JPH0738347B2 - Gas insulated electromagnetic induction equipment - Google Patents
Gas insulated electromagnetic induction equipmentInfo
- Publication number
- JPH0738347B2 JPH0738347B2 JP62197369A JP19736987A JPH0738347B2 JP H0738347 B2 JPH0738347 B2 JP H0738347B2 JP 62197369 A JP62197369 A JP 62197369A JP 19736987 A JP19736987 A JP 19736987A JP H0738347 B2 JPH0738347 B2 JP H0738347B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- refrigerant
- electromagnetic induction
- liquid refrigerant
- tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Transformer Cooling (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、ガス絶縁電磁誘導機器に関し、とりわけ、
絶縁性の液体冷媒と非凝縮性の絶縁ガスとを封入した容
槽内に電磁誘導機器本体を収納して、その冷却および絶
縁を行うガス絶縁電磁誘導機器に関するものである。The present invention relates to a gas-insulated electromagnetic induction device, and more particularly,
The present invention relates to a gas-insulated electromagnetic induction device that cools and insulates a main body of an electromagnetic induction device housed in a vessel filled with an insulating liquid refrigerant and a non-condensable insulating gas.
従来、例えばガス絶縁変圧器のような電磁誘導機器が高
電圧、大容量になると、絶縁媒体として用いているSF6
ガス単独では充分な冷却が行えないため、冷却媒体とし
て絶縁性の液体冷媒が用いられる。Conventionally, an electromagnetic induction device a high voltage such as a gas insulated transformer, at a large capacity, SF is used as insulating medium 6
Insulating liquid refrigerant is used as the cooling medium because the gas alone cannot sufficiently cool the gas.
この液体冷媒に対するSF6ガスの溶解特性は、第3図に
示す傾向を示し、低温になるほどSF6ガスが液体冷媒中
に多く溶け込み、機器タンク内のガス分子密度が低下す
る。また、SF6ガス分子密度と絶縁耐力との関係は、第
4図に示すように、ガス分子密度の低下とともに絶縁耐
力が低下することが知られている。The dissolution characteristics of SF 6 gas in this liquid refrigerant show the tendency shown in FIG. 3, and as the temperature decreases, more SF 6 gas dissolves in the liquid refrigerant, and the gas molecule density in the equipment tank decreases. As for the relationship between SF 6 gas molecular density and dielectric strength, it is known that the dielectric strength decreases as the gas molecular density decreases, as shown in FIG.
従つて、従来は冷媒の温度が最低となる場合のガス分子
密度から決まる絶縁耐力に合わせて絶縁設計を行つてい
た。Therefore, conventionally, the insulation design is performed according to the dielectric strength determined by the gas molecule density when the temperature of the refrigerant is the lowest.
上記のような従来のガス絶縁電磁誘導機器では、冷媒温
度が高い通常の運転中の場合には必要以上の絶縁耐力を
有しているにもかかわらず、絶縁耐力が最も低い場合に
合わせて絶縁設計されているので、絶縁寸法が大きくな
り、従つて機器が大形化するという問題点があつた。In the conventional gas-insulated electromagnetic induction equipment as described above, the insulation resistance is higher than necessary during normal operation with a high refrigerant temperature, but insulation is performed according to the case where the insulation strength is the lowest. Since it is designed, there is a problem that the insulation size becomes large, and thus the device becomes large.
この発明は、かかる問題点を解決するためになされたも
ので、冷媒温度が低い場合の絶縁耐力を向上させ、運転
中の冷媒温度が高い場合の絶縁耐力に近づけ、もつて機
器を小形化することができるガス絶縁電磁誘導機器を得
ることを目的とする。The present invention has been made to solve such a problem, and improves the dielectric strength when the refrigerant temperature is low, approaches the dielectric strength when the refrigerant temperature is high during operation, and thus downsizes the device. An object is to obtain a gas-insulated electromagnetic induction device that can be used.
この発明に係るガス絶縁電磁誘導機器は、液体冷媒を回
収する冷媒容器と、機器タンクから液体冷媒を冷媒容器
に排出し、かつ、冷媒容器から液体冷媒を機器タンクに
供給する冷媒給排装置と、冷媒容器から機器タンクへガ
スを返送するガス返送装置とを備えている。A gas-insulated electromagnetic induction device according to the present invention, a refrigerant container for collecting a liquid refrigerant, a refrigerant supply / discharge device for discharging the liquid refrigerant from the device tank to the refrigerant container, and supplying the liquid refrigerant from the refrigerant container to the device tank. , A gas return device for returning gas from the refrigerant container to the equipment tank.
