the absorption type is disadvantageous in that it requires a regenerator, a condenser, an evaporator, an absorber, a solution of lithium bromide, a heating source or a boiler, and requires maintenance. Therefore, there is a demand for a new cooling device which solves these problems of the prior art and does not destroy human beings, living things, or the environment, in particular, a refrigerating device which is kind to the global environment, is small in size, and has a low maintenance load.

【0004】[0004]

【課題を解決するための手段】本発明はかかる課題を達
成するために、 気体のみが透過可能な均質膜からなる
マイクロチューブ群を例えばシエルアンドチューブ式に
構成し、該チューブ内に水溶冷媒液を細孔多数の分散し
て導通させると共に、該チューブ外の周囲空間を減圧下
に維持し、前記均質膜を介してチューブ内の冷媒ガスを
脱気分離させ、該冷媒ガスの蒸発潛熱を利用してチュー
ブ内に残存している水若しくは水溶液を冷却する事を特
徴とするマイクロチューブ式冷却方法を提案する。そし
て請求項2記載の発明においては、かかる冷却方法を具
体化する手段として前記マイクロチューブ内に水溶冷媒
液を導通すると共に、該チューブ周囲空間を真空圧縮機
の吸込側に連絡し、チューブ内の冷媒ガスを脱気分離可
能に構成したマイクロチューブ式冷却装置を提案する。
In order to achieve the above object, the present invention comprises, for example, a shell-and-tube type microtube group composed of a homogeneous membrane through which only gas can permeate, and the water-soluble refrigerant liquid is contained in the tube. While maintaining the surrounding space outside the tube under reduced pressure, the refrigerant gas inside the tube is degassed and separated through the homogeneous membrane, and the evaporation heat of the refrigerant gas is used. Then, we propose a microtube type cooling method characterized by cooling the water or aqueous solution remaining in the tube. In the invention according to claim 2, as a means for embodying such a cooling method, an aqueous refrigerant liquid is conducted into the microtube, and the tube surrounding space is connected to the suction side of the vacuum compressor, thereby We propose a micro-tube type cooling device that can degas and separate the refrigerant gas.

【0005】この場合前記マイクロチューブより分離し
た冷媒ガスを真空圧縮機を介して冷媒ガス吸収器に導通
させる冷媒ガスサイクルと、前記チューブ内で冷媒ガス
の脱気分離により奪熱され、負荷と熱交換される水若し
くは水溶液の冷水サイクルとを、前記吸収器に合流させ
て繰り返し水溶冷媒液を循環するごとく構成するのが良
い。そして前記吸収器には図1に示す気液接触式の吸収
器を用いても良いが、例えば図2に示すように前記吸収
器を、均質膜を用いたマイクロチューブ群により構成
し、前記マイクロチューブ内に、負荷と熱交換後の水若
しくは水溶液を導通させ、該チューブ群周囲空間に前記
真空圧縮機で圧縮された冷媒ガスを吹き込み、該冷媒ガ
スを均質膜を介してマイクロチューブ内の水若しくは水
溶液に吸収させるように構成しても良い。そして好まし
くは前記冷媒ガスにアンモニヤガス又はメチルアミン
を、又マイクロチューブ内を通過する水溶液にアンモニ
ヤ水、メチルアミン水溶液を夫々用いる事による、アン
モニヤガスが水に無制限に溶解できるために、奪熱効果
が高く而も水溶液にアンモニヤ水を用いているために、
0℃以下まで降下させる事も容易である。
In this case, the refrigerant gas cycle in which the refrigerant gas separated from the microtube is conducted to the refrigerant gas absorber via the vacuum compressor, and the degassed separation of the refrigerant gas in the tube deprives the heat of the load and heat. It is preferable that a cold water cycle of water or an aqueous solution to be exchanged is merged with the absorber to repeatedly circulate the water-soluble refrigerant liquid. Although the gas-liquid contact type absorber shown in FIG. 1 may be used as the absorber, for example, as shown in FIG. 2, the absorber is constituted by a group of microtubes using a homogeneous membrane, Water or aqueous solution after heat exchange with load is conducted into the tube, the refrigerant gas compressed by the vacuum compressor is blown into the space around the tube group, and the refrigerant gas is passed through a homogeneous membrane to form water in the microtube. Alternatively, it may be configured to be absorbed in an aqueous solution. And preferably ammonia gas or methylamine for the refrigerant gas, and ammonium water for the aqueous solution passing through the microtube, by using an aqueous solution of methylamine, respectively, because the ammonia gas can be dissolved in water indefinitely, the heat removal effect. Is high and uses ammonia water as the aqueous solution,
It is easy to lower the temperature to 0 ° C or lower.

