JPH07335792A - Package for mounting semiconductor element - Google Patents
Package for mounting semiconductor elementInfo
- Publication number
- JPH07335792A JPH07335792A JP6126640A JP12664094A JPH07335792A JP H07335792 A JPH07335792 A JP H07335792A JP 6126640 A JP6126640 A JP 6126640A JP 12664094 A JP12664094 A JP 12664094A JP H07335792 A JPH07335792 A JP H07335792A
- Authority
- JP
- Japan
- Prior art keywords
- copper plate
- stress
- package
- ceramic frame
- copper
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
Landscapes
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、新規な半導体素子搭載
用パッケージに関する。より詳しくは、セラミック枠体
の底面を熱の放散性の高い銅板で構成して熱の放散性に
優れたヒートシンクを構成した半導体素子搭載用パッケ
ージである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel semiconductor element mounting package. More specifically, it is a semiconductor element mounting package in which a bottom surface of a ceramic frame is formed of a copper plate having a high heat dissipation property to form a heat sink having an excellent heat dissipation property.
【0002】[0002]
【従来の技術】情報処理装置の高性能化、高速度化に伴
いそれを構成する半導体素子も高密度化、高集積化が急
激に進んでいる。マイクロプロセッサ、ゲートアレイ等
の半導体素子は300〜500万トランジスタを集積し
単位面積、単位体積あたりの発熱量が年々増大してい
る。2. Description of the Related Art As the performance and speed of information processing devices have increased, the density and integration of the semiconductor elements forming them have been rapidly increasing. Semiconductor devices such as microprocessors and gate arrays have 3 to 5 million transistors integrated, and the amount of heat generated per unit area and unit volume is increasing year by year.
【0003】従来、半導体素子の発生する熱を放散させ
るため、図2に示すように、セラミックの絶縁材料から
なるセラミック枠体2に、熱伝導性の良い銅等の金属板
6よりなるヒートシンクを接合してキャビティーを構成
したパッケージが主に用いられている。Conventionally, in order to dissipate heat generated by a semiconductor element, as shown in FIG. 2, a heat sink made of a metal plate 6 made of copper or the like having good thermal conductivity is attached to a ceramic frame body 2 made of a ceramic insulating material. A package in which a cavity is formed by bonding is mainly used.
【0004】上記パッケージにおいて、半導体素子から
発生する熱はヒートシンクに伝達、吸収されるととも
に、吸収した熱は大気中に放出される。In the above package, the heat generated from the semiconductor element is transferred to and absorbed by the heat sink, and the absorbed heat is released to the atmosphere.
【0005】ところが、熱伝導率が約400W/m・K
という良熱伝導性材料と知られている銅は、上記半導体
素子搭載用パッケージを構成するヒートシンクとしての
使用において次のような問題がある。However, the thermal conductivity is about 400 W / m · K.
Copper, which is known as a good heat conductive material, has the following problems when it is used as a heat sink that constitutes the semiconductor element mounting package.
【0006】即ち、銅の熱膨張係数は、18.8×10
-6/℃でセラミック(4〜7×10-6/℃)や半導体素
子(4.8×10-6/℃)のそれと比較した場合非常に
大きいことである。That is, the coefficient of thermal expansion of copper is 18.8 × 10.
-6 / ° C. is very large when compared to that of the ceramic (4~7 × 10 -6 / ℃) and semiconductor element (4.8 × 10 -6 / ℃) at.
【0007】そのため、上記金属板を熱放散用部材とし
て使用した場合、セラミック枠体と害金属板との熱膨張
係数の差に起因する応力(以下、熱応力ともいう)によ
り、セラミック枠体のクラックや欠け、パッケージ全体
の反り、さらに半導体素子搭載部分(ダイアタッチ)に
反りが発生し、半導体素子の搭載時における接着やパッ
ケージの信頼性に悪影響を及ぼすという問題が生じる。Therefore, when the above metal plate is used as a heat dissipation member, the stress caused by the difference in the thermal expansion coefficient between the ceramic frame and the harmful metal plate (hereinafter also referred to as thermal stress) causes Cracks and chips, warpage of the entire package, and warpage of a semiconductor element mounting portion (die attach) occur, which adversely affects adhesion at the time of mounting a semiconductor element and reliability of the package.
【0008】従って、かかる半導体素子搭載用パッケー
ジにおいては、セラミック枠体、金属板及び半導体素子
を構成する材料間の熱膨張係数の整合を図る技術が検討
され、提案されている。Therefore, in such a semiconductor element mounting package, a technique for matching the thermal expansion coefficient among the ceramic frame, the metal plate and the materials forming the semiconductor element has been studied and proposed.
【0009】例えば、セラミック枠体とヒートシンクと
しての金属板との熱膨張係数の差を解消するため、銅タ
ングステン合金のように、銅と他の金属を複合化して接
合される該セラミックと熱膨張係数を近似させた熱伝導
性材料によってヒートシンクを構成することが提案され
ている。For example, in order to eliminate the difference in the coefficient of thermal expansion between the ceramic frame and the metal plate as the heat sink, the thermal expansion of the copper and other ceramics, such as copper-tungsten alloy, which is bonded by compounding it It has been proposed to construct a heat sink with a heat conductive material having an approximate coefficient.
【0010】[0010]
【発明が解決しようとする課題】しかし、従来提案され
ている銅タングステン合金のような熱伝導性材料は、熱
伝導率が十分ではなく、熱放散性能において未だ改良の
余地を残していた。即ち、銅タングステン合金は、セラ
ミック枠体と熱膨張係数を合わせるために、CuとWを
複合体化或いは合金化しなければならないため、銅自身
が本来有している高熱伝導率、低コスト、易加工性とい
う特徴が犠牲となっていることに他ならない。However, conventionally proposed thermal conductive materials such as copper-tungsten alloys do not have sufficient thermal conductivity, and there is still room for improvement in heat dissipation performance. That is, in the copper-tungsten alloy, Cu and W must be complexed or alloyed in order to match the coefficient of thermal expansion with that of the ceramic frame. Therefore, copper itself has high thermal conductivity, low cost, and low cost. It is nothing but the sacrifice of the feature of workability.
【0011】[0011]
【課題を解決するための手段】本発明者らは、ヒートシ
ンクを有する半導体素子搭載用パッケージにおいて、か
かるヒートシンクとして使用される銅合金に対して熱伝
導性が良好な銅を実質的に単独で使用しながら、該銅を
使用する場合に問題とされている、熱応力によるセラミ
ック枠体のクラックや欠け、パッケージ全体の反り、キ
ャビティー内のダイアタッチにおける反りの発生などを
抑えた半導体素子搭載用パッケージを開発すべく鋭意研
究を重ねた。DISCLOSURE OF THE INVENTION In the package for mounting a semiconductor element having a heat sink, the present inventors have substantially independently used copper having good thermal conductivity with respect to the copper alloy used as the heat sink. However, for semiconductor element mounting that suppresses the occurrence of cracks and chips in the ceramic frame due to thermal stress, warpage of the entire package, and warpage during die attachment in the cavity, which are problems when using the copper. We have earnestly researched to develop a package.
【0012】その結果、セラミック枠体の一面に銅板を
接合してキャビティーを形成したパッケージにおいて、
上記銅板の一部の変形によって該銅板とセラミック枠体
にかかる熱応力の少なくとも一部を吸収する応力吸収領
域を、該キャビティーの底面の周縁部を構成する銅板に
形成することにより、上記目的を達成し得ることを見い
出し、本発明を完成するに至った。As a result, in a package in which a copper plate is bonded to one surface of a ceramic frame to form a cavity,
By forming a stress absorption region that absorbs at least a part of thermal stress applied to the copper plate and the ceramic frame by the deformation of a part of the copper plate in the copper plate forming the peripheral portion of the bottom surface of the cavity, The inventors have found that the above can be achieved and completed the present invention.