この発明においては、運転中は機器タンク内の発熱体、
例えば電磁誘導機器本体を冷却するための液体冷媒が必
要であるが、運転停止した場合には機器タンク内に発熱
体がなくなり、冷却のための液体冷媒は不要となる。そ
して、機器タンク内の温度が低下すれば、SF6ガスが液
体冷媒に多く溶け込むことになるので、溶け込みを防ぐ
ため液体冷媒を運転停止中は機器タンクの外に移すこと
にする。In the present invention, the heating element in the equipment tank during operation,
For example, a liquid refrigerant for cooling the main body of the electromagnetic induction device is required, but when the operation is stopped, there is no heating element in the device tank, and the liquid refrigerant for cooling is unnecessary. Then, if the temperature inside the equipment tank decreases, a large amount of SF 6 gas will dissolve in the liquid refrigerant, so in order to prevent the dissolution, the liquid refrigerant will be moved to the outside of the equipment tank while the operation is stopped.
これにより、機器タンク内の温度が低下した場合でも、
機器タンク内のガス分子密度を低下させることがなくな
り、絶縁耐力を冷媒温度が高い場合のそれに近い値に保
持できることになる。As a result, even if the temperature in the equipment tank drops,
The gas molecule density in the equipment tank is not reduced, and the dielectric strength can be maintained at a value close to that when the refrigerant temperature is high.
第1図はこの発明の一実施例を示し、ここでは、送液冷
却方式のガス絶縁電磁誘導機器を例にとつている。図に
おいて、液体冷媒(1)は、送液ポンプ(2)によつて
熱交換器(3)に送られた後、液滴(4)として電磁誘
導機器本体(5)を冷却する。FIG. 1 shows an embodiment of the present invention, in which a liquid-cooled gas-insulated electromagnetic induction device is taken as an example. In the figure, the liquid refrigerant (1) is sent to the heat exchanger (3) by the liquid sending pump (2) and then cools the electromagnetic induction device body (5) as droplets (4).
この実施例では、機器タンク(6)の外部に冷媒回収の
ため冷媒容器(7)と冷媒給排装置(8)ならびにガス
返送装置(9)を設けている。(10)はヒータで、外部
電熱源、スチーム等による容器内の冷媒温度保持要素で
ある。In this embodiment, a refrigerant container (7), a refrigerant supply / discharge device (8) and a gas returning device (9) are provided outside the equipment tank (6) for refrigerant recovery. (10) is a heater, which is an element for keeping the temperature of the refrigerant in the container by an external electric heat source, steam or the like.
以上の構成により、機器タンク(6)内温度がある規定
の値(T1)以下に低下すれば、冷媒給排装置(8)によ
り、機器タンク(6)内の液体冷媒(1)を冷媒容器
(7)に移す。さらに移し終わつた液体冷媒(1)に溶
け込んだSF6ガスを、ガス返送装置(9)により、脱ガ
スして機器タンク(6)内へ送り返す。With the above configuration, when the temperature inside the equipment tank (6) falls below a certain value (T 1 ), the refrigerant supply / discharge device (8) causes the liquid refrigerant (1) in the equipment tank (6) to be cooled. Transfer to container (7). Further, SF 6 gas dissolved in the liquid refrigerant (1) which has been transferred is degassed by the gas returning device (9) and sent back into the equipment tank (6).
また、運転再開した場合、機器タンク(6)内温度が温
度(T1)まで達したとき、冷媒給排装置(8)により、
冷媒容器(7)の液体冷媒(1)を機器タンク(6)内
へ返す。このとき、ヒータ(10)により、あらかじめ冷
媒温度をある一定の値に保持しておけば、機器タンク
(6)へ返送した液体冷媒(1)がSF6ガスを吸収する
ことなく、すみやかに絶縁耐力の高い状態での冷却に移
行することができる。Further, when the operation is restarted, when the temperature inside the equipment tank (6) reaches the temperature (T 1 ), the refrigerant supply / discharge device (8)
The liquid refrigerant (1) in the refrigerant container (7) is returned into the equipment tank (6). At this time, if the temperature of the refrigerant is kept at a certain value in advance by the heater (10), the liquid refrigerant (1) returned to the equipment tank (6) will be insulated immediately without absorbing SF 6 gas. It is possible to shift to cooling with a high yield strength.
以上の動作における温度とガス分子密度との関係は第2
図に実線で示すようになり、機器タンク(6)内の温度
がT1以下になつた場合でもガス分子密度が(a)で示す
ように低下せず、絶縁耐力をT1以上の温度のときの同程
度に保持できる。これに対し、従来装置では鎖線(b)
で示すように、対策を施す技がなかつたのである。The relationship between temperature and gas molecule density in the above operation is the second
As shown by the solid line in the figure, the gas molecular density does not decrease as shown in (a) even when the temperature in the equipment tank (6) becomes T 1 or lower, and the dielectric strength of the temperature above T 1 It can be held at the same level as when. In contrast, in the conventional device, the chain line (b)
As shown in, there is no skill to take measures.