【0006】[0006]

【作用】マイクロチューブを構成するガス透過膜には均
質膜、多孔質膜、不均質膜の機構があるが本願の透過膜
は均質膜の性質を有するものがよく、例えばシリコンゴ
ム膜のガス透過性のマイクロチューブを用いるのが良
い。そしてかかる均質膜は、膜界面での気体分子の膜へ
の溶解(solution)、溶解気体分子の膜中での
拡散(diffusion)、膜からの気体分子の脱溶
解(desolution)からなるものである。そし
てこのシリコンゴム膜の均質透過膜のマイクロチューブ
を結集した束をシエルアンドチューブ式に構成し水溶冷
媒液をチューブ内に流通し、チューブ内のシエル内を例
えば真空圧縮機2を介して減圧する事により、前記均質
膜内を通るアンモニヤ水の中のアンモニヤガスがシリコ
ンゴムチューブの均質膜からガスだけが分離し真空圧縮
機2に吸引される。この際チューブ内のアンモニヤ冷媒
水からアンモニヤ液が蒸発し、ガスとなるので蒸発潛熱
を奪うことになり、アンモニヤ冷媒水は清水若しくは希
アンモニヤ水溶液となると同時に温度が降下し、負荷側
の必要な利用温度迄降下する。均等膜チューブは細管結
束多数管であるため冷媒水は微細な液柱集束に分散する
ため、均一に蒸発による冷却が連続に行われる。
[Function] The gas permeable membrane that constitutes the microtube has a mechanism of a homogeneous membrane, a porous membrane, and a heterogeneous membrane, but the permeable membrane of the present application should have the characteristics of a homogeneous membrane. It is better to use a flexible microtube. Such a homogeneous membrane is composed of dissolution of gas molecules into the membrane at the membrane interface, diffusion of dissolved gas molecules in the membrane, and dissolution of gas molecules from the membrane. . Then, a bundle of microtubes of the homogeneous permeable membrane of the silicone rubber membrane is constructed in a shell-and-tube type, the water-soluble refrigerant liquid is circulated in the tube, and the shell in the tube is decompressed by, for example, the vacuum compressor 2. As a result, only the ammonia gas in the ammonia water passing through the homogeneous membrane is separated from the homogeneous membrane of the silicone rubber tube and sucked into the vacuum compressor 2. At this time, the ammonia liquid evaporates from the ammonia refrigerant water in the tube and becomes a gas, so the evaporation heat is removed, and the ammonia refrigerant water becomes fresh water or dilute ammonia solution at the same time and the temperature drops, so that the load side needs to use it. Fall to temperature. Since the uniform membrane tube is a large number of thin tube bundles, the refrigerant water is dispersed in a fine liquid column converging, so that cooling by uniform evaporation is continuously performed.

【0007】そして前記マイクロチューブより送出され
た冷却水は空調用その他の冷却負荷に利用され、その後
該熱交換後の冷却戻り水は吸収器に導入され、一方圧縮
機により圧縮されたアンモニヤガスは吸収器に噴射し、
前記戻り水にアンモニヤガスは吸収されアンモニヤ冷媒
水となり、再びポンプによって蒸発器に送られマイクロ
チューブ内に流入する。尚、前記蒸発器はマイクロチュ
ーブで細いチューブ状に分散し、3000本〜6000
本に分けられ、安水がその数だけ細い分散流となりマイ
クロチューブ均質膜を境界として結束されシエル中に収
納しその周囲を真空圧縮機により吸引される減圧密封空
間を構成する構成が良い。
The cooling water sent out from the microtube is used for air conditioning and other cooling loads, after which the cooling return water after the heat exchange is introduced into the absorber, while the ammonia gas compressed by the compressor is Jet into the absorber,
The ammonia gas is absorbed by the return water to become ammonia refrigerant water, which is again sent to the evaporator by the pump and flows into the microtube. The evaporator is a microtube dispersed in a thin tube shape, and 3000 to 6000 pieces are dispersed.
It is preferable to construct a reduced pressure sealed space in which the fine water is divided into books and becomes a thin dispersion flow corresponding to that number, is bound together with a microtube homogeneous membrane as a boundary, is housed in a shell, and the periphery thereof is sucked by a vacuum compressor.

