JPH07333311A - Nuclear magnetic resonance device - Google Patents
Nuclear magnetic resonance deviceInfo
- Publication number
- JPH07333311A JPH07333311A JP6128535A JP12853594A JPH07333311A JP H07333311 A JPH07333311 A JP H07333311A JP 6128535 A JP6128535 A JP 6128535A JP 12853594 A JP12853594 A JP 12853594A JP H07333311 A JPH07333311 A JP H07333311A
- Authority
- JP
- Japan
- Prior art keywords
- measurement
- magnet
- measurement probe
- probe
- magnetic resonance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measuring Magnetic Variables (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、核磁気共鳴装置を構成
する超伝導磁石の内部構造および外形と、核磁気共鳴測
定に必要な測定プローブに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the internal structure and outer shape of a superconducting magnet which constitutes a nuclear magnetic resonance apparatus, and a measuring probe necessary for nuclear magnetic resonance measurement.
【0002】[0002]
【従来の技術】核磁気共鳴(Nuclear Magnetic Reson
ance;以下、NMRと略す)装置は、磁場中に置かれた
試料中の磁気モーメントを持つ核が、特定周波数のラジ
オ波を共鳴吸収する現象を測定するためのものであり、
試料の分子構造や物理的・化学的物性などの情報を得る
のに有用な測定装置である。2. Description of the Related Art Nuclear magnetic resonance (Nuclear Magnetic Reson)
ance; hereinafter abbreviated as NMR) device is for measuring a phenomenon in which a nucleus having a magnetic moment in a sample placed in a magnetic field resonates and absorbs a radio wave of a specific frequency,
It is a useful measurement device for obtaining information such as the molecular structure and physical / chemical properties of a sample.
【0003】NMR装置に必要な基本的構成は、試料,
磁場,ラジオ波の発信器および受信器であり、NMR測
定の概要は、磁石のつくる磁場中に試料を置き磁場中で
ラジオ波を照射しNMR現象で生じる磁化を測定するも
のである。このとき、ラジオ波の照射および磁化の測定
に必要なコイルを具えた測定プローブを磁場中に挿入
し、この測定プローブ内に試料を設置して測定が行われ
る。測定プローブは試料の性質や測定の目的によっては
交換を必要とすることがある。The basic structure required for an NMR apparatus is a sample,
It is a transmitter and receiver of a magnetic field and a radio wave, and the outline of NMR measurement is to measure a magnetization generated by an NMR phenomenon by placing a sample in a magnetic field created by a magnet and irradiating a radio wave in the magnetic field. At this time, a measurement probe equipped with a coil necessary for irradiation of radio waves and measurement of magnetization is inserted into a magnetic field, and a sample is placed in the measurement probe for measurement. The measurement probe may need to be replaced depending on the nature of the sample and the purpose of the measurement.
【0004】NMR測定はより強い磁場中で測定した方
がスペクトルの分解能や測定感度が良くなるため、現在
のNMR装置の磁石には、永久磁石や電磁石よりも高磁
場が得られる超伝導磁石を用いたものが広く使用されて
いる。また、超伝導磁石は磁石のコイルが長いもののほ
うが磁場の均一性が高くなり、スペクトルの分解能は向
上する。Since NMR measurement has better spectral resolution and measurement sensitivity when measured in a stronger magnetic field, the magnet of the present NMR apparatus is a superconducting magnet that can obtain a higher magnetic field than a permanent magnet or an electromagnet. The one used is widely used. Further, in the superconducting magnet, the longer the coil of the magnet, the higher the uniformity of the magnetic field, and the better the resolution of the spectrum.
【0005】従来の超伝導磁石では、中央部に円筒状の
測定空間が縦長に空いており、超伝導磁石のコイルはこ
の円筒状測定空間の長軸を中心にして巻かれた形態で設
置されている。この測定空間内に測定試料を設置して、
磁場の最も強い位置でNMR測定が行われる。また、超
伝導磁石は液体ヘリウム温度で働くため、磁石のコイル
は縦長に設置された状態で液体ヘリウム中に沈められて
冷却されており、さらに液体ヘリウム槽の外側は真空槽
で断熱された上に、液体窒素槽で冷却されているという
二重構造になっている。液体ヘリウムおよび液体窒素の
容器は中心に空洞をもつ円筒形をしており、両容器は中
心の軸を同じくするように配置されている。また上述の
ように、磁石コイルを液体ヘリウム中に沈めた状態で冷
却するため、液体ヘリウム容器は最低でもコイルの長さ
分の深さが必要であり、さらに外側の液体窒素容器も液
体ヘリウム容器をおおうくらいの大きさが必要となる。
加えて、液体ヘリウムおよび液体窒素が徐々に蒸発して
いくため蒸発分の空間も必要であるから両容器は縦長の
構造を持つ。また、測定試料を磁場の中心付近に設置
し、かつNMR現象の磁化を測定するために、測定プロ
ーブが磁石中央の円筒状の測定空間に挿入される。この
測定プローブは測定試料管を回転させる機能と、NMR
現象を測定するのに必要なラジオ波の発信および受信機
能を具えており、測定試料の性質や測定モードの変更な
どによっては交換が必要となる。前述のように超伝導磁
石コイルが液体ヘリウム容器の底部にあるので、測定試
料を保持する測定プローブは磁石の下面から挿入され
る。このような構造のため、測定プローブの交換作業の
時にはオペレータは磁石直下の操作性の悪い場所に居な
くてはならない。また磁石直下の空間にもぐり込むよう
な姿勢になるため、磁石で頭部を打つ危険性もある。ま
た、測定試料の挿入に関しては磁石下部からは測定プロ
ーブが挿入されているため、測定試料挿入口として残さ
れているのは磁石上面となる。しかし、前述のように縦
長の構造を持つ磁石では、磁石の総高が高くなるため磁
石上面からの試料の出し入れは容易ではない。また、連
続して異なる試料を測定する場合などのためにオートサ
ンプルチェンジャーなどの自動装置が磁石周辺に備えら
れたりする。In the conventional superconducting magnet, a cylindrical measuring space is vertically elongated and the coil of the superconducting magnet is installed in a form wound around the long axis of the cylindrical measuring space. ing. Place the measurement sample in this measurement space,
The NMR measurement is performed at the position where the magnetic field is strongest. Since the superconducting magnet works at the temperature of liquid helium, the coil of the magnet is submerged in liquid helium in a vertically installed state and cooled, and the outside of the liquid helium tank is insulated by a vacuum tank. In addition, it has a double structure that it is cooled in a liquid nitrogen tank. The liquid helium and liquid nitrogen containers have a cylindrical shape with a hollow in the center, and both containers are arranged so that their central axes are the same. Further, as described above, since the magnet coil is cooled in the state of being immersed in liquid helium, the liquid helium container needs to have a depth of at least the length of the coil, and the outer liquid nitrogen container also has a liquid helium container. It needs to be large enough to cover.