【0013】以下、本発明をより詳細に説明するため、
添付図面に従って説明するが、本発明はこれらの添付図
面に限定されるものではない。In order to explain the present invention in more detail,
Although the present invention will be described with reference to the accompanying drawings, the present invention is not limited to these accompanying drawings.
【0014】図1は、本発明の半導体素子用パッケージ
の代表的な態様を模式的に示す断面図、平面図及び応力
吸収領域の変形の状態を模式的に示す断面図である。ま
た、図5は、本発明の半導体素子用パッケージの他の態
様を模式的に示す断面図(銅板の各部の寸法を示す断面
図を含む)である。FIG. 1 is a cross-sectional view schematically showing a typical embodiment of a semiconductor device package of the present invention, a plan view and a cross-sectional view schematically showing a deformed state of a stress absorption region. FIG. 5 is a cross-sectional view (including a cross-sectional view showing dimensions of each part of the copper plate) schematically showing another aspect of the semiconductor element package of the present invention.
【0015】本発明の半導体素子用パッケージは、セラ
ミック枠体2の一面に銅板1を接合してキャビティー7
を構成したパッケージであって、該セラミック枠体2と
銅板1との熱応力を該銅板1の変形によって吸収する応
力吸収領域Gを該キャビティー7の底面を構成する銅板
1の周縁部に形成したことを特徴とする。In the semiconductor element package of the present invention, the copper plate 1 is joined to one surface of the ceramic frame 2 to form the cavity 7.
And a stress absorption region G that absorbs thermal stress between the ceramic frame 2 and the copper plate 1 due to the deformation of the copper plate 1 is formed in the peripheral portion of the copper plate 1 forming the bottom surface of the cavity 7. It is characterized by having done.
【0016】本発明の半導体素子搭載用パッケージにお
いて、セラミック枠体を有するセラミックは公知のセラ
ミック材料が限定なく使用される。そのうち、特に、半
導体素子搭載用パッケージの放熱性をより高めるために
好ましいセラミック成分を例示すると、ガラスセラミッ
ク、ムライト、部分安定化ジルコニア、窒化珪素、アル
ミナ、窒化アルミニウム、炭化珪素、窒化ホウ素、ベリ
リア等が掲げられる。このうち、最も好ましいのは、機
械的強度をも十分有しているアルミナ、窒化アルミニウ
ム、ムライトである。In the semiconductor element mounting package of the present invention, known ceramic materials are used without limitation as the ceramic having the ceramic frame. Of these, particularly preferable ceramic components for further improving the heat dissipation of the semiconductor element mounting package are glass ceramic, mullite, partially stabilized zirconia, silicon nitride, alumina, aluminum nitride, silicon carbide, boron nitride, beryllia, etc. Is raised. Of these, the most preferable are alumina, aluminum nitride, and mullite, which also have sufficient mechanical strength.
【0017】また、上記セラミック枠体2の構造は、銅
板1との接合により、キャビティー7を構成するための
切り欠き部を有する構造が特に制限なく採用される。例
えば、構造としては、図1に示すように、セラミックの
一体焼結で成形された、内壁に一段ないし数段の段差を
有し、且つ中央部が貫通した構造のもの、図4に示すよ
うに、下方に向かって内径を順次小さくしたセラミック
の平枠を銅箔(電気回路用)を介して活性金属等の接着
剤で接合した構造のものなどが代表的である。Further, as the structure of the ceramic frame body 2, a structure having a cutout portion for forming the cavity 7 by being joined to the copper plate 1 is adopted without particular limitation. For example, as a structure, as shown in FIG. 1, a structure formed by integral sintering of ceramics, having a step on the inner wall of one step to several steps and having a central portion penetrating, as shown in FIG. A typical example is a structure in which a ceramic flat frame whose inner diameter is gradually reduced downward is joined with an adhesive such as an active metal via a copper foil (for electric circuit).
【0018】上記セラミック枠体において、中央に存在
する切り欠き部の面積は、目的のチップが搭載可能なス
ペースを確保できる大きさであれば、特に制限されず、
また、セラミック枠体のその他の寸法も、かかる切り欠
き部の面積に応じて、パッケージの機能が満足できる寸
法を適宜決定すれば良い。In the ceramic frame body, the area of the notch portion present in the center is not particularly limited as long as it has a size capable of ensuring a space in which a target chip can be mounted.
Further, other dimensions of the ceramic frame body may be appropriately determined according to the area of the cutout portion so that the function of the package can be satisfied.
【0019】また、図1のセラミック枠体の態様にあっ
ては、セラミックの単一構造だけでなく、W、Mo、C
u、Ag等のメタライズ金属を同時焼成してセラミック
枠体内部、或いは表面に導電層を形成した構造もなんら
問題なく使用できる。例えばピン・グリッド・アレイ・
パッケージ(PGAパッケージ)、サーデップパッケー
ジ、セラミックQFP等の構造も上記セラミック枠体に
適宜応用することが可能である。Further, in the embodiment of the ceramic frame body of FIG. 1, not only the single structure of ceramic but also W, Mo, C
A structure in which a metallized metal such as u or Ag is simultaneously fired to form a conductive layer inside or on the surface of the ceramic frame can be used without any problem. For example, pin grid array
Structures such as a package (PGA package), a sardep package, and a ceramic QFP can also be applied to the ceramic frame body as appropriate.
【0020】本発明において、銅板の材質は、銅単独或
いは銅の熱伝導性を著しく低下させない範囲で他の金属
を含有するものが特に制限なく使用される。In the present invention, as the material of the copper plate, copper alone or a material containing other metal is used without particular limitation as long as the thermal conductivity of copper is not significantly reduced.
【0021】例えば、伸銅品と称される無酸素銅、タフ
ピッチ銅、リン脱酸銅等、あるいは展伸用銅合金である
Cu−Fe−Zn−P系合金(C−194)、Cu−Z
r系合金(C−151等)、Cu−Sn系合金(EFT
EC−3S等)、Cu−Ni(白銅)等があげられる。For example, oxygen-free copper, tough pitch copper, phosphorous deoxidized copper, etc., called copper rolled products, or Cu-Fe-Zn-P alloy (C-194), Cu-, which is a wrought copper alloy. Z
r-based alloys (C-151 etc.), Cu-Sn-based alloys (EFT
EC-3S etc.), Cu-Ni (white copper), etc. are mentioned.
【0022】上記銅合金としては、熱伝導率が約300
W/m・K以上(銅−タングステン合金より高いものを
挙げる)の組成のものが好適である。また、熱膨張係数
が、10×10-6/℃より高い材質について本発明は効
果的である。The copper alloy has a thermal conductivity of about 300.
Those having a composition of W / m · K or more (higher than those of copper-tungsten alloys) are preferable. Further, the present invention is effective for a material having a coefficient of thermal expansion higher than 10 × 10 −6 / ° C.
【0023】なお、これらの銅あるいは銅合金の引張強
度は、一般に200〜400MPa程度である。The tensile strength of these copper or copper alloys is generally about 200 to 400 MPa.