【0008】従来の冷却機冷水装置は冷媒と被冷却水は
隔絶(パイプ)されて冷媒サイクルと被冷却水とは一緒
にならないが本発明は冷媒(アンモニヤ)と被冷却水は
混合溶解し、均質膜からなるマイクロチューブ内におか
れている点が大きく異なる。そして該均質膜により脱気
分離されたアンモニヤガスと冷却戻り水は吸収器で混合
される為に繰り返し循環が可能である。この場合前記蒸
発器を出た冷水が清水迄分離した場合は0℃以上である
為に冷房用冷却水として使用出来、又、アンモニヤが残
留溶解しているアンモニヤ水である場合は0℃以下の温
度の冷凍作用を行う事ができるものである。
In the conventional chiller cooling water device, the refrigerant and the water to be cooled are isolated (pipe) and the refrigerant cycle and the water to be cooled are not combined, but the present invention mixes and dissolves the refrigerant (ammonia) and the water to be cooled, It is greatly different in that it is placed in a microtube composed of a homogeneous membrane. The ammonia gas degassed and separated by the homogeneous membrane and the cooling return water are mixed in the absorber so that they can be repeatedly circulated. In this case, when the cold water discharged from the evaporator is 0 ° C. or more when it is separated into fresh water, it can be used as cooling water for cooling, and when it is the ammonia water in which residual ammonia is dissolved, the temperature is 0 ° C. or less. It is capable of freezing the temperature.

【0009】又、従来の、アンモニヤ冷媒を用いた冷凍
サイクルにおいては蒸発器により分離したアンモニヤガ
スは凝縮後膨張弁により、密閉負荷冷水回路とアンモニ
ヤ冷媒との間に密閉回路の熱交換器が必要となり構成が
煩雑化するが、本発明は多数の均質膜マイクロチューブ
が透過蒸発器となり、水、アンモニヤの分離を合わせ持
つ作用を行っている為に構成が極めて簡単化する。又分
離したアンモニヤガスを冷却戻り水に吸収させる吸収器
は図2に示すように本均質膜マイクロチューブをそのま
まアンモニヤのガスの流れを逆にすることによって同じ
タイプの膜熱交換器を用いる事ができる為に製造上及び
熱バランス的に有利である。尚、図2の吸収器は蒸発器
のマイクロチューブと同じであるがガスの流れが逆とな
り、マイクロチューブの外径側より均質膜を介して内部
に浸透するアンモニヤ吸収構造となる。
Further, in the conventional refrigeration cycle using the ammonia refrigerant, the ammonia gas separated by the evaporator needs a heat exchanger in a closed circuit between the closed load cold water circuit and the ammonia refrigerant by the expansion valve after the condensation. Although the structure becomes complicated, the present invention greatly simplifies the structure because a large number of homogeneous membrane microtubes serve as permeation evaporators and have a function of separating water and ammonia. As shown in FIG. 2, the absorber for absorbing the separated ammonia gas into the cooling return water may use the same type of membrane heat exchanger by reversing the gas flow of the ammonia as it is in the homogeneous membrane microtube. Since it is possible, it is advantageous in terms of manufacturing and heat balance. The absorber shown in FIG. 2 is the same as the microtube of the evaporator, but the flow of gas is reversed, and the absorber has an ammonia absorbing structure that penetrates from the outer diameter side of the microtube to the inside through the homogeneous membrane.