In addition, since liquid helium and liquid nitrogen gradually evaporate, a space for the evaporation is also required, so both containers have a vertically long structure. Further, in order to place the measurement sample near the center of the magnetic field and to measure the magnetization of the NMR phenomenon, the measurement probe is inserted into the cylindrical measurement space in the center of the magnet. This measurement probe has the function of rotating the measurement sample tube and NMR.
It has the functions of transmitting and receiving radio waves necessary for measuring phenomena, and it may need to be replaced depending on the properties of the measurement sample and the measurement mode. Since the superconducting magnet coil is located at the bottom of the liquid helium container as described above, the measurement probe holding the measurement sample is inserted from the lower surface of the magnet. Due to such a structure, the operator must be located directly under the magnet and in a poor operability when exchanging the measurement probe. In addition, there is a risk of hitting the head with a magnet because the posture is such that it digs into the space directly below the magnet. Further, regarding the insertion of the measurement sample, since the measurement probe is inserted from the lower part of the magnet, the only part left as the measurement sample insertion port is the upper surface of the magnet. However, as described above, in a magnet having a vertically long structure, the total height of the magnet is high, so that it is not easy to take a sample in and out of the magnet upper surface. In addition, an automatic device such as an automatic sample changer may be provided around the magnet in the case of continuously measuring different samples.
【0006】このようにNMR装置は、NMR測定の性
能を高めるためにさまざまな工夫がなされているが、そ
のためにNMR装置とくに超伝導磁石を設置するために
は非常に大きな空間が必要になる。As described above, the NMR apparatus has been variously devised in order to improve the performance of NMR measurement, but for this reason, a very large space is required to install the NMR apparatus, especially the superconducting magnet.
【0007】[0007]
【発明が解決しようとする課題】上述のように、NMR
装置の超伝導磁石は測定空間が縦長に伸びており、磁石
コイルも縦長に設置されており、また冷却用の液体ヘリ
ウム容器および液体窒素容器も縦長であり、磁石自体が
大きなものとなる。さらに測定空間が縦長にのびている
ために、NMR測定に必要な測定プローブおよび測定試
料の挿入を磁石の下面および上面から行わなければなら
ず、磁石の上部と下部には作業用の空間が必要となる。
このように超伝導磁石を設置するには、作業に必要な磁
石周辺の空間も含めて考えると、非常に大きな空間が必
要である。As mentioned above, the NMR
The superconducting magnet of the device has a vertically elongated measuring space, a magnet coil is also vertically installed, and a liquid helium container and a liquid nitrogen container for cooling are also vertically elongated, so that the magnet itself is large. Furthermore, since the measurement space extends vertically, it is necessary to insert the measurement probe and measurement sample required for NMR measurement from the lower and upper surfaces of the magnet, and a working space is required above and below the magnet. Become.
In order to install the superconducting magnet in this way, considering the space around the magnet required for the work, a very large space is required.
【0008】本発明の目的は、磁石周辺の不必要な空間
を排除して装置の小型化を図ることにある。また、磁石
の下部および上部の空間で行っていた測定プローブおよ
び測定試料の交換作業はオペレータにとって大きな負担
となるため、オペレータの作業位置を操作しやすい場所
に変え、作業負担を軽減することにある。An object of the present invention is to reduce the size of the device by eliminating unnecessary space around the magnet. Further, since the work of exchanging the measurement probe and the measurement sample in the space below and above the magnet places a heavy burden on the operator, there is a need to change the work position of the operator to a place that is easy to operate and reduce the work burden. .
【0009】[0009]
【課題を解決するための手段】上記課題を解決するため
に、本発明は以下の手段を用いた。In order to solve the above problems, the present invention uses the following means.
【0010】NMR装置を構成する超伝導磁石の内部構
造において、磁石中央にある円筒状の測定空間を横長に
し、測定プローブ挿入口および測定試料挿入口を磁石の
側面に設け、磁石コイルは測定空間の長軸を中心にして
巻いたような形状で横長に設置する。In the internal structure of the superconducting magnet that constitutes the NMR apparatus, the cylindrical measurement space at the center of the magnet is made horizontally long, the measurement probe insertion port and the measurement sample insertion port are provided on the side surface of the magnet, and the magnet coil is the measurement space. It will be installed horizontally with a shape that is wound around the long axis of.
【0011】また、NMR測定に用いる測定プローブに
おいて、測定プローブの出し入れを水平方向に行い、測
定プローブの先端にある測定試料設置位置の構造を、試
料管を鉛直に設置できる構造にする。Further, in the measurement probe used for the NMR measurement, the measurement probe is taken in and out in a horizontal direction, and the structure of the measurement sample installation position at the tip of the measurement probe is made a structure in which the sample tube can be installed vertically.
【0012】また、NMR装置を構成する超伝導磁石に
おいて、測定プローブの出し入れをスムーズに行えるよ
うに、測定プローブ支持具やガイドレールを取り付け
る。Further, in the superconducting magnet constituting the NMR apparatus, a measurement probe support and a guide rail are attached so that the measurement probe can be smoothly taken in and out.
【0013】[0013]
【作用】磁石中央の測定空間が横長になり、測定プロー
ブおよび測定試料の挿入口を磁石の側面に設けること
で、磁石直下の不必要な空間を排除することができ装置
の小型化が可能となる。また、従来とは異なり測定プロ
ーブおよび測定試料の出し入れを水平方向に行うことが
でき、オペレータの操作が簡便になり作業負担が軽減さ
れる。[Function] Since the measurement space in the center of the magnet is horizontally long, and the measurement probe and the measurement sample insertion opening are provided on the side surface of the magnet, unnecessary space immediately below the magnet can be eliminated and the apparatus can be downsized. Become. Further, unlike the conventional case, the measurement probe and the measurement sample can be taken in and out in the horizontal direction, which simplifies the operation of the operator and reduces the work load.