【0024】本発明において、セラミック枠体2と銅板
1、或いは後記する応力固定部材と銅板との接合は、公
知の接合材料を使用した接合層3−1、3−2によって
行うのが一般的である。例えば、セラミック枠体と銅板
を接合する場合は、活性金属が含まれたロウ材や高分子
接着剤が一般に使用される。具体的には、TiやZr、
Hf等の活性金属を0.1〜20重量%含んだAg−C
u系のロウ材や、また、ポリイミド系、エポキシ系、フ
ッ素樹脂系等の高分子接着剤が使用できる。In the present invention, the ceramic frame 2 and the copper plate 1, or the stress fixing member and the copper plate, which will be described later, are generally joined by the joining layers 3-1 and 3-2 using a known joining material. Is. For example, when joining a ceramic frame and a copper plate, a brazing material or a polymer adhesive containing an active metal is generally used. Specifically, Ti, Zr,
Ag-C containing 0.1 to 20% by weight of active metal such as Hf
A u-based brazing material or a polymer adhesive such as polyimide-based, epoxy-based, or fluororesin-based adhesive can be used.
【0025】また、銅板1と応力固定部材4の接合或い
は銅板とピン・グリッド・アレイ・パッケージ(PGA
パッケージ)、サーデップパッケージ、セラミックQF
P等のセラミック枠体の接合は、前記の活性金属を含ん
だロウ材や有機接着剤一般に知られているロウ材(例え
ば、JIS Z 3261−1985に示される銀ロウ
等)が問題なく使用でき、中でもBAg−8、BAg−
18、BAg−29が最も好適である。この場合、銅板
とセラミック枠体の中間に熱膨張係数が銅板とセラミッ
ク枠体の間にある、Cu−Mo(30〜70%Cu−残
りMo:熱膨張係数、8.0〜13.0×10-6/℃)
等の金属、Cu−Mo−Cu等(重量比1:1:1、熱
膨張係数、6.0〜10.0×10-6/℃)等のクラッ
ド材、また、銀等の軟質材料を挟み込んで接合し銅板と
セラミック枠体の熱膨張係数差による熱応力の吸収を図
ることも好ましい態様である。Further, the copper plate 1 and the stress fixing member 4 are joined, or the copper plate and the pin grid array package (PGA).
Package), sardep package, ceramic QF
For the joining of the ceramic frame such as P, a brazing material containing the above-mentioned active metal or a brazing material generally known as an organic adhesive (for example, silver brazing shown in JIS Z 3261-1985) can be used without any problem. Among them, BAg-8, BAg-
18, BAg-29 is most preferred. In this case, the coefficient of thermal expansion between the copper plate and the ceramic frame is between the copper plate and the ceramic frame, and Cu-Mo (30 to 70% Cu-remaining Mo: thermal expansion coefficient, 8.0 to 13.0x). 10 -6 / ° C)
Etc., a clad material such as Cu-Mo-Cu (weight ratio 1: 1: 1, coefficient of thermal expansion, 6.0 to 10.0 × 10 -6 / ° C.), and a soft material such as silver. It is also a preferred embodiment to sandwich and join the layers to absorb thermal stress due to the difference in thermal expansion coefficient between the copper plate and the ceramic frame.
【0026】更に、前記銅板1と後記の応力固定部材4
の接合する場合においても、上記ロウ材による接合の他
に銀エポキシ等の熱伝導性有機物等の接着剤や溶接、圧
着等の直接接合が可能である。Further, the copper plate 1 and a stress fixing member 4 described later are provided.
Also in the case of the above joining, in addition to the joining by the brazing material, an adhesive such as a thermally conductive organic material such as silver epoxy or direct joining such as welding or pressure bonding is possible.
【0027】更にまた、本発明によれば一旦セラミック
と銅箔とを予め前記活性金属ロウ材で接合したセラミッ
ク枠体あるいはW、Mo等の高融点金属またはAu、A
g、Cu等を主成分とするメタライズが形成されたセラ
ミック枠体に、通常の活性金属を含まないAg−Cu系
等のロウ材で該銅箔或いは該メタライズ上に銅板を接合
することもできる。Furthermore, according to the present invention, a ceramic frame body in which a ceramic and a copper foil are once joined together in advance with the active metal brazing material, a refractory metal such as W or Mo, or Au or A.
It is also possible to join a copper plate to the copper foil or the metallization with a normal brazing filler metal such as Ag—Cu containing no active metal, to a ceramic frame body having a metallization containing g, Cu or the like as a main component. .
【0028】本発明において重要な要件は、上記セラミ
ック枠体2と銅板1との熱応力を該銅板1の変形によっ
て吸収する応力吸収領域Gを該キャビティーの底面を構
成する銅板1の周縁部に形成したことにある。An important requirement in the present invention is that the stress absorption region G for absorbing the thermal stress between the ceramic frame 2 and the copper plate 1 by the deformation of the copper plate 1 is the peripheral portion of the copper plate 1 forming the bottom surface of the cavity. It was formed in.
【0029】即ち、キャビティーの底面を構成する銅板
1、即ち、セラミック枠体1の切り欠き部より露出する
銅板1の周縁部に上記熱応力を該銅板の変形によって吸
収する応力吸収領域Gを形成することによって、該部分
で応力に応じた塑性変形が他の部分に対して優先的に起
こり、その結果、他部分の熱応力が緩和されセラミック
枠体のクラック、パッケージ全体の反りやダイアタッチ
の反り等の問題が解消されるものと推定される。That is, the copper plate 1 forming the bottom surface of the cavity, that is, the peripheral edge of the copper plate 1 exposed from the cutout portion of the ceramic frame 1 is provided with a stress absorption region G for absorbing the thermal stress by the deformation of the copper plate 1. By forming it, plastic deformation corresponding to stress occurs preferentially in other parts, and as a result, thermal stress in other parts is relieved and the ceramic frame is cracked, the package is warped or die-attached. It is presumed that the problems such as the warp will be solved.
【0030】本発明において、応力吸収領域Gを形成す
る手段はかかる機能を有する構造であれば特に制限され
ないが、前記キャビティー底面を構成する銅板の周縁部
を薄くして塑性変形が他の部分に対して優先的に起こり
易くする態様が好適である。In the present invention, the means for forming the stress absorbing area G is not particularly limited as long as it has a structure having such a function, but the peripheral portion of the copper plate forming the bottom surface of the cavity is thinned to cause plastic deformation to another portion. With respect to the above, it is preferable to preferentially occur.
【0031】但し、キャビティー底面のを構成する銅板
全体を薄くして塑性変形を可能とした場合、パッケージ
にかかる熱応力により図3に示すように、F部分全体に
おいて銅板の変形が起こり、ダイアタッチ部の平坦性が
保持できなくなる場合がある。However, when the entire copper plate forming the bottom surface of the cavity is thinned to enable plastic deformation, the thermal stress applied to the package causes the copper plate to be deformed in the entire F portion as shown in FIG. The flatness of the touch part may not be maintained in some cases.
【0032】従って、かかる態様にあっては、キャビテ
ィーの底面を構成する銅板1の中央部に銅板の変形を抑
制する応力固定部材4を設けることにより、該銅板の変
形が生じないようにし、且つ上記セラミック枠体と該応
力固定部材との間に位置する銅板において応力吸収領域
Gを形成した構造が推奨される。Therefore, in this embodiment, the stress fixing member 4 for suppressing the deformation of the copper plate is provided at the central portion of the copper plate 1 forming the bottom surface of the cavity so that the copper plate is not deformed. Moreover, a structure in which a stress absorption region G is formed in a copper plate located between the ceramic frame and the stress fixing member is recommended.
【0033】かかる応力固定部材4は、図1、図4に示
すように、銅板1とは別の部材で構成しても良いし、図
5に示すように、該部分における銅板の厚みを厚くする
ことにより形成することもできる。The stress fixing member 4 may be formed of a member different from the copper plate 1 as shown in FIGS. 1 and 4, or as shown in FIG. 5, the thickness of the copper plate at the portion is increased. It can also be formed by
【0034】応力固定部材4は、接合或いは一体成形等
の手段によってそれが設けられた箇所において、銅板の
変形を抑制する機能を有していることが要求される。The stress fixing member 4 is required to have a function of suppressing the deformation of the copper plate at the place where it is provided by means such as joining or integral molding.