【0010】[0010]

【実施例】以下図面に基づいて本発明の実施例を説明す
る。ただしこの実施例に記載されている構成部品の寸
法、材質、形状、その相対配置などは特に特定的な記載
がない限りは、この発明の範囲をそれのみに限定する趣
旨ではなく、単なる説明例に過ぎない。図1は本発明の
実施例に係る冷却装置を示すフローシート図である。1
はシエルエンドチューブ式の蒸発器(冷水器)で、後記
する均質膜で形成した多数本のマイクロチューブ3の結
束体をシエル1Aの両端に樹脂板12を固着してチュー
ブ周囲空間3Aを気密的な密閉空間に維持し、該樹脂板
12を包被するシエル端板13A、13B内空間に前記
マイクロチューブ3を開口して構成する。
Embodiments of the present invention will be described below with reference to the drawings. However, unless otherwise specified, the dimensions, materials, shapes, relative positions, etc. of the components described in this embodiment are not intended to limit the scope of the present invention thereto, but merely illustrative examples. Nothing more than. FIG. 1 is a flow sheet diagram showing a cooling device according to an embodiment of the present invention. 1
Is a shell-end tube type evaporator (chiller), and a bundle of a large number of microtubes 3 formed by a homogeneous film described later is fixed to both ends of the shell 1A with resin plates 12 to hermetically seal the tube surrounding space 3A. The microtubes 3 are opened in the inner spaces of the shell end plates 13A and 13B that cover the resin plate 12 while maintaining the closed space.

【0011】そして本マイクロチューブ3は、ケイ素と
酸素の結合の分子構造をもつシリコンゴム膜で形成す
る。本シリコンゴム膜には孔はなく、ガスとシリコンと
の化学的な関係により、ガスがシリコンゴムの中にもぐ
り込み、移動し、通過していくためにアンモニヤ水から
アンモニヤガスだけが真空外部に抜ける性質をもってい
る。そして本マイクロチューブ3の外径は例えば250
μm、320μm、320μmで夫々の内径は170μ
m、200μm、170μmである。従って膜厚は夫々
40μm、60μm、80μmである。このマイクロチ
ューブ3は例えば3000本、6000本となり、その
有効膜面積は夫々0.3m2、0.74m2である。
The microtube 3 is formed of a silicon rubber film having a molecular structure of a bond between silicon and oxygen. There is no hole in this silicone rubber film, and because of the chemical relationship between gas and silicon, gas penetrates into the silicone rubber, moves, and passes through. It has the property of falling out. The outer diameter of the micro tube 3 is, for example, 250
μm, 320 μm, 320 μm, each inner diameter is 170 μm
m, 200 μm, 170 μm. Therefore, the film thickness is 40 μm, 60 μm, and 80 μm, respectively. The microtube 3 is for example 3000, it is 6,000, the effective membrane area are each 0.3 m 2, a 0.74 m 2.

【0012】そして前記マイクロチューブ3の周囲空間
3Aは、真空圧縮機2の吸入側に接続され、該周囲空間
3Aをほぼ真空状態に維持する。又真空圧縮機2の吐出
側は熱交換器15を介して吸収器5内に連通し、該圧縮
機2により圧縮されたアンモニヤガスが吸収器5内に放
出可能に構成する。ここに真空圧縮機2と特定したこと
は真空ポンプだけではなく、又ガス圧縮機のみの性能で
はなく、同時に真空を果し、圧縮を果す役目を持つもの
である。又真空圧縮機のタイプとしては液シール式の所
謂スクリュー型圧縮機や、トロコイド型圧縮機の容積型
圧縮機が適する。一台の真空圧縮機の他に真空ポンプを
低段に圧縮機を高段側にシリーズに組合わすこともでき
る。又前記圧縮機2の出口側は、負荷側熱交換器7を介
して吸収器5と連結され、負荷熱交換器7で奪熱後の戻
り冷却水を吸収器5内で前記アンモニヤガスと接触可能
に構成する。そして前記接触によりアンモニヤガスが溶
解したアンモニヤ冷媒水は、ポンプ9を介して蒸発器1
の入口側に導かれる。尚、8は前記吸収器5底部に滞留
したアンモニヤ冷媒水をポンプ16を介して再度圧縮ア
ンモニヤガスと気液接触させる戻し管である。また、冷
媒としてメチルアミン、吸収剤として水のメチルアミン
水溶液も使用できる。更に冷媒にメチルアルコールを、
吸収剤に臭化リチューム水溶液も可能である。
The surrounding space 3A of the microtube 3 is connected to the suction side of the vacuum compressor 2 to maintain the surrounding space 3A in a substantially vacuum state. The discharge side of the vacuum compressor 2 is communicated with the inside of the absorber 5 via the heat exchanger 15 so that the ammonia gas compressed by the compressor 2 can be released into the absorber 5. What is specified here as the vacuum compressor 2 is not only the performance of not only the vacuum pump but also the gas compressor, but it has the role of simultaneously achieving vacuum and performing compression. Further, a liquid seal type so-called screw type compressor or a trochoid type positive displacement type compressor is suitable as the type of the vacuum compressor. In addition to one vacuum compressor, it is possible to combine a vacuum pump in the low stage and a compressor in the high stage in series. Further, the outlet side of the compressor 2 is connected to the absorber 5 via the load side heat exchanger 7, and the return cooling water, which has been deprived of heat by the load heat exchanger 7, comes into contact with the ammonia gas in the absorber 5. Configure as possible. Then, the ammonia refrigerant water in which the ammonia gas is dissolved by the contact is passed through the pump 9 to the evaporator 1
Will be led to the entrance side of. Reference numeral 8 is a return pipe for bringing the ammonia refrigerant water accumulated at the bottom of the absorber 5 into gas-liquid contact with the compressed ammonia gas again via the pump 16. Further, methylamine as a refrigerant and a methylamine aqueous solution of water as an absorbent can also be used. In addition, methyl alcohol as a refrigerant,
The absorbent may be an aqueous solution of lithium bromide.