【0014】[0014]
【実施例】以下、本発明の実施例を図面を用いて説明す
る。Embodiments of the present invention will be described below with reference to the drawings.
【0015】図1および図2は、ともにNMR装置の概
要を示したものであり、超伝導磁石1と分光計30とデ
ータシステム40から構成されている。図1は本発明を
実施した超伝導磁石の内部構造の断面の一例を示したも
のであり、図2は比較のため従来の超伝導磁石の内部構
造の断面の一例を示したものである。1 and 2 each show an outline of an NMR apparatus, which is composed of a superconducting magnet 1, a spectrometer 30, and a data system 40. FIG. 1 shows an example of a cross section of the internal structure of a superconducting magnet according to the present invention, and FIG. 2 shows an example of a cross section of the internal structure of a conventional superconducting magnet for comparison.
【0016】超伝導磁石1は液体ヘリウム温度で働くた
め、磁石の内部構造は図1,図2のいずれでも、基本的
には超伝導の磁石コイル1aが液体ヘリウム容器2内の
底部に設置されており、磁石コイル1aは液体ヘリウム
2a中に沈めて冷却されている。磁石コイル1aは、安
定で均一な磁場を発生させるためには長めのほうが好ま
しい。この磁石コイル1aを設置する液体ヘリウム容器
2は、磁石コイル1aの全体を液体ヘリウム2a中に浸
した状態にできる深さを持ち、かつ液体ヘリウム2aが
徐々に蒸発した時に内部圧力が急激に高まらない程度の
空間も必要になる。また、液体ヘリウム2aの蒸発を最
小限に押さえるために、液体ヘリウム容器2の外側には
真空で断熱された上さらに液体窒素3aで冷却されてい
るが、液体窒素容器3もまた液体ヘリウム容器2をおお
うことができる程度の大きさが必要となる。Since the superconducting magnet 1 works at the temperature of liquid helium, the internal structure of the magnet is basically the superconducting magnet coil 1a installed at the bottom of the liquid helium container 2 in both FIGS. The magnet coil 1a is submerged in the liquid helium 2a and cooled. The magnet coil 1a is preferably longer in order to generate a stable and uniform magnetic field. The liquid helium container 2 in which the magnet coil 1a is installed has a depth that allows the entire magnet coil 1a to be immersed in the liquid helium 2a, and the internal pressure rises rapidly when the liquid helium 2a gradually evaporates. It requires a space that does not exist. Further, in order to minimize the evaporation of the liquid helium 2a, the outside of the liquid helium container 2 is insulated by vacuum and further cooled by the liquid nitrogen 3a. It must be large enough to cover.
【0017】図2に示したような従来型の超伝導磁石1
では、磁石中央部に縦長にのびた円筒状の測定空間4が
あり、ここに測定試料を設置してNMR測定する。磁石
コイル1aは、この測定空間4を中心にして巻いた形で
縦長に設置されている。このため磁石コイル1aを冷却
するための液体ヘリウム容器2および液体窒素容器3も
また、測定空間4の長軸を中心とした中央部に円筒状の
空間を持つ縦長の円筒型容器になる。このように磁石コ
イル1aの設置の仕方と、液体ヘリウム容器2および液
体窒素容器3の形状が、超伝導磁石が縦長の形になるこ
とを決定する要因となっていた。A conventional superconducting magnet 1 as shown in FIG.
Then, there is a vertically long cylindrical measurement space 4 in the center of the magnet, and a measurement sample is placed in this space for NMR measurement. The magnet coil 1a is installed vertically so as to be wound around the measurement space 4. For this reason, the liquid helium container 2 and the liquid nitrogen container 3 for cooling the magnet coil 1a are also vertically long cylindrical containers having a cylindrical space in the central portion around the major axis of the measurement space 4. As described above, how to install the magnet coil 1a and the shapes of the liquid helium container 2 and the liquid nitrogen container 3 have been factors that determine that the superconducting magnet has a vertically long shape.
【0018】これに対し、図1に示した本発明の場合
は、最大の特徴が超伝導磁石の内部構造を従来のものを
横転させた形にし、測定プローブおよび測定試料の挿入
口を超伝導磁石1の側面に設けたことにある。つまり、
円筒状の測定空間4を横長に空け、測定空間4の長軸を
中心にして巻かれている磁石コイル1aを横長に設置す
る。磁石コイル1aが横長になったため液体ヘリウム容
器2の深さを従来のものほど深いものにしなくてもよく
なった。つまり、従来とは異なり磁石コイル1aが横長
に設置されているため、磁石コイル1aを液体ヘリウム
2aに沈めるのに必要な液体ヘリウム容器2の深さは磁
石コイル1aの太さによって決まる。あとは従来通り、
液体ヘリウム2aの蒸発分を考慮して容器の大きさを決
定すればよい。また、液体窒素容器3は液体ヘリウム容
器2をおおうように液体ヘリウム容器2の外側に設置し
両容器の間は真空で断熱される。ここで、液体ヘリウム
容器2および液体窒素容器3は、図1のように容器の底
部を磁石コイル1aの円筒形にあわせたような形である
ほうが、冷却に要する液体ヘリウムおよび液体窒素量が
削減でき、かつ上部が直方体型であるほうが液体ヘリウ
ムおよび液体窒素の蒸発用空間としては余裕がもてる
が、容器外形が底部は円筒型、上部は直方体型としなく
ても超伝導磁石の性能には影響はない。つまり両容器の
全体的な外形が円筒型でも直方体型でもよい。また、磁
石コイル1aを設置する容器内の場所、すなわち、測定
空間4の空洞を、図1のように容器の厚さが均等になる
ようにバランスよく等間隔に空けたほうが容器自体の耐
久性はよい。しかし、その測定空間4をいくぶん容器の
底部に寄せると磁石コイル1aの位置が下がる。こうす
ると、容器自体の大きさを変えずに液体ヘリウムの蒸発
による磁石コイル1a露出までの時間を延ばすことがで
きるので、冷却に必要な液体ヘリウムの補充までの期間
を長くすることができる。On the other hand, in the case of the present invention shown in FIG. 1, the most important feature is that the internal structure of the superconducting magnet is made to be a laterally inverted form of the conventional one, and the measuring probe and the insertion port of the measuring sample are superconductive. It is provided on the side surface of the magnet 1. That is,
The cylindrical measurement space 4 is horizontally long, and the magnet coil 1a wound around the major axis of the measurement space 4 is horizontally long. Since the magnet coil 1a is horizontally long, the depth of the liquid helium container 2 need not be deeper than the conventional one. That is, unlike the prior art, since the magnet coil 1a is installed horizontally long, the depth of the liquid helium container 2 required to sink the magnet coil 1a into the liquid helium 2a is determined by the thickness of the magnet coil 1a. After that, as usual,