【0035】従って、上記応力固定部材4を別の部材で
構成する場合は、応力吸収領域Gを構成する銅板に対
し、大きい機械的強度、例えば引張強さ或いは曲げ強さ
を有する部材、高い硬度を有する部材を選択して使用す
るか、上記応力固定部材4を銅板の厚みを厚くすること
によって上記機能を満たすことができる。Therefore, when the stress fixing member 4 is formed of another member, the copper plate forming the stress absorption region G has a large mechanical strength, for example, a member having high tensile strength or bending strength, and high hardness. It is possible to satisfy the above function by selecting and using a member having the above or by increasing the thickness of the copper plate of the stress fixing member 4.
【0036】上記別途構成される応力固定部材4の材質
を具体的に例示すれば、Mo(引張強度:480MP
a)、W(引張強度:600MPa)等の金属、Cu−
W(引張強度:500〜600MPa)、Cu−Cr、
Cu−Mo等の銅合金(450〜800MPa)、Cu
−Mo−Cu、Cu−Inver−Cu、Cu−Kov
ar−Cu等のクラッド材、AlN、SiC、Si2N
3、BeO、アルミナ等(曲げ強さ:200〜1000
MPa)のセラミック焼結体、Si、GaAs等の半導
体が掲げられる。また、応力固定部材4は、それ自身ダ
イアタッチの形成材料となり得る。 尚、上記態様にお
いて、応力固定部材4の上に半導体素子との熱膨張の整
合を図ることのできる別の材料を接合し、その上に半導
体素子を搭載しても何等問題はないが、応力固定部材4
自身が半導体素子と熱膨張係数の整合が図れる材料であ
れば更に好適である。さらに、パッケージの熱抵抗を考
慮した場合、例えば、熱伝導率約100〜300W/m
・Kの範囲である以下の材料、即ち、Mo(熱膨張係
数:5.1×10-6/℃)、W(4.5×10-6/
℃)、Cu−W(例えば10%Cu−90%Wや20%
Cu−80%W、熱膨張係数:6.0〜7.0×10-6
/℃)、Cu−Mo(30〜70%Cu−残りMo:
8.0〜13.0×10-6/℃)等の金属、合金、Cu
−Mo−Cu等のクラッド材あるいはセラミックではA
lN、BeO、SiC(熱膨張係数:3.5〜8.0×
10-6/℃)及びSiが最も好適な応力固定部材4の例
である。A concrete example of the material of the above-mentioned stress fixing member 4 is Mo (tensile strength: 480MP).
a), metals such as W (tensile strength: 600 MPa), Cu-
W (tensile strength: 500 to 600 MPa), Cu-Cr,
Cu alloy such as Cu-Mo (450 to 800 MPa), Cu
-Mo-Cu, Cu-Inver-Cu, Cu-Kov
Clad materials such as ar-Cu, AlN, SiC, Si2N
3, BeO, alumina, etc. (Bending strength: 200-1000
(MPa) ceramic sintered bodies, semiconductors such as Si and GaAs are listed. Further, the stress fixing member 4 itself can be a material for forming a die attach. Incidentally, in the above aspect, it is possible to bond another material capable of achieving thermal expansion matching with the semiconductor element on the stress fixing member 4 and mount the semiconductor element on it, but there is no problem. Fixing member 4
It is more preferable that the material itself has a coefficient of thermal expansion matching with that of the semiconductor element. Further, when considering the thermal resistance of the package, for example, the thermal conductivity is about 100 to 300 W / m.
· K following materials in the range of, namely, Mo (thermal expansion coefficient: 5.1 × 10 -6 /℃),W(4.5×10 -6 /
C), Cu-W (eg 10% Cu-90% W or 20%
Cu-80% W, coefficient of thermal expansion: 6.0-7.0 × 10 -6
/ C), Cu-Mo (30-70% Cu-remaining Mo:
8.0-13.0 × 10 −6 / ° C.) metals, alloys, Cu, etc.
-A for clad materials such as Mo-Cu or ceramics
In, BeO, SiC (coefficient of thermal expansion: 3.5 to 8.0 x
10 −6 / ° C.) and Si are the most preferable examples of the stress fixing member 4.
【0037】上記のように形成される応力吸収領域Gに
おける銅板1の厚みは、得られるパッケージにかかる熱
応力によって変形可能な厚みに設定される。一般には、
上記応力吸収領域Gにおける銅板1の厚みは、0.05
〜1.1mmに設定することが好ましい。即ち、この厚
みが1.1mmを超える場合は応力吸収領域Gの変形量
は小さくなるがパッケージ全体の反りや、また、セラミ
ック枠体にクラックや欠けが生じやすくなる。また、
0.05mmより薄い場合は、応力吸収領域Gの機能は
十分に発揮され、パッケージの反りや、セラミック枠体
のクラック、欠け等は無くなるが、図1の(C)に示す
ように、応力吸収領域Gに生じる銅板の変形によって生
じる凹凸の高さhが、30〜50μmと板厚より大きく
なることがあり、該銅板に平坦性を要求される場合問題
となったり、パッケージの封止性や長期信頼性の点で悪
影響を及ぼす。より好ましくは、応力吸収領域Gにおけ
る銅板の厚みは0.1mm〜0.8mmである。The thickness of the copper plate 1 in the stress absorption region G formed as described above is set to a thickness that can be deformed by the thermal stress applied to the obtained package. In general,
The thickness of the copper plate 1 in the stress absorption region G is 0.05
It is preferable to set to 1.1 mm. That is, when the thickness exceeds 1.1 mm, the amount of deformation of the stress absorption region G becomes small, but the entire package is warped, and the ceramic frame is likely to be cracked or chipped. Also,
When the thickness is less than 0.05 mm, the function of the stress absorption region G is sufficiently exerted, and the warp of the package and the cracks and chips of the ceramic frame body are eliminated, but as shown in FIG. The height h of the unevenness caused by the deformation of the copper plate in the region G may be 30 to 50 μm, which is larger than the plate thickness, which is a problem when the copper plate is required to have flatness, and the sealing property of the package It has an adverse effect on long-term reliability. More preferably, the thickness of the copper plate in the stress absorption region G is 0.1 mm to 0.8 mm.
【0038】また、銅板1に形成する応力吸収領域Gの
幅は、該部分の銅板の厚み、キャビティー底面の面積等
に応じて前記パッケージにおける応力が吸収可能な幅を
適宜決定すれば良い。The width of the stress absorbing region G formed in the copper plate 1 may be determined as appropriate depending on the thickness of the copper plate in that portion, the area of the bottom surface of the cavity, and the like so that the stress in the package can be absorbed.