冷媒給排装置(8)としては、例えば送液ポンプが考え
られ、ガス返送装置(9)としては、例えば圧縮機ある
いは真空ポンプが考えられる。また、ガス返送装置とし
て考えられる圧縮機あるいは真空ポンプは冷媒給排装置
として兼用することも考えられる。The refrigerant supply / discharge device (8) may be, for example, a liquid feed pump, and the gas return device (9) may be, for example, a compressor or a vacuum pump. It is also possible that the compressor or vacuum pump, which is considered as a gas returning device, may also be used as a refrigerant supply / discharge device.
なお、ここでは送液冷却方式を例にとつたが、その他の
冷却方式、例えば凝縮性冷媒を用いた蒸発冷却方式にお
いても同様の効果が得られることは言うまでもない。It should be noted that, here, the liquid sending cooling method is taken as an example, but it goes without saying that the same effect can be obtained also in another cooling method, for example, an evaporative cooling method using a condensable refrigerant.
この発明は、以上の説明から明らかなように、液体冷媒
を給排する装置と、液体冷媒を回収する冷媒容器と、機
器タンクから液体冷媒を冷媒容器に排出し、かつ、冷媒
容器から液体冷媒を機器タンクに供給する冷媒給排装置
と、冷媒容器から機器タンクへガスを返送するガス返送
装置とを備えたことにより、ガス絶縁電磁誘導機器の運
転停止による絶縁耐力の低下を容易に防ぐことができ、
かつ、必要以上の絶縁設計をすることなくガス絶縁電磁
誘導機器を小形化できる。As is apparent from the above description, the present invention provides a device for supplying and discharging a liquid refrigerant, a refrigerant container for recovering the liquid refrigerant, a liquid refrigerant discharged from an equipment tank to the refrigerant container, and a liquid refrigerant from the refrigerant container. It is possible to easily prevent the deterioration of the dielectric strength due to the stoppage of the operation of the gas-insulated electromagnetic induction device by providing the refrigerant supply / discharge device for supplying the gas to the device tank and the gas return device for returning the gas from the refrigerant container to the device tank Can
Moreover, the gas-insulated electromagnetic induction device can be miniaturized without designing more insulation than necessary.
第1図はこの発明の一実施例の冷媒回路図、第2図は同
じく冷媒温度−ガス分子密度特性線図、第3図および第
4図は従来のガス絶縁電磁誘導機器のそれぞれSF6ガス
溶解度−温度特性線図およびSF6ガス絶縁耐力−ガス分
子密度特性線図である。 (1)……液体冷媒、(2)……送液ポンプ、(3)…
…熱交換器、(5)……機器本体、(6)……機器タン
ク、(7)……冷媒容器、(8)……冷媒給排装置、
(9)……ガス返送装置。FIG. 1 is a refrigerant circuit diagram of an embodiment of the present invention, FIG. 2 is a refrigerant temperature-gas molecular density characteristic diagram, and FIGS. 3 and 4 are SF 6 gases of conventional gas-insulated electromagnetic induction devices, respectively. FIG. 3 is a solubility-temperature characteristic diagram and an SF 6 gas dielectric strength-gas molecule density characteristic diagram. (1) ...... Liquid refrigerant, (2) ...... Liquid transfer pump, (3) ...