【0013】次にかかる実施例の動作を説明する。蒸発
器1入口側のシエル端板13A内空間よりマイクロチュ
ーブ3内に導入されたアンモニヤ冷媒水はポンプ9によ
る水圧が印加されるとともに、その周囲空間3Aが真空
圧縮機2により吸引されて真空下におかれる事によりア
ンモニヤ水中に溶解しているアンモニヤガスはマイクロ
チューブ3の均質膜をくぐり抜け圧縮機2に吸引されて
圧縮される。そして該圧縮されたアンモニヤガスは導管
10を通り、熱交換器15を介して吸収器5に導入され
る。
Next, the operation of this embodiment will be described. The ammonia refrigerant water introduced into the micro tube 3 from the inner space of the shell end plate 13A on the inlet side of the evaporator 1 is applied with the water pressure by the pump 9, and the surrounding space 3A is sucked by the vacuum compressor 2 to be vacuumed. The ammonia gas dissolved in the ammonia water by being put through the gas passes through the homogeneous membrane of the microtube 3 and is sucked into the compressor 2 to be compressed. The compressed ammonia gas then passes through the conduit 10 and is introduced into the absorber 5 via the heat exchanger 15.

【0014】一方アンモニヤガスが脱気分離されたチュ
ーブ3内のアンモニヤ水溶液はマイクロチューブ3を通
過する過程においてアンモニヤガスが水中から蒸発しそ
の際蒸発潛熱を水から奪いながら冷却し、そのアンモニ
ヤ分圧が飽和温度に達する迄降下する。マイクロチュー
ブ3は3000本、6000本の細管であるため、水溶
液を微小細柱状に分散するため、均一にガスの脱気が行
われ、効率のよい冷媒ガス蒸発が行われる。そして前記
チューブ3内で例えば7℃前後に冷却された冷却水は蒸
発器1の出口側シェル端板内空間13Bより負荷熱交換
器6により奪熱されて12℃前後まで上昇した後、その
戻り冷却水が吸収器5に導入され、アンモニヤ圧縮ガス
と気液接触しながらアンモニヤが溶解してアンモニヤ冷
媒水となり、吸収器5の底部に滞留する。そして該吸収
器5底部に滞留したアンモニヤ冷媒水4はポンプ16及
び戻り管8を介して再度アンモニヤガスと気液接触させ
その吸収効率を高める。一方吸収器5底部に滞留したア
ンモニヤ冷媒水はポンプ9により再び蒸発器1に入り前
記動作を繰り返しながら再循環する。
On the other hand, the ammonia aqueous solution in the tube 3 from which the ammonia gas has been deaerated and separated is cooled while removing the heat of vaporization from the water as the ammonia gas evaporates from the water in the process of passing through the microtube 3. Falls until reaches the saturation temperature. Since the microtubes 3 are 3000 or 6000 thin tubes, the aqueous solution is dispersed in the form of fine columns, so that the gas is uniformly degassed and the refrigerant gas is vaporized efficiently. Then, the cooling water cooled to, for example, about 7 ° C. in the tube 3 is deprived of heat by the load heat exchanger 6 from the outlet side shell end plate inner space 13B of the evaporator 1 and rises to about 12 ° C., and then returns. The cooling water is introduced into the absorber 5, and the ammonia is dissolved into vapor of the ammonia compressed while making gas-liquid contact with the compressed ammonia gas to become the ammonia refrigerant water, and stays at the bottom of the absorber 5. Then, the ammonia refrigerant water 4 accumulated at the bottom of the absorber 5 is again brought into gas-liquid contact with the ammonia gas through the pump 16 and the return pipe 8 to enhance its absorption efficiency. On the other hand, the ammonia refrigerant water accumulated at the bottom of the absorber 5 enters the evaporator 1 again by the pump 9 and is recirculated while repeating the above operation.