【0039】また、前記したように、キャビティーの底
面を構成する銅板1の中央部に、銅板の変形を抑制する
応力固定部材4を設けて応力吸収領域Gを形成する態様
において、応力固定部材4の熱膨張係数がセラミック枠
体2の膨張係数と同じか、小さい場合は、該応力固定部
材4とセラミック枠体2とを殆ど接触するまで近接さ
せ、該部材間に応力吸収領域Gを形成することも可能で
あるが、該応力固定部材4の熱膨張係数がセラミック枠
体2の熱膨張係数より大きい場合は、少なくとも該応力
固定部材の熱膨張の差に当たる間隔を確保できるように
上記応力吸収領域の幅dを決定することが望ましい。Further, as described above, in the mode in which the stress absorbing region G is formed by providing the stress fixing member 4 for suppressing the deformation of the copper plate in the central portion of the copper plate 1 forming the bottom surface of the cavity, the stress fixing member is formed. When the coefficient of thermal expansion of 4 is the same as or smaller than the coefficient of expansion of the ceramic frame body 2, the stress fixing member 4 and the ceramic frame body 2 are brought close to each other until almost contact with each other, and a stress absorption region G is formed between the members. However, when the coefficient of thermal expansion of the stress fixing member 4 is larger than that of the ceramic frame body 2, the above stress is applied so that at least an interval corresponding to the difference in thermal expansion of the stress fixing member can be secured. It is desirable to determine the width d of the absorption area.
【0040】しかしながら、応力吸収領域Gを最も効果
的に形成させるためには、かかる間隔dは、0.05〜
4mm、好ましくは0.1〜2.5mmに調整すること
が好ましい。即ち、上記幅dが0.05mmより狭い場
合、銅板の十分な変形が困難となり、逆に、4mmより
広くした場合、熱応力の吸収によって銅板に生じる凹凸
の高さhが大きくなり、パッケージの精度に影響を及ぼ
すことがある。However, in order to most effectively form the stress absorption region G, the distance d is 0.05 to
It is preferable to adjust to 4 mm, preferably 0.1 to 2.5 mm. That is, when the width d is smaller than 0.05 mm, it becomes difficult to sufficiently deform the copper plate, and when it is larger than 4 mm, the height h of the unevenness generated on the copper plate due to the absorption of thermal stress becomes large, and It may affect the accuracy.
【0041】前記応力固定部材4を設ける態様におい
て、その厚みは、使用する部材の熱的、機械的特性及び
応力吸収領域Gの銅板の厚さにより決定すればよい。即
ち接合時に図3のFに示される様な銅板の凹凸変形を抑
制できる他、応力固定部材として銅板と異なる材料を用
いる場合、熱膨張係数差による反り(ダイアタッチの反
りとなる)も防止できるだけの厚さを有していることが
望ましい。例えば、応力固定部材4を銅板と別部材で形
成する場合、銅板の厚みが0.3〜0.5mmの時、応
力固定部材4にMoを用いると、銅板の変形を抑制し、
ダイアタッチの反りを少なくするため、Moは0.3m
m以上の厚みがよい。上限の厚みは、半導体素子搭載用
パッケージとしての機能を有する範囲、即ち、少なくと
もパッケージの総厚から半導体素子の厚さ、ワイヤーボ
ンドの高さを差し引いた厚み以下で決定すれば良い。In the embodiment in which the stress fixing member 4 is provided, its thickness may be determined by the thermal and mechanical characteristics of the member used and the thickness of the copper plate in the stress absorbing region G. That is, in addition to suppressing the uneven deformation of the copper plate as shown in F of FIG. 3 at the time of joining, when a material different from the copper plate is used as the stress fixing member, it is possible to prevent warpage due to a difference in coefficient of thermal expansion (warping of die attach) It is desirable to have a thickness of. For example, when the stress fixing member 4 is formed of a member different from the copper plate, when the thickness of the copper plate is 0.3 to 0.5 mm, if Mo is used for the stress fixing member 4, the deformation of the copper plate is suppressed,
Mo is 0.3m to reduce the warp of the die attach.
A thickness of m or more is preferable. The upper limit thickness may be determined within a range having a function as a semiconductor element mounting package, that is, at least less than or equal to the total thickness of the package minus the thickness of the semiconductor element and the height of wire bonds.
【0042】また、応力固定部材4を銅板と同じ材質で
形成する場合、図5(C)に示されるように、応力固定
領域Eの厚み(t2−t1)は応力吸収領域Gの銅板の厚
さにより決定すればよい。具体的には応力吸収領域Gの
銅板の厚み(t1)の2倍以上の厚みとすることが好ま
しい。また、厚みの上限は前記した通りである。When the stress fixing member 4 is made of the same material as the copper plate, the thickness (t2-t1) of the stress fixing region E is the thickness of the copper plate of the stress absorbing region G, as shown in FIG. 5 (C). It may be decided depending on the size. Specifically, the thickness is preferably twice or more the thickness (t1) of the copper plate in the stress absorption region G. The upper limit of the thickness is as described above.
【0043】また、上記のように、応力固定部材として
同じ銅を用いる場合、ダイアタッチに搭載する半導体素
子は銅と半導体素子との熱膨張係数の差はあっても数m
m角〜10mm角程度の大きさのものが問題なく搭載で
きる。また、大面積の半導体素子を搭載する場合、図5
(B)に示すように半導体素子との熱膨張係数の整合を
図ることのできる別の材料、例えば、Mo、W板等を接
合し、その上に半導体素子を搭載することが可能であ
る。As described above, when the same copper is used as the stress fixing member, the semiconductor element mounted on the die attach has a difference in thermal expansion coefficient between copper and the semiconductor element of several meters.
It is possible to mount an object with a size of m square to 10 mm square without any problem. In addition, when mounting a large-area semiconductor element,
As shown in (B), another material capable of matching the coefficient of thermal expansion with the semiconductor element, such as Mo or W plate, can be bonded and the semiconductor element can be mounted thereon.
【0044】また、上記図5に示される応力吸収領域G
の形成態様においては、セラミック枠体2と銅板とが接
合する部分の銅板の厚みを応力固定部材4と同等の厚さ
にすることもできる。この場合、厚めの銅板の応力吸収
領域Gとする箇所にのみ、溝をつけた形状となる。Further, the stress absorption region G shown in FIG.
In the above-mentioned formation mode, the thickness of the copper plate at the portion where the ceramic frame 2 and the copper plate are joined can be made equal to that of the stress fixing member 4. In this case, a groove is formed only in the portion to be the stress absorption region G of the thick copper plate.
【0045】さらに本発明では、必要により、前記の応
力吸収領域Gにおいて生じる銅板の凹凸の高さh(以
下、銅板の凹凸hという)を減少させる目的で、研削や
研磨等によってその凸部の一部または全部を取り除き銅
板の平坦性を高めることも実施することができる。Further, in the present invention, if necessary, the height h of the unevenness of the copper plate (hereinafter referred to as the unevenness h of the copper plate) generated in the stress absorption region G is reduced by grinding or polishing to form the convex portion. It is also possible to remove some or all of them to improve the flatness of the copper plate.
【0046】また、パッケージの放熱効果を高めるた
め、図には示していないが、銅板にフィン形状等の放熱
器を銀エポキシ等の接着剤や熱伝導性有機物を介して付
設することも可能である。Further, in order to enhance the heat radiation effect of the package, although not shown in the figure, it is also possible to attach a fin-shaped radiator or the like to the copper plate via an adhesive such as silver epoxy or a heat conductive organic substance. is there.
【0047】上記態様において、放熱器は応力吸収領域
Gの作用を阻害しないように設けることが望ましい。In the above aspect, it is desirable that the radiator is provided so as not to interfere with the action of the stress absorption region G.