The size of the container may be determined in consideration of the evaporation amount of the liquid helium 2a. Further, the liquid nitrogen container 3 is installed outside the liquid helium container 2 so as to cover the liquid helium container 2, and the space between the two containers is insulated by vacuum. Here, the liquid helium container 2 and the liquid nitrogen container 3 have a shape in which the bottom of the container is fitted to the cylindrical shape of the magnet coil 1a as shown in FIG. Although it is possible to have more space as an evaporation space for liquid helium and liquid nitrogen if the upper part has a rectangular parallelepiped shape, the performance of the superconducting magnet is not required even if the outer shape of the container is cylindrical at the bottom and the upper part is not rectangular parallelepiped. There is no effect. That is, the overall outer shape of both containers may be cylindrical or rectangular. Further, the location of the magnet coil 1a in the container, that is, the cavities of the measurement space 4 should be well-balanced so that the thickness of the container is uniform as shown in FIG. Is good. However, when the measurement space 4 is moved to the bottom of the container to some extent, the position of the magnet coil 1a is lowered. This makes it possible to extend the time until the magnet coil 1a is exposed due to evaporation of liquid helium without changing the size of the container itself, so that the period until replenishment of liquid helium necessary for cooling can be extended.
【0019】また、測定空間4を横長に設けたことで、
従来のように磁石直下の空間で測定プローブの出し入れ
をしなくてもよく、磁石直下の空間は不要になる。一
方、磁石上部から行っていた測定試料の交換も低い位置
でできるようになる。このように、測定プローブおよび
測定試料の交換のどちらも同じ高さで行うことができ、
しかもその高さはオペレータが立ったままの姿勢で十分
に視界のきく、作業しやすい高さという位置にできるた
めオペレータの作業負担は大幅に解消される。また、超
伝導磁石を取り巻く空間がこれまでより縮小でき、核磁
気共鳴装置の小型化を図ることができる。Since the measurement space 4 is horizontally long,
Unlike the conventional case, the measurement probe does not have to be taken in and out in the space directly below the magnet, and the space directly below the magnet becomes unnecessary. On the other hand, replacement of the measurement sample, which was performed from above the magnet, can now be performed at a low position. In this way, both measurement probe and measurement sample exchange can be done at the same height,
Moreover, since the height can be set to a position where the operator has a sufficient visibility in the standing posture and is easy to work, the work burden on the operator is greatly reduced. In addition, the space surrounding the superconducting magnet can be reduced more than before, and the nuclear magnetic resonance apparatus can be downsized.
【0020】次に、本発明の超伝導磁石に適用する測定
プローブにおける測定試料の設置方法、および測定プロ
ーブの構造について述べる。本発明の超伝導磁石に適用
する測定プローブは、基本原理は従来の測定プローブと
大きく異なる点はない。ただし、本発明の超伝導磁石で
は、測定プローブの挿入方向、および磁石により発生す
る外部磁場方向が従来のものとは異なるため、測定試料
管を保持する方法や測定スペクトルの分解能を向上させ
るための測定試料管回転の回転軸などを工夫する必要が
ある。Next, the method of installing the measurement sample in the measurement probe applied to the superconducting magnet of the present invention and the structure of the measurement probe will be described. The basic principle of the measuring probe applied to the superconducting magnet of the present invention is not significantly different from the conventional measuring probe. However, in the superconducting magnet of the present invention, the insertion direction of the measurement probe and the direction of the external magnetic field generated by the magnet are different from the conventional ones, and therefore, the method for holding the measurement sample tube and the resolution of the measurement spectrum are improved. It is necessary to devise the axis of rotation of the measurement sample tube.
【0021】まず、液体試料の場合の試料設置方法につ
いての原理を図3に示す。従来であれば図3(a)に示
したように測定空間における外部磁場6が垂直磁場であ
り、測定試料管7は垂直磁場に対して平行となる鉛直方
向を軸にして縦長に保持される。また、測定の分解能を
上げるために行う測定試料管7の回転は外部磁場6方
向、すなわち、鉛直方向を軸としている。しかし、本発
明の超伝導磁石内の測定空間における外部磁場6は水平
磁場となる。そこで、測定試料管7を外部磁場6方向を
中心にして回転させるとしたら、図3(b)のように測
定試料管7を横長に保持できなければならない。つまり
本発明に適用する測定プローブは、測定試料管7を横長
に保持しても測定試料管7は傾くことなく、水平磁場方
向を中心として回転させる機能を有する構造が必要であ
る。しかし、図3(b)のように測定試料管7を水平に
保持して、水平方向を中心にして回転させることは実現
が困難である。これに対し、図3(c)に示すように測
定試料管7を縦長に保持し、外部磁場6に対して垂直と
なる鉛直方向を軸にして回転させるような機能を持つ測
定プローブであれば、従来と同程度のNMR測定が可能
である。ただしこの場合、測定試料管7の長さは測定空
間の直径に収まる程度の短いものにする必要がある。First, the principle of the sample setting method in the case of a liquid sample is shown in FIG. In the conventional case, as shown in FIG. 3A, the external magnetic field 6 in the measurement space is a vertical magnetic field, and the measurement sample tube 7 is held vertically with the vertical direction parallel to the vertical magnetic field as an axis. . Further, the rotation of the measurement sample tube 7 for increasing the measurement resolution is centered on the direction of the external magnetic field 6, that is, the vertical direction. However, the external magnetic field 6 in the measurement space in the superconducting magnet of the present invention is a horizontal magnetic field. Therefore, if the measurement sample tube 7 is rotated around the direction of the external magnetic field 6, the measurement sample tube 7 must be held horizontally as shown in FIG. 3B. That is, the measurement probe applied to the present invention needs a structure having a function of rotating the measurement sample tube 7 in the horizontal magnetic field direction without tilting even if the measurement sample tube 7 is held horizontally. However, it is difficult to hold the measurement sample tube 7 horizontally and rotate it around the horizontal direction as shown in FIG. 3B. On the other hand, as shown in FIG. 3 (c), a measurement probe having a function of holding the measurement sample tube 7 in a vertically long position and rotating it about a vertical direction perpendicular to the external magnetic field 6 is an axis. The same level of NMR measurement as in the past can be performed. However, in this case, the length of the measurement sample tube 7 needs to be short enough to fit within the diameter of the measurement space.