【0015】図2は本発明の他の実施例で、吸収器5が
蒸発器1と同一構造の機器を使用している。即ち圧縮機
により圧縮された高圧アンモニヤガスがマイクロチュー
ブ3の外側より均質膜を通してチューブ3内の戻り冷却
水に吸収されるよう構成している。尚11はアンモニヤ
冷媒水輸送用の膨張タンクで、該タンク11より必要量
のアンモニヤ冷媒水を蒸発器1側に供給する。尚他の系
の動作及び符号は図1と同様な為にその説明は省略す
る。
FIG. 2 shows another embodiment of the present invention, in which the absorber 5 has the same structure as the evaporator 1. That is, the high-pressure ammonia gas compressed by the compressor is absorbed from the outside of the microtube 3 through the homogeneous membrane into the return cooling water in the tube 3. Reference numeral 11 denotes an expansion tank for transporting ammonia refrigerant water, and a necessary amount of ammonia refrigerant water is supplied from the tank 11 to the evaporator 1 side. Since the operation and reference numerals of other systems are the same as those in FIG. 1, their explanations are omitted.

【0016】従って前記いずれの実施例においても本発
明の作用を円滑に達成し得るとともに真空圧縮機2の圧
縮量、及びポンプ9によるアンモニヤ冷媒水の流速の制
御によりマイクロチューブ3内のアンモニヤ冷媒水濃度
を調整する事により蒸発器1の出口の温度を0℃以下若
しくは0℃以上に設定する事が出来る。
Therefore, in any of the above-described embodiments, the operation of the present invention can be smoothly achieved, and the amount of compression of the vacuum compressor 2 and the flow rate of the ammonia refrigerant water by the pump 9 are controlled to control the ammonia refrigerant water in the microtube 3. By adjusting the concentration, the temperature at the outlet of the evaporator 1 can be set to 0 ° C or lower or 0 ° C or higher.

【0017】[0017]

【発明の効果】以上記載のごとく本発明によればアンモ
ニヤ冷媒水その他の冷媒ガス水溶液中の冷媒ガスを脱気
蒸発且つ分離させ、その蒸発潛熱で水又は水溶液を冷却
することができる。特に本発明においてはシリコーン膜
その他の均質膜のマイクロチューブ3によって蒸発と分
離が同時に行われ夫々別個の機器を使う事が不要になっ
た。又吸収式冷凍機のように再生−凝固−蒸発−吸収の
工程が真空圧縮機2を使う事によって蒸発と吸収だけで
冷水を得ることができた為に構成が極めて簡単化する。
又前記真空圧縮機の真空度の調整及びマイクロチュー
ブ内の冷媒水溶液の通過速度の調整により0℃以下又は
0℃以上の温度の冷却水を自在に求める事ができ、温度
制御も容易である。又フロンを使用せずにアンモニヤ水
を使うものであるから環境的にも好ましく、又従来のア
ンモニヤ冷凍サイクルの様にアンモニヤ液を直接圧縮膨
張させるものでないために、その危険性は大幅に緩和さ
れる。等の種々の著効を有す。
As described above, according to the present invention, the refrigerant gas in the ammonia refrigerant water or other aqueous refrigerant gas solution can be degassed and evaporated, and the evaporation heat can cool the water or the aqueous solution. In particular, in the present invention, the evaporation and the separation are simultaneously performed by the microtube 3 having a homogeneous film such as a silicone film, so that it is not necessary to use separate devices for each. Further, as in the absorption type refrigerator, the process of regeneration-coagulation-evaporation-absorption makes it possible to obtain cold water only by evaporation and absorption by using the vacuum compressor 2, so that the structure is extremely simplified.
Further, by adjusting the degree of vacuum of the vacuum compressor and the passage speed of the aqueous refrigerant solution in the microtube, cooling water having a temperature of 0 ° C. or lower or 0 ° C. or higher can be freely obtained, and temperature control is easy. It is also environmentally preferable because it uses ammonia water without using CFCs, and because it does not directly compress and expand the ammonia liquid like the conventional ammonia refrigeration cycle, its risk is greatly mitigated. It It has various remarkable effects.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る冷却装置を示すフローシ
ート図である。
FIG. 1 is a flow sheet diagram showing a cooling device according to an embodiment of the present invention.