【0048】本発明の半導体素子搭載用パッケージの代
表的な製造方法としては、例えば、枠体構造を有するP
GA等のセラミックパッケージの場合、セラミック枠体
と銅板及び応力固定部材4と銅板との間にそれぞれロウ
材(例えばJIS規格のBAg−8やCu20〜70重
量%、Ag30〜70重量%、Ti0.5〜20重量%
を含む活性金属ロウ材)を図1のように配置する。な
お、この時PGAパッケージのセラミック枠体の接合面
にはロウ材との接合性を高めるために、W、Mo、A
u、Ag、Cuを主成分とするメタライズが施されても
よい。ロウ材の形態は特に限定されず、箔状、ペースト
状、粉末状等が問題なく使用できる。また、ロウ材の量
(厚さ、面積等)は銅板とセラミック枠体との接合面
積、応力固定部材4の大きさによって適宜決定すればよ
い。次いでセラミック枠体部分及び応力固定部材4に1
0〜100g/cm2の荷重を加え、真空中(10-1P
a以下)あるいは窒素ガス、アルゴンガス等の不活性雰
囲気で750〜950℃、10〜60分間加熱する。ロ
ウ材は、高温状態で液相を形成し接合面に濡れ広がる。
そして冷却とともにロウ材は固化しセラミック枠体と銅
板が接合され、この接合と冷却過程でも、キャビティー
底面を構成する銅板の周縁部に形成された応力吸収領域
Gの変形により熱応力が吸収される。かかる応力吸収領
域の変形は、その後の熱衝撃においても熱応力を吸収
し、パッケージの反り、セラミック枠体のクラック発生
を効果的に防止する。As a typical method of manufacturing the semiconductor element mounting package of the present invention, for example, P having a frame structure is used.
In the case of a ceramic package such as GA, a brazing material (for example, BAg-8 or Cu of JIS standard of 20 to 70% by weight, Ag of 30 to 70% by weight, Ti of 30% to 70% by weight) is provided between the ceramic frame and the copper plate and between the stress fixing member 4 and the copper plate. 5-20% by weight
The active metal brazing material containing) is arranged as shown in FIG. At this time, in order to enhance the bondability with the brazing material, the bonding surface of the ceramic frame body of the PGA package should have W, Mo, A
Metallization containing u, Ag or Cu as a main component may be applied. The form of the brazing material is not particularly limited, and a foil form, a paste form, a powder form or the like can be used without any problem. Further, the amount of brazing material (thickness, area, etc.) may be appropriately determined depending on the joint area between the copper plate and the ceramic frame and the size of the stress fixing member 4. Next, 1 for the ceramic frame part and the stress fixing member 4.
Apply a load of 0 to 100 g / cm 2 in vacuum (10 -1 P
a or less) or in an inert atmosphere such as nitrogen gas or argon gas at 750 to 950 ° C. for 10 to 60 minutes. The brazing material forms a liquid phase at a high temperature and spreads on the joint surface.
Then, the brazing material is solidified with cooling, and the ceramic frame and the copper plate are joined, and during this joining and cooling process, thermal stress is absorbed by the deformation of the stress absorbing region G formed on the peripheral edge of the copper plate forming the bottom surface of the cavity. It The deformation of the stress absorbing region absorbs the thermal stress even in the subsequent thermal shock, and effectively prevents the warp of the package and the cracking of the ceramic frame.
【0049】電気信号入出力用のリードピン等のロウ付
けは銅板、応力固定部材4接合と同時に、また、銅板、
応力固定部材4接合後どちらでも行うことができる。そ
の後、パッケージキャビティー内に半導体素子をダイ付
け等により固定し、半導体素子とパッケージ内外層に形
成されている信号パターンの電極とワイヤーボンディン
グした後、必要に応じてキャップを接合し、半導体素子
搭載用パッケージが製造される。The brazing of the lead pins for inputting and outputting the electric signals is carried out at the same time as the joining of the copper plate and the stress fixing member 4 and the copper plate,
It can be performed after joining the stress fixing member 4. After that, fix the semiconductor element in the package cavity by die attachment, wire bond the semiconductor element and the electrode of the signal pattern formed on the inner and outer layers of the package, and then attach the cap if necessary to mount the semiconductor element. Package is manufactured.
【0050】上記キャップは公知の半導体素子用搭載用
パッケージと同様な構造が特に制限なく採用され、Au
−Sn系共晶ロウ材のプリフォーム、あるいはエポキシ
樹脂等の有機封止材をキャップの接合面に予め塗布し、
光照射又は加熱により封止剤を硬化させて接合を行う。
キャップの主成分としては、コバール、42アロイ等の
金属、アルミナ、窒化アルミニウム、ムライト、炭化珪
素等のセラミックが例示される。The cap has the same structure as that of a known mounting package for semiconductor elements without particular limitation.
Pre-apply a Sn-based eutectic brazing material preform or an organic sealing material such as epoxy resin on the joint surface of the cap,
The encapsulant is cured by light irradiation or heating to join.
Examples of the main component of the cap include metals such as Kovar and 42 alloy, and ceramics such as alumina, aluminum nitride, mullite, and silicon carbide.
【0051】[0051]
【発明の効果】本発明の半導体素子搭載用パッケージ
は、セラミック枠体とヒートシンクの熱膨張係数の差に
起因する応力により、セラミック枠体のクラックや欠
け、パッケージ全体の反り、さらにダイアタッチに反り
が発生し、半導体素子の搭載時における接着やパッケー
ジの信頼性に悪影響を及ぼすなどの問題を回避しなが
ら、ヒートシンクとして銅板を使用することができるた
め、かかる銅の有する高い熱伝導性を直接利用でき、そ
の結果、搭載される半導体素子の発生する熱を非常に効
率良くに放散することができる。According to the semiconductor element mounting package of the present invention, due to the stress caused by the difference in thermal expansion coefficient between the ceramic frame and the heat sink, the ceramic frame is cracked or chipped, the entire package is warped, and the die attachment is warped. The copper plate can be used as a heat sink while avoiding problems such as adhesion when mounting semiconductor elements and adversely affecting the reliability of the package. Therefore, the high thermal conductivity of such copper can be directly used. As a result, the heat generated by the mounted semiconductor element can be dissipated very efficiently.
【0052】このことは、現在広く使用されているアル
ミナ等のセラミックパッケージにおいて、搭載する半導
体素子の高集積化等に伴う放熱性の要求を十分満足する
ものであり、かかる分野においての貢献度は著しいもの
であるていえる。This sufficiently satisfies the requirement of heat dissipation in the ceramic packages such as alumina, which is widely used at present, accompanying the high integration of semiconductor elements to be mounted, and the degree of contribution in such a field. It can be said that it is remarkable.
【0053】また、銅という比較的低コストと高い加工
性を有する材料の使用という点においても、本発明の経
済的効果も非常に大きいといえる。Further, it can be said that the economical effect of the present invention is also very large in terms of the use of copper, which is a material having a relatively low cost and high workability.
【0054】[0054]
【実施例】以下、本発明を具体的に説明するために実施
例を示すが、本発明は実施例に何等限定されるものでは
ない。EXAMPLES Examples will be shown below for specifically explaining the present invention, but the present invention is not limited to the examples.
【0055】実施例1 図1(A)に示す構造の半導体素子搭載用パッケージを
以下のようにして製造した。Example 1 A semiconductor element mounting package having the structure shown in FIG. 1A was manufactured as follows.
【0056】外形寸法40.2mm角、厚さ2.6m
m、208ピンPGAタイプのビアホールを有するWメ
タライズアルミナ製同時焼成多層パッケージで、中央に
20.5mm角の穴のあいたセラミック枠体である。こ
のセラミック枠体の一方の面、すなわち銅板を接合する
面にはニッケルメッキしたWのメタライズが施されてい
る。External dimensions 40.2 mm square, thickness 2.6 m
m is a co-fired multilayer package made of W metallized alumina having a 208-pin PGA type via hole, and is a ceramic frame body having a 20.5 mm square hole in the center. One surface of this ceramic frame, that is, the surface to which the copper plate is joined is metallized with nickel-plated W.