【0022】図4に本発明の超伝導磁石に適用できる測
定プローブの一例を示す。測定プローブには、磁石内部
に挿入される円筒形の部分と、磁石外部で測定プローブ
を磁石に固定するためのねじ類9や分光計に接続する信
号線の接続端子10が付いた部分とがある。磁石内部に
挿入される円筒形部分の先端に測定試料管7が保持さ
れ、その位置にはNMR測定するためのラジオ波の発信
および受信コイルが具えられており、測定試料管7を回
転させるための複数個の圧縮空気の吹き出し口11があ
り、それぞれの配線および配管は測定プローブの円筒形
部分の内側を通り磁石外部に出ている部分の接続端子1
0まで伸びている。また、測定プローブの先端には測定
試料管7が通る程度の幅の、測定試料導入路12となる
切り込みが試料管挿入方向から圧縮空気吹き出し口11
の中央の孔まで設けられている。この中央の孔が測定試
料管設置ホール13となる。測定プローブを磁石に挿入
・設置した後、測定プローブ挿入口とは反対側の面にあ
る測定試料挿入口から測定試料管7が試料管支持具14
によって保持された状態で挿入される。測定試料管7に
は、圧縮空気によって回転するように回転翼(または回
転子)15を取付ける。また測定試料管7の長さは、磁
石内部の円筒状測定空間の直径に収まる程度で、外部磁
場方向に対して垂直になるように設置される。測定試料
挿入口から挿入された測定試料管7は、測定試料導入路
12のすきまを通り設置される。この時、試料管支持具
14は測定プローブの先端部分と合致して壁の役割を
し、測定試料導入路12のすきまをふさぐ。その後測定
試料管7の回転,測定が開始される。ここに示した測定
プローブの場合、測定モードの変更がない限り測定プロ
ーブを固定したまま、測定試料のみを交換して測定する
ことができる。FIG. 4 shows an example of a measuring probe applicable to the superconducting magnet of the present invention. The measurement probe has a cylindrical portion inserted into the magnet and a portion with screws 9 for fixing the measurement probe to the magnet outside the magnet and a connection terminal 10 of a signal line for connecting to the spectrometer. is there. A measurement sample tube 7 is held at the tip of a cylindrical portion inserted inside the magnet, and a radio wave transmitting and receiving coil for NMR measurement is provided at that position to rotate the measurement sample tube 7. There are a plurality of compressed air outlets 11 and their respective wirings and pipes pass through the inside of the cylindrical portion of the measurement probe and are exposed to the outside of the magnet.
It extends to zero. In addition, a notch serving as a measurement sample introduction path 12 having a width that allows the measurement sample tube 7 to pass therethrough is formed at the tip of the measurement probe from the insertion direction of the sample tube to the compressed air outlet 11.
Is provided up to the center hole. This central hole becomes the measurement sample tube installation hole 13. After the measurement probe is inserted and installed in the magnet, the measurement sample tube 7 is attached to the sample tube support 14 through the measurement sample insertion port on the surface opposite to the measurement probe insertion port.
It is inserted while being held by. A rotor (or rotor) 15 is attached to the measurement sample tube 7 so as to rotate with compressed air. The length of the measurement sample tube 7 is set to be within the diameter of the cylindrical measurement space inside the magnet, and is set to be perpendicular to the external magnetic field direction. The measurement sample tube 7 inserted from the measurement sample insertion port is installed through the clearance of the measurement sample introduction path 12. At this time, the sample tube support tool 14 functions as a wall in conformity with the tip portion of the measurement probe, and closes the gap of the measurement sample introduction path 12. After that, the rotation and measurement of the measurement sample tube 7 are started. In the case of the measurement probe shown here, it is possible to perform measurement by exchanging only the measurement sample while fixing the measurement probe unless the measurement mode is changed.