【図2】本発明の他の実施例に係る冷却装置を示すフロ
ーシート図である。
FIG. 2 is a flow sheet diagram showing a cooling device according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 蒸発器 2 真空圧縮機 3 マイクロチューブ 3A 周囲空間 5 吸収器 9 ポンプ 1 Evaporator 2 Vacuum Compressor 3 Micro Tube 3A Surrounding Space 5 Absorber 9 Pump

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 気体のみが透過可能な均質膜からなるマ
イクロチューブ内に水溶冷媒液を導通すると共に、該チ
ューブ外の周囲空間を減圧下に維持し、前記均質膜を介
してチューブ内の冷媒ガスを脱気分離させ、該冷媒ガス
の蒸発潛熱を利用してチューブ内に残存している水若し
くは水溶液を冷却する事を特徴とするマイクロチューブ
式冷却方法
1. A water-refrigerant liquid is introduced into a microtube made of a homogeneous membrane that allows only gas to permeate, and the surrounding space outside the tube is maintained under reduced pressure, and the refrigerant in the tube is passed through the homogeneous membrane. A microtube cooling method characterized in that the gas is degassed and separated, and the heat or vaporization of the refrigerant gas is used to cool the water or aqueous solution remaining in the tube.
【請求項2】 気体のみが透過可能な均質膜からなるマ
イクロチューブ内に水溶冷媒液を導通すると共に、該チ
ューブ周囲空間を真空圧縮機の吸込側に連絡し、チュー
ブ内の冷媒ガスを脱気分離可能に構成した事を特徴とす
るマイクロチューブ式冷却装置
2. A water-refrigerant liquid is introduced into a microtube made of a homogeneous membrane that allows only gas to pass therethrough, and the space around the tube is connected to the suction side of a vacuum compressor to degas the refrigerant gas in the tube. Microtube cooling device characterized by being separable
【請求項3】 前記マイクロチューブより分離した冷媒
ガスを真空圧縮機を介して冷媒ガス吸収器に導通させる
冷媒ガスサイクルと、前記チューブ内で冷媒ガスの脱気
分離により奪熱され、負荷と熱交換される水若しくは水
溶液の冷水サイクルとを、前記吸収器に合流させて成る
請求項2記載のマイクロチューブ式冷却装置。
3. A refrigerant gas cycle in which refrigerant gas separated from the microtube is conducted to a refrigerant gas absorber via a vacuum compressor, and heat is removed by deaeration and separation of the refrigerant gas in the tube, so that load and heat are absorbed. The microtube type cooling device according to claim 2, wherein a cold water cycle of water or an aqueous solution to be exchanged is merged with the absorber.
【請求項4】 前記吸収器を均質膜を用いたマイクロチ
ューブ群により構成し、前記マイクロチューブ内に、負
荷と熱交換後の水若しくは水溶液を導通させ、該チュー
ブ群周囲空間に前記真空圧縮機で圧縮された冷媒ガスを
吹き込み、該冷媒ガスを均質膜を介してマイクロチュー
ブ内の水若しくは水溶液に吸収させる事を特徴とする請
求項3記載のマイクロチューブ式冷却装置。
4. The absorber is composed of a group of microtubes using a homogeneous membrane, and water or an aqueous solution after heat exchange with a load is conducted into the microtubes, and the vacuum compressor is provided in a space around the tube group. 4. The microtube type cooling device according to claim 3, wherein the refrigerant gas compressed by the method is blown into the water or the aqueous solution in the microtube to absorb the refrigerant gas through the homogeneous film.
【請求項5】 前記冷媒ガスにアンモニヤ又はメチルア
ミン、又マイクロチューブ内を通過する水溶液にアンモ
ニヤ水又メチルアミン水溶液を夫々用いてなる請求項2
記載のマイクロチューブ式冷却装置。
5. Ammonia or methylamine is used as the refrigerant gas, and ammonia water or methylamine aqueous solution is used as the aqueous solution passing through the microtube, respectively.
The described microtube type cooling device.
JP20691793A 1993-07-30 1993-07-30 Micro wave type cooling method and its device Pending JPH0743039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20691793A JPH0743039A (en) 1993-07-30 1993-07-30 Micro wave type cooling method and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20691793A JPH0743039A (en) 1993-07-30 1993-07-30 Micro wave type cooling method and its device