【0057】別に、銅板1(無酸素銅)として、厚さ
0.1mm、0.3mm、0.6mm、0.8mmの4
種類(大きさはすべて35.0mm角)を、また、応力
固定部材4は厚さ1.0mm、大きさ19.5mm角の
ニッケルメッキしたMo板を用意した。これらセラミッ
ク枠体と銅板及びMo板を図1のように配置し、共晶銀
ロウ(BAg−8)を用い、窒素中800℃、10分間
加熱して各種厚みの銅板とMoが接合されたパッケージ
を得た。Mo製応力固定部材の銅板に接合していない方
の面はダイアタッチとして使用される。間隙dは0.5
mmである。また、このパッケージの一方の面には20
8本のリードピンがロウ付けされた。ピンのロウ付けは
銅板、Mo板接合と同時に、また、銅板、Mo板接合後
どちらでも行なうことができる。次に、このパッケージ
のWメタライズ部分、銅、Mo及びリードピンにNi
(厚み3μm)下地−Au(1.5μm)メッキを施し
半導体素子搭載用パッケージを得た。表1は銅板厚さと
ダイアタッチの反り及び銅板の凹凸hの関係である。な
お、表1のダイアタッチの反り及び銅板の凹凸hはリー
ドピンをロウ付け前、及びNi−Auメッキを施す前
(セラミック枠体と銅板、Mo板とのみ接合された)の
パッケージにおける測定値である。Separately, as the copper plate 1 (oxygen-free copper), the thicknesses of 0.1 mm, 0.3 mm, 0.6 mm, and 0.8 mm were used.
The types (all sizes are 35.0 mm square), and the stress fixing member 4 was prepared as a nickel-plated Mo plate having a thickness of 1.0 mm and a size of 19.5 mm square. The ceramic frame, the copper plate and the Mo plate were arranged as shown in FIG. 1, and eutectic silver brazing (BAg-8) was used to heat them in nitrogen at 800 ° C. for 10 minutes to bond the copper plates with various thicknesses to Mo. Got the package. The surface of the Mo stress fixing member that is not joined to the copper plate is used as a die attach. The gap d is 0.5
mm. Also, one side of this package has 20
Eight lead pins were brazed. The brazing of the pins can be carried out either at the same time as the copper plate-Mo plate bonding or after the copper plate-Mo plate bonding. Next, Ni is used for the W metallized portion, copper, Mo and lead pins of this package.
(Thickness 3 μm) Base-Au (1.5 μm) was plated to obtain a semiconductor element mounting package. Table 1 shows the relationship between the thickness of the copper plate, the warp of the die attachment, and the unevenness h of the copper plate. In addition, the warp of the die attach and the unevenness h of the copper plate in Table 1 are measured values in the package before brazing the lead pin and before applying Ni—Au plating (only the ceramic frame and the copper plate and the Mo plate are joined). is there.
【0058】[0058]
【表1】 [Table 1]
【0059】尚、応力吸収領域における銅板の厚さが余
り薄くなると、銅板の凹凸hが大きくなる傾向があり、
また、該銅板の厚さが厚くなると銅板の凹凸hは小さく
抑えられるが、ダイアタッチの反りが大きくなる傾向が
確認された。これは銅板が厚くなることで銅板とMo板
との熱膨張係数差による熱応力が大きくなり、Mo製応
力固定部材4によっては熱応力による変形が防止でき
ず、その結果ダイアタッチに反りが発生したものと推察
できる。When the thickness of the copper plate in the stress absorption region is too thin, the unevenness h of the copper plate tends to increase,
Further, it was confirmed that when the thickness of the copper plate is increased, the unevenness h of the copper plate can be suppressed to be small, but the warp of the die attach tends to be increased. This is because as the copper plate becomes thicker, the thermal stress due to the difference in thermal expansion coefficient between the copper plate and the Mo plate increases, and deformation due to thermal stress cannot be prevented by the Mo-made stress fixing member 4, resulting in warping of the die attach. It can be inferred that it was done.
【0060】さらに、製造直後の目視による観察におい
て、本発明の応力固定領域を形成したパッケージは、セ
ラミック枠体へのクラックの発生は存在しなかったが、
銅板が余りに厚くなるとセラミック枠体に対しクラック
が発生した。Further, in the visual observation immediately after the production, in the package in which the stress fixing region of the present invention was formed, the generation of cracks in the ceramic frame did not exist.
When the copper plate became too thick, cracks occurred in the ceramic frame.
【0061】表2は、本発明品及び従来から使用されて
いるパッケージの熱抵抗測定結果である。熱抵抗は、応
力固定部材4の上に18.5mm角のAlN製ヒータチ
ップをAu−Siロウ材で接合し、消費電力を3Wとし
て評価した。熱抵抗の数値はヒータチップ上の温度と周
囲大気の温度差を消費電力で除した値(θj-a)で表わ
した。Table 2 shows the results of measuring the thermal resistance of the product of the present invention and the conventionally used package. The thermal resistance was evaluated by bonding a 18.5 mm square heater chip made of AlN with an Au-Si brazing material on the stress fixing member 4 and setting the power consumption to 3 W. The numerical value of the thermal resistance is expressed as a value (θj-a) obtained by dividing the temperature difference between the temperature on the heater chip and the ambient atmosphere by the power consumption.
【0062】[0062]
【表2】 [Table 2]
【0063】従来使用されているCu−Wヒートヒンク
付きパッケージに比べ、本発明品は銅板自身を直接使用
しているため放熱特性が優れているのがわかる。なお、
比較に用いたアルミナPGAパッケージ及びCu−Wヒ
ートシンク付きアルミナパッケージの大きさは本発明品
と同じく40.2mm角、厚さ2.6mmである。It can be seen that the product of the present invention has excellent heat dissipation characteristics because the copper plate itself is directly used as compared with the conventionally used package with Cu-W heat sink. In addition,
The sizes of the alumina PGA package and the alumina package with the Cu—W heat sink used for comparison are 40.2 mm square and 2.6 mm thick as in the case of the product of the present invention.
【0064】さらに、上記の本発明のパッケージ(サン
プル1および6を除く)を−65℃及び150℃での保
持時間10分間、−65℃から150℃までの移動時間
10秒の条件で熱衝撃試験を1000サイクル実施した
後、封止性についてテストした結果、反りによるファイ
ンリークの発生はなかった。また、セラミック枠のクラ
ックの発生も起こらなかった。Further, the above-mentioned package of the present invention (excluding samples 1 and 6) was subjected to thermal shock under the conditions of holding time at -65 ° C. and 150 ° C. for 10 minutes and moving time from −65 ° C. to 150 ° C. for 10 seconds. After carrying out the test for 1000 cycles, the sealing property was tested. As a result, there was no occurrence of fine leak due to warpage. In addition, no cracks occurred in the ceramic frame.
【0065】実施例2 実施例1において、銅板の厚さを0.5mmと一定と
し、Mo製応力固定部材4の厚さのみを0.5〜1.2
mmの範囲で変え、その他の条件は実施例1と同様にし
て半導体素子搭載用パッケージを得た。表3は、銅板の
厚さとダイアッタチの反り及び銅板裏面の凹凸hの関係
を実施例1と同様に評価した結果である。Example 2 In Example 1, the thickness of the copper plate was fixed to 0.5 mm, and only the thickness of the Mo stress fixing member 4 was 0.5 to 1.2.
The semiconductor element mounting package was obtained in the same manner as in Example 1 except that the thickness was varied within the range of mm. Table 3 shows the results of evaluating the relationship between the thickness of the copper plate, the warp of the diamond plate, and the unevenness h on the back surface of the copper plate, as in Example 1.