【0023】図5には本発明に適用できる測定プローブ
の別な例を示す。図5に示したものは測定プローブの先
端に測定試料管7が入る程度の孔が鉛直方向に設けられ
ている。この孔が測定試料管設置ホール13となる。孔
の周りには上記と同様に、回転翼15を取り付けた測定
試料管7を回転させるための圧縮空気吹き出し口11が
設けられている。図5のような測定プローブの場合、測
定試料管7を測定試料管設置ホール13に設置してから
測定プローブを磁石に挿入することになるので、試料交
換の度に測定プローブを磁石の外側に引き出す必要が生
じる。そこで測定プローブには、図6に示すような測定
プローブ支持具16やガイドレール17を取り付け、ガ
イドレール17を磁石側面の測定プローブ挿入口の周辺
に固定すれば測定プローブの引き出し作業は行いやすく
なる。しかし、この場合、測定プローブ挿入後もガイド
レール17は磁石外部に残留することになる。そこで測
定プローブ支持具16やガイドレール17はあらかじめ
磁石に取り付けられていて、測定プローブ挿入時に測定
プローブと合致でき、かつ測定プローブ挿入後はガイド
レール17も収納され磁石外部には残留しない構造であ
るほうが好ましい。図7にはガイドレールの付いた超伝
導磁石の例を示す。超伝導磁石1の外壁に、測定空間4
に平行2段階以上のスライド式ガイドレール17を取り
付ける。測定プローブを超伝導磁石1内の測定空間4に
挿入するときには、まず、スライド式ガイドレール17
を引き出し、ガイドレール17とつながっている測定プ
ローブ支持具16a,16bに測定プローブを乗せて水
平に支える。また、測定プローブの出し入れとガイドレ
ール17のスライドの動きを合わせて行うには、測定プ
ローブをガイドレール17、あるいは測定プローブ支持
具16a、または16bに固定したほうがよい。実際に
は、測定プローブの出し入れのときにオペレータが取り
扱う部分を固定するのが最も操作しやすくなるので、測
定プローブ挿入後も磁石外部に残留する部分を止め具1
9で固定するのがよい。すなわち、測定プローブ支持具
16aで支えられている位置である。また、支持具16
a,16bの形状は、測定プローブの円筒形が通る輪状
のものでも円筒形を乗せるだけの半円状のものでもよ
い。こうして水平に保たれた測定プローブが、超伝導磁
石1内部の測定空間4に挿入されていくのと同時に、ス
ライド式ガイドレール17が押し込まれ、最終的には測
定プローブの挿入が完了するとガイドレール17もまた
収納が完了する。こうして超伝導磁石1の外側には、接
続端子10の付いている測定プローブの一部およびプロ
ーブ支持具16a,16bの厚さ分程度しか残らないの
で、余分な空間を取らずに済む。ただし、測定プローブ
支持具16a,16bは磁石の両脇にあるガイドレール
17から橋渡しの状態で支えられている。特に測定プロ
ーブを引き出したときには測定プローブが空中に浮いた
状態になり、支持具16aは、測定プローブの重量を止
め具19の2点で空中に支えている。すなわち、ガイド
レール17および測定プローブ支持具16a,16bに
は測定プローブの重量に十分耐えうる強度を持たせる必
要がある。そこで、あらかじめ支持具16aに床まで届
くような補助キャスタ20を取り付ける。こうすれば、
測定プローブは支持具16aの位置では3点で支えられ
ることになり測定プローブの重量に対する強度は向上す
る。かつ測定プローブの引き出し作業の時にも、補助キ
ャスタ20の動きによって水平方向に引き出すことが容
易になる。このようなガイドレール等の測定プローブ保
持機構の付いた超伝導磁石は、図4,図5のどちらの測
定プローブにも適用できる。FIG. 5 shows another example of the measuring probe applicable to the present invention. In the structure shown in FIG. 5, a hole for accommodating the measurement sample tube 7 is vertically provided at the tip of the measurement probe. This hole becomes the measurement sample tube installation hole 13. Around the hole, similarly to the above, a compressed air outlet 11 for rotating the measurement sample tube 7 to which the rotary blade 15 is attached is provided. In the case of the measurement probe as shown in FIG. 5, since the measurement sample tube 7 is installed in the measurement sample tube installation hole 13 and then the measurement probe is inserted into the magnet, the measurement probe is placed outside the magnet every time the sample is replaced. The need arises. Therefore, if the measurement probe support 16 and the guide rail 17 as shown in FIG. 6 are attached to the measurement probe and the guide rail 17 is fixed around the measurement probe insertion opening on the side surface of the magnet, the measurement probe can be easily pulled out. . However, in this case, the guide rail 17 remains outside the magnet even after the measurement probe is inserted. Therefore, the measurement probe support 16 and the guide rail 17 are attached to the magnet in advance so that they can match the measurement probe when the measurement probe is inserted, and the guide rail 17 is housed after the measurement probe is inserted so that it does not remain outside the magnet. Is preferable. FIG. 7 shows an example of a superconducting magnet with a guide rail. On the outer wall of the superconducting magnet 1, the measurement space 4
Attach the slide type guide rail 17 of two or more stages in parallel. When inserting the measurement probe into the measurement space 4 in the superconducting magnet 1, first, the slide guide rail 17 is inserted.
Is pulled out, and the measurement probe is placed on the measurement probe support tools 16a and 16b connected to the guide rail 17 and supported horizontally. Further, in order to carry out the insertion / removal of the measurement probe and the sliding movement of the guide rail 17, it is preferable to fix the measurement probe to the guide rail 17 or the measurement probe support 16a or 16b. In practice, fixing the part handled by the operator when the measurement probe is taken in and out is the easiest to operate, so the part that remains outside the magnet even after the measurement probe is inserted is stopped by the stopper 1.
It is better to fix at 9. That is, it is a position supported by the measurement probe support 16a. In addition, the support 16
The shapes of a and 16b may be a ring shape through which the cylindrical shape of the measurement probe passes or a semicircular shape in which the cylindrical shape is simply placed. In this way, the measurement probe held horizontally is inserted into the measurement space 4 inside the superconducting magnet 1, and at the same time, the slide-type guide rail 17 is pushed in. Finally, when the insertion of the measurement probe is completed, the guide rail is completed. Storage of 17 is also completed. In this way, only a part of the measurement probe having the connection terminal 10 and the thickness of the probe supporting members 16a and 16b are left outside the superconducting magnet 1, so that an extra space is not required. However, the measurement probe supports 16a and 16b are supported by the guide rails 17 on both sides of the magnet in a bridging state. Particularly, when the measurement probe is pulled out, the measurement probe floats in the air, and the support 16a supports the weight of the measurement probe in the air at two points of the stopper 19. That is, the guide rail 17 and the measurement probe supporters 16a and 16b need to have sufficient strength to bear the weight of the measurement probe. Therefore, the auxiliary casters 20 that reach the floor are attached to the support 16a in advance. This way
Since the measurement probe is supported at three points at the position of the support 16a, the strength with respect to the weight of the measurement probe is improved. Moreover, even when the measurement probe is pulled out, the movement of the auxiliary caster 20 facilitates the pulling out in the horizontal direction. The superconducting magnet having the measurement probe holding mechanism such as the guide rail can be applied to both the measurement probes shown in FIGS. 4 and 5.