Publications (1)

Publication Number Publication Date
JPH0743039A true JPH0743039A (en) 1995-02-10

Family

ID=16531225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20691793A Pending JPH0743039A (en) 1993-07-30 1993-07-30 Micro wave type cooling method and its device

Country Status (1)

Country Link
JP (1) JPH0743039A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001018465A1 (en) * 1999-09-03 2001-03-15 Daikin Industries, Ltd. Refrigerating device
EP1213548A4 (en) * 1999-09-03 2003-06-04 Daikin Ind Ltd HEAT PUMP

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001018465A1 (en) * 1999-09-03 2001-03-15 Daikin Industries, Ltd. Refrigerating device
JP2001074334A (en) * 1999-09-03 2001-03-23 Daikin Ind Ltd Refrigeration equipment
EP1213548A4 (en) * 1999-09-03 2003-06-04 Daikin Ind Ltd HEAT PUMP
US6708517B1 (en) 1999-09-03 2004-03-23 Daikin Industries, Ltd. Heat pump
US6786059B1 (en) 1999-09-03 2004-09-07 Daikin Industries, Ltd. Refrigeration system

Similar Documents

Publication Publication Date Title
CN100541052C (en) Thermal equipment and methods of operation
CN101175898B (en) System and method for managing water content in a fluid
US4152901A (en) Method and apparatus for transferring energy in an absorption heating and cooling system
US4467621A (en) Fluid/vacuum chamber to remove heat and heat vapor from a refrigerant fluid
KR100750790B1 (en) Freezing apparatus installation method
AU618509B2 (en) Absorption refrigeration method and apparatus
JP2001074322A (en) Refrigeration equipment
CN113544446B (en) Climate control system with absorption chiller
WO2002093081A1 (en) Dehumidifier
JP5290776B2 (en) Absorption refrigeration system
CN113654123A (en) Low-temperature regeneration heat and humidity independent treatment air conditioning system driven by two-stage compression heat pump
KR101593815B1 (en) Apparatus and method for dehumidifier
JPH0743039A (en) Micro wave type cooling method and its device
JP6127291B2 (en) Absorption refrigerator
JP2023500920A (en) Adsorption chiller or heat pump with distribution of refrigerant in the liquid phase and method for operating the adsorption chiller or heat pump
US20050133195A1 (en) Heat exchanger using water liquid and vapor phases transformation to enhance heat exchange performance
JP2003144855A (en) Membrane separation device and absorption refrigerator utilizing membrane separation
JP2000356481A (en) Heat exchanger, heat pump and dehumidifier
AU699349B2 (en) Process and apparatus for vapor pressure enhancement
Inoue et al. Development of a compact absorption chiller using hydrophobic flat sheet membrane
JPS62117613A (en) Method and apparatus for dehumidification
JPH03282167A (en) Absorptive type freezer
JPS591966A (en) Absorption type refrigerator
JP2003014332A (en) Absorption heat pump
JPH06257897A (en) Water content removing device in refrigerant