… Heat exchanger, (5) …… Device body, (6) …… Device tank, (7) …… Refrigerant container, (8) …… Refrigerant supply / discharge device,
(9) …… Gas return device.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 阿部 陽一郎 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 (72)発明者 中澤 宏司 兵庫県赤穂市天和651番地 三菱電機株式 会社赤穂製作所内 (72)発明者 博多 哲郎 兵庫県赤穂市天和651番地 三菱電機株式 会社赤穂製作所内 (56)参考文献 特開 昭59−23508(JP,A) 特開 昭58−202511(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoichiro Abe 3-3-22 Nakanoshima, Kita-ku, Osaka City, Osaka Prefecture Kansai Electric Power Co., Inc. (72) Inventor Koji Nakazawa 651 Tenwa, Ako City, Hyogo Mitsubishi Electric Corporation Ako Manufacturing Co., Ltd. (72) Inventor Tetsuro Hakata 651 Tenwa Tenwa, Ako City, Hyogo Prefecture Mitsubishi Electric Co., Ltd. (56) References JP 59-23508 (JP, A) JP 58-202511 (JP) , A)
Claims (3)
絶縁および冷却媒体として使用するガス絶縁電磁誘導機
器において、上記液体冷媒を回収する冷媒容器と、機器
タンクから上記液体冷媒を上記冷媒容器に排出し、か
つ、上記冷媒容器から上記液体冷媒を上記機器タンクに
供給する冷媒給排装置と、上記冷媒容器から上記機器タ
ンクへガスを返送するガス返送装置とを備えてなるガス
絶縁電磁誘導機器。1. A gas insulated electromagnetic induction device using an insulating liquid refrigerant and a non-condensable insulating gas as an insulating and cooling medium, wherein the liquid refrigerant is recovered from a refrigerant container for collecting the liquid refrigerant and an equipment tank. Gas insulation comprising a refrigerant supply / discharge device for discharging to a refrigerant container and supplying the liquid refrigerant from the refrigerant container to the device tank, and a gas returning device for returning gas from the refrigerant container to the device tank. Electromagnetic induction equipment.
給排装置およびガス返送装置として兼用した特許請求の
範囲第1項記載のガス絶縁電磁誘導機器。2. A gas-insulated electromagnetic induction device according to claim 1, wherein either the compressor or the vacuum pump is also used as a refrigerant supply / discharge device and a gas returning device.
能を備えた特許請求の範囲第1項記載のガス絶縁電磁誘
導機器。3. The gas-insulated electromagnetic induction device according to claim 1, wherein the refrigerant container has a refrigerant temperature holding function by an external heat source.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62197369A JPH0738347B2 (en) | 1987-08-07 | 1987-08-07 | Gas insulated electromagnetic induction equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62197369A JPH0738347B2 (en) | 1987-08-07 | 1987-08-07 | Gas insulated electromagnetic induction equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6441206A JPS6441206A (en) | 1989-02-13 |
JPH0738347B2 true JPH0738347B2 (en) | 1995-04-26 |
Family
ID=16373350
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62197369A Expired - Lifetime JPH0738347B2 (en) | 1987-08-07 | 1987-08-07 | Gas insulated electromagnetic induction equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0738347B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR960013032B1 (en) * | 1992-01-17 | 1996-09-25 | 미쯔비시 덴끼 가부시기가이샤 | Device for cooling transformer mounted on electric vehicle |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58202511A (en) * | 1982-05-21 | 1983-11-25 | Mitsubishi Electric Corp | Gas-insulated electrical apparatus |
US4437082A (en) * | 1982-07-12 | 1984-03-13 | Westinghouse Electric Corp. | Apparatus for continually upgrading transformer dielectric liquid |
-
1987
- 1987-08-07 JP JP62197369A patent/JPH0738347B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6441206A (en) | 1989-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4502286A (en) | Constant pressure type boiling cooling system | |
KR100368180B1 (en) | Triple-effect absorption heat exchanger combining the second cycle generator and the first cycle absorber | |
SE437199B (en) | DEVICE FOR HEALTH DERIVATION BY SEMICONDUCTORS INCLUDING A PRIOR THERMOSIFON PRINCIPLE WORKING THERAPY DIRECTIVES | |
US4260014A (en) | Ebullient cooled power devices | |
JPH0738347B2 (en) | Gas insulated electromagnetic induction equipment | |
US2164730A (en) | Refrigeration | |
JP4686149B2 (en) | Cooling system using slush nitrogen | |
US20020053420A1 (en) | Cooling apparatus and cooling method for heating elements | |
US2379278A (en) | Refrigeration | |
JPH0632409B2 (en) | Electronic device cooling device | |
JP2746938B2 (en) | Cooling device for power supply circuit board | |
JP2550162B2 (en) | Boiling cooler | |
JPS61131553A (en) | Immersion liquid cooling apparatus | |
JPH04196154A (en) | Semiconductor cooling device | |
JP2553157B2 (en) | Stationary induction equipment | |
JPS60102759A (en) | Immersion boiling-cooling device | |
US2797555A (en) | Absorption refrigeration | |
JPS62131506A (en) | Gas insulated electric apparatus | |
JPH07296986A (en) | X-ray tube device | |
JPS6228721Y2 (en) | ||
JPS59151479A (en) | Superconductive magnet device | |
JP2000084342A (en) | Hydrogen discharging device | |
JPS58115840A (en) | Liquid-cooling of electric power source device | |
JPH0437754B2 (en) | ||
JPH09264677A (en) | Ebullient cooler, heat exchanger equipped with ebullient cooler and ebullient cooling apparatus equipped with ebullient cooler |