【0024】一方、固体試料の場合の試料設置について
の原理を図8に示す。固体試料の場合、測定空間におけ
る外部磁場6に対して54.7°(マジック角)の軸を回
転軸8として測定試料管7を保持するため、従来型は図
6(a)のようになっている。これに対して本発明の場
合は、外部磁場6が水平方向であるため、図6(b)に
示すように水平方向に対して54.7° の軸が回転軸8
となるように測定試料管7を設置すれば、従来と同様の
NMR測定ができる。つまり、固体試料用測定プローブ
は、測定試料管7を保持する角度を調節する必要があ
る。具体的には、測定試料管7を設置する角度を鉛直方
向に対して54.7° から鉛直方向に対して35.3°
に変更することによって、本発明の横長に測定空間が伸
びている超伝導磁石に適用できる。また、固体試料用測
定プローブの場合には測定試料管7の設置の仕方が角度
を持つため、測定試料交換の度に測定プローブを磁石の
外側に引き出さなければならない。そこで、固体試料用
測定プローブでも測定プローブ支持具16やガイドレー
ル17が取り付けられるほうが操作しやすくなるので、
図7に示すような超伝導磁石に用いると作業が簡便にな
る。On the other hand, the principle of sample installation in the case of a solid sample is shown in FIG. In the case of a solid sample, the measurement sample tube 7 is held with the axis of 54.7 ° (magic angle) with respect to the external magnetic field 6 in the measurement space as the rotation axis 8, so that the conventional type is as shown in FIG. ing. On the other hand, in the case of the present invention, since the external magnetic field 6 is in the horizontal direction, the axis of 54.7 ° with respect to the horizontal direction is the rotation axis 8 as shown in FIG. 6B.
If the measurement sample tube 7 is installed so that, the same NMR measurement as the conventional one can be performed. In other words, the solid sample measurement probe needs to adjust the angle at which the measurement sample tube 7 is held. Specifically, the angle at which the measurement sample tube 7 is installed is 54.7 ° with respect to the vertical direction and 35.3 ° with respect to the vertical direction.
Can be applied to the superconducting magnet of the present invention in which the measurement space extends in the lateral direction. Further, in the case of a measurement probe for a solid sample, since the measurement sample tube 7 is installed in a certain angle, the measurement probe must be pulled out to the outside of the magnet each time the measurement sample is replaced. Therefore, even for the measurement probe for solid samples, it is easier to operate if the measurement probe support 16 and the guide rail 17 are attached.
When used in a superconducting magnet as shown in FIG. 7, the work becomes simple.
【0025】[0025]
【発明の効果】磁石中央の円筒状の測定空間を横長に空
け、かつ測定空間の長軸を中心にして巻いた磁石コイル
を横長に設置し、磁石側面に測定プローブおよび測定試
料挿入口を設けたため、測定プローブおよび測定試料管
の挿入を磁石側面から行うことができる。すなわち、従
来は測定プローブ挿入に必要であった磁石直下の空間を
排除することができ、磁石の総高を低くし磁石の小型化
が可能となる。また、測定試料の交換、試料の性質や測
定の目的によっては必要となる測定プローブの交換等が
必要なとき、オペレータが作業する作業位置を低くする
ことができ、かつガイドレールを付けた超伝導磁石を用
いると測定プローブの引き出し作業もスムーズに行うこ
とができるのでオペレータの作業負担を軽減できる。The cylindrical measurement space at the center of the magnet is horizontally elongated, and the magnet coil wound around the long axis of the measurement space is installed horizontally, and the measurement probe and the measurement sample insertion port are provided on the side surface of the magnet. Therefore, the measurement probe and the measurement sample tube can be inserted from the side surface of the magnet. That is, it is possible to eliminate the space directly below the magnet, which was conventionally required for inserting the measurement probe, and it is possible to reduce the total height of the magnet and downsize the magnet. In addition, when the measurement sample needs to be replaced, or the measurement probe needs to be replaced depending on the properties of the sample and the purpose of measurement, the working position of the operator can be lowered, and a superconducting guide rail is attached. When a magnet is used, the work of pulling out the measurement probe can be performed smoothly, so the work burden on the operator can be reduced.
【図1】本発明の一実施例を示した説明図。FIG. 1 is an explanatory view showing an embodiment of the present invention.
【図2】一比較例を示した説明図。FIG. 2 is an explanatory diagram showing a comparative example.
【図3】測定試料が液体のときの試料管の設置方法の説
明図。FIG. 3 is an explanatory diagram of a method of installing a sample tube when a measurement sample is a liquid.
【図4】本発明の測定プローブの一例を示した説明図。FIG. 4 is an explanatory diagram showing an example of a measurement probe of the present invention.
【図5】本発明の測定プローブの別な例を示した説明
図。FIG. 5 is an explanatory view showing another example of the measurement probe of the present invention.
【図6】測定プローブ挿入用のガイドレールの一例を示
した説明図。FIG. 6 is an explanatory view showing an example of a guide rail for inserting a measurement probe.
【図7】測定プローブ保持機構の付いた超伝導磁石の一
例を示した説明図。FIG. 7 is an explanatory diagram showing an example of a superconducting magnet having a measurement probe holding mechanism.
【図8】測定試料が固体のときの、試料管の設置方法の
原理を示した説明図。FIG. 8 is an explanatory diagram showing the principle of a method of installing a sample tube when a measurement sample is a solid.
1…超伝導磁石、1a…磁石コイル、2…液体ヘリウム
容器、2a…液体ヘリウム、3…液体窒素容器、3a…
液体窒素、4…測定空間、30…分光計、40…データ
システム。DESCRIPTION OF SYMBOLS 1 ... Superconducting magnet, 1a ... Magnet coil, 2 ... Liquid helium container, 2a ... Liquid helium, 3 ... Liquid nitrogen container, 3a ...
Liquid nitrogen, 4 ... Measuring space, 30 ... Spectrometer, 40 ... Data system.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 9307−2G G01R 33/22 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location 9307-2G G01R 33/22
Claims (4)
いて、核磁気共鳴測定するための測定プローブおよび測
定試料管の挿入口を前記超伝導磁石の側面に設け、前記
測定プローブおよび前記測定試料管の出し入れを前記超
伝導磁石の側面から水平方向に行うことを特徴とする核
磁気共鳴装置。1. A superconducting magnet constituting a nuclear magnetic resonance apparatus, wherein a measurement probe for measuring nuclear magnetic resonance and an insertion port of a measurement sample tube are provided on a side surface of the superconducting magnet, and the measurement probe and the measurement sample are provided. A nuclear magnetic resonance apparatus, characterized in that the tube is moved in and out horizontally from the side surface of the superconducting magnet.
いて、核磁気共鳴測定するための測定プローブおよび測
定試料管を挿入するための円筒状の測定空間を横長に空
け、前記測定空間の長軸を中心にして巻いた前記超伝導
磁石のコイルを横長に設置したことを特徴とする核磁気
共鳴装置。2. In a superconducting magnet constituting a nuclear magnetic resonance apparatus, a cylindrical measurement space for inserting a measurement probe and a measurement sample tube for nuclear magnetic resonance measurement is horizontally long, and the length of the measurement space is long. A nuclear magnetic resonance apparatus in which a coil of the superconducting magnet wound around an axis is installed in a horizontally long shape.
いて、測定試料管を保持する機能と、前記測定試料管を
回転させる機能と、核磁気共鳴現象で生じる磁化を測定
する機能とを具え、超伝導磁石の側面から横長に空いた
円筒状測定空間に水平方向に出し入れし、前記測定試料
管を鉛直に保持し、かつ鉛直方向を軸にして前記測定試
料管を回転させることを特徴とする核磁気共鳴測定用プ
ローブ。3. A measurement probe used for nuclear magnetic resonance measurement, comprising a function of holding a measurement sample tube, a function of rotating the measurement sample tube, and a function of measuring magnetization generated by a nuclear magnetic resonance phenomenon, A nucleus characterized in that the conductive sample is horizontally taken in and out from a laterally vacant cylindrical measurement space, the measurement sample tube is held vertically, and the measurement sample tube is rotated about the vertical axis. Magnetic resonance measurement probe.
いて、測定プローブを横長の円筒状測定空間に出し入れ
するためのガイドレールを磁石壁面に具え、前記測定プ
ローブを引き出したときに前記測定プローブを水平に保
持する支持体を有することを特徴とする超伝導磁石。4. A superconducting magnet constituting a nuclear magnetic resonance apparatus, wherein a guide rail for putting the measuring probe in and out of a horizontally elongated cylindrical measuring space is provided on a magnet wall surface, and the measuring probe is pulled out when the measuring probe is pulled out. A superconducting magnet having a support that holds the magnet horizontally.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6128535A JPH07333311A (en) | 1994-06-10 | 1994-06-10 | Nuclear magnetic resonance device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6128535A JPH07333311A (en) | 1994-06-10 | 1994-06-10 | Nuclear magnetic resonance device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07333311A true JPH07333311A (en) | 1995-12-22 |
Family
ID=14987162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6128535A Pending JPH07333311A (en) | 1994-06-10 | 1994-06-10 | Nuclear magnetic resonance device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07333311A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003130937A (en) * | 2001-10-24 | 2003-05-08 | Hitachi Ltd | Nuclear magnetic resonance analyzer for solution |
JP2003329756A (en) * | 2002-05-08 | 2003-11-19 | Hitachi Ltd | Ultrahighsensitivity nuclear magnetic resonance imaging apparatus |
JP2003329755A (en) * | 2002-05-08 | 2003-11-19 | Hitachi Ltd | Nmr analyzer |
JP2005172597A (en) * | 2003-12-10 | 2005-06-30 | Hitachi Ltd | Nuclear magnetic resonance measurement apparatus |
US7141977B2 (en) | 2003-04-03 | 2006-11-28 | Hitachi, Ltd. | Magnet for NMR analyzer and NMR analyzer using the same |
JP2007114209A (en) * | 2006-12-07 | 2007-05-10 | Hitachi Ltd | Nuclear magnetic resonance analyzer for solution |
JP2007147312A (en) * | 2005-11-24 | 2007-06-14 | Hitachi Ltd | Nmr device |
-
1994
- 1994-06-10 JP JP6128535A patent/JPH07333311A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003130937A (en) * | 2001-10-24 | 2003-05-08 | Hitachi Ltd | Nuclear magnetic resonance analyzer for solution |
JP2003329756A (en) * | 2002-05-08 | 2003-11-19 | Hitachi Ltd | Ultrahighsensitivity nuclear magnetic resonance imaging apparatus |
JP2003329755A (en) * | 2002-05-08 | 2003-11-19 | Hitachi Ltd | Nmr analyzer |
US7141977B2 (en) | 2003-04-03 | 2006-11-28 | Hitachi, Ltd. | Magnet for NMR analyzer and NMR analyzer using the same |
US7187175B2 (en) | 2003-04-03 | 2007-03-06 | Hitachi, Ltd. | Magnet for NMR analyzer and NMR analyzer using the same |
US7336077B2 (en) | 2003-04-03 | 2008-02-26 | Hitachi, Ltd. | Magnet for NMR analyzer and NMR analyzer using the same |
JP2005172597A (en) * | 2003-12-10 | 2005-06-30 | Hitachi Ltd | Nuclear magnetic resonance measurement apparatus |
JP2007147312A (en) * | 2005-11-24 | 2007-06-14 | Hitachi Ltd | Nmr device |
JP2007114209A (en) * | 2006-12-07 | 2007-05-10 | Hitachi Ltd | Nuclear magnetic resonance analyzer for solution |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1330182B1 (en) | Device and method for producing a hyperpolarised nmr sample | |
US7498812B2 (en) | NMR MAS probe with cryogenically cooled critical circuit components | |
CA2427726C (en) | Methods and devices for polarised nmr samples | |
EP1435525B1 (en) | Cooled NMR probe | |
AU2002214039A1 (en) | Methods and devices for polarised NMR samples | |
AU2002216004A1 (en) | Methods and devices for dissolving hyperpolarised solid material for NMR analyses | |
US20040049108A1 (en) | Methods and devices for polarised nmr samples | |
JPH07333311A (en) | Nuclear magnetic resonance device | |
JP6200159B2 (en) | Ultra-low vibration refrigerant-free cryostat for electron paramagnetic resonance system | |
US10073153B2 (en) | Device for attaching and detaching NMR probe | |
Yao et al. | A versatile nuclear demagnetization cryostat for ultralow temperature research | |
US7019526B2 (en) | Sample catcher for NMR apparatus and method utilizing thereof | |
Hensley et al. | Measurement of the magnetic susceptibility of normal fluid 3 He at very low temperatures | |
Mulay | Cryostats and Mechanical Stage for Nuclear Magnetic Resonance Studies | |
JPH07113856A (en) | Nuclear magnetic resonance apparatus | |
CN115112703B (en) | Non-discharge sample rod in low-temperature NMR measurement system | |
JP2003329754A (en) | Fixing structure of solid sample measuring probe used for nuclear magnetic resonance measuring apparatus | |
JP2005121455A (en) | Noise to mask ratio measuring arrangement | |
Statera et al. | A test bench for small multipolar magnets for a high-intensity superconducting atomic beam source |