【0066】なお、表3の測定値は表1と同様、リード
ピンロウ付け前及びNi−Auメッキを施す前のもので
ある。The measured values in Table 3 are the same as those in Table 1 before the lead pin brazing and before the Ni-Au plating.
【0067】[0067]
【表3】 [Table 3]
【0068】応力固定部材4が無い場合、銅板(0.5
mm)の熱変形を抑えられない状態となり、キャビティ
ーの底面を構成する銅板の周縁に応力吸収領域Gが形成
されず、その結果、ダイアタッチの反りが大きくなって
しまうことがわかる。When the stress fixing member 4 is not provided, the copper plate (0.5
It can be understood that the thermal deformation of (mm) cannot be suppressed, the stress absorption region G is not formed on the peripheral edge of the copper plate forming the bottom surface of the cavity, and as a result, the warp of the die attach becomes large.
【0069】また、ダイアタッチの反り、銅板の凹凸h
は、応力固定部材の厚みが2mm以上では変わらなくな
る。In addition, the warp of die attachment and the unevenness h of the copper plate
Does not change when the thickness of the stress fixing member is 2 mm or more.
【0070】さらに、上記の本発明のパッケージを−6
5℃及び150℃での保持時間10分間、−65℃から
150℃までの移動時間10秒の条件で熱衝撃試験を1
000サイクル実施した後、封止性についてテストした
結果、反りによるファインリークの発生はなかった。ま
た、セラミック枠のクラックの発生も起こらなかった。Further, the package of the present invention is -6
A thermal shock test was conducted under the conditions of holding time at 5 ° C and 150 ° C for 10 minutes and moving time from -65 ° C to 150 ° C for 10 seconds.
After carrying out 000 cycles, as a result of testing the sealing property, no fine leak was generated due to warpage. In addition, no cracks occurred in the ceramic frame.
【0071】実施例3 実施例1において、応力固定部材4とセラミック枠体と
の間隙dの大きさを、応力固定部材4の大きさを変える
ことによって変化させ、その他の条件は実施例1と同様
にして半導体素子搭載用パッケージを得た。表4は、間
隙dと銅板裏面の凹凸hの関係を評価した結果である。
間隙dが余り大きくなると銅板裏面の凹凸hが増加し、
応力吸収領域Gの機能は十分発揮されているが、凹凸h
が大きくなりヒートシンク裏面の平坦性が低下する傾向
となる。なお、ダイアタッチの反りは本実施例において
10〜20μmであった。Example 3 In Example 1, the size of the gap d between the stress fixing member 4 and the ceramic frame was changed by changing the size of the stress fixing member 4, and the other conditions were the same as those in Example 1. Similarly, a semiconductor element mounting package was obtained. Table 4 shows the results of evaluating the relationship between the gap d and the unevenness h on the back surface of the copper plate.
When the gap d becomes too large, the unevenness h on the back surface of the copper plate increases,
The function of the stress absorption region G is sufficiently exerted, but the unevenness h
Becomes larger and the flatness of the back surface of the heat sink tends to decrease. The warp of the die attach was 10 to 20 μm in this example.
【0072】[0072]
【表4】 [Table 4]
【0073】さらに、上記の本発明のパッケージを−6
5℃及び150℃での保持時間10分間、−65℃から
150℃までの移動時間10秒の条件で熱衝撃試験を1
000サイクル実施した後、封止性についてテストした
結果、反りによるファインリークの発生はなかった。ま
た、セラミック枠のクラックの発生も起こらなかった。Further, the package of the present invention is -6
A thermal shock test was conducted under the conditions of holding time at 5 ° C and 150 ° C for 10 minutes and moving time from -65 ° C to 150 ° C for 10 seconds.
After carrying out 000 cycles, as a result of testing the sealing property, no fine leak was generated due to warpage. In addition, no cracks occurred in the ceramic frame.
【0074】前述したように、応力固定部材4の材質及
び大きさ、銅板の厚み等は上記実施例に限定されるもの
ではなくパッケージの熱設計等に応じて適宜設定するこ
とができる。As described above, the material and size of the stress fixing member 4, the thickness of the copper plate, etc. are not limited to those in the above embodiment, but can be set appropriately according to the thermal design of the package and the like.
【0075】実施例4 図4に示す構造の半導体素子搭載用用パッケージを以下
のようにして製造した。Example 4 A semiconductor element mounting package having the structure shown in FIG. 4 was manufactured as follows.
【0076】セラミック枠体を黒色の90%アルミナ
で、外形39.2mm、厚さ0.635mmの中央に2
2.3mm角のあなのあいたスルーホールのないアルミ
ナ質セラミック枠体2−1と、同外形寸法と厚み1.5
mmを有し、中央に20.5mm角の穴のあいたアルミ
ナ質セラミック枠体2−2を用意した。このセラミック
枠体2−1の両面及び2−2の一方の面にAg40重量
%、Cu55重量%、Ti5重量%活性金属ロウ材ペー
ストを40μm厚に塗布した。別に、外形38.8mm
角、厚さ150μmで中央に穴があき、外周に外部リー
ドを有する銅箔を用意した。その銅箔の中央の穴の大き
さは、一枚が23.3mm角、もう一枚が21.5mm
角である。外部リードは、幅0.3mmであり、その本
数は4辺合計で各々32本ずつとした。The ceramic frame is made of black 90% alumina, and has an outer diameter of 39.2 mm and a thickness of 0.635 mm.
Alumina-based ceramic frame 2-1 with no through-hole of 2.3 mm square, with the same external dimensions and thickness of 1.5
An alumina ceramic frame 2-2 having a diameter of 2 mm and a hole of 20.5 mm square was prepared in the center. 40% by weight of Ag, 55% by weight of Cu, and 5% by weight of Ti of active metal brazing material paste were applied in a thickness of 40 μm on both surfaces of the ceramic frame 2-1 and one surface of 2-2. Separately, the outer shape is 38.8 mm
A copper foil having a corner, a thickness of 150 μm, a hole in the center, and external leads on the outer periphery was prepared. Regarding the size of the hole in the center of the copper foil, one is 23.3 mm square and the other is 21.5 mm.
It is a horn. The external lead had a width of 0.3 mm, and the number of external leads was 32 on each of the four sides.
【0077】また別に、実施例1と同じように、銅板
(無酸素銅)の厚さ0.04mm、0.1mm、0.3
mm、0.6mm、0.8mm及び1.2mmの6種類
(大きさはすべて38.0mm角)を、また、応力固定
部材4は厚さ1.0mm、大きさ19.5mmのMo板
を用意した。銅板の一方の面は応力固定部材4の接合、
及びアルミナ枠体の接合のため上記と同様の活性金属ロ
ウ材を塗布した。これらアルミナ枠体と銅箔及、銅板及
び応力固定部材4のそれぞれを図4のように重ね、次い
で真空中860℃で20分間加熱し半導体素子搭載用パ
ッケージを得た。Separately, as in Example 1, the thickness of the copper plate (oxygen-free copper) was 0.04 mm, 0.1 mm, 0.3.
6 types of mm, 0.6 mm, 0.8 mm and 1.2 mm (all sizes are 38.0 mm square), and the stress fixing member 4 is a Mo plate having a thickness of 1.0 mm and a size of 19.5 mm. I prepared. One surface of the copper plate is joined to the stress fixing member 4,
Further, the same active metal brazing material as described above was applied for joining the alumina frame. The alumina frame, the copper foil, the copper plate, and the stress fixing member 4 were stacked as shown in FIG. 4, and then heated in vacuum at 860 ° C. for 20 minutes to obtain a semiconductor element mounting package.
【0078】その後、実施例1と同様にダイアタッチの
反り、銅板の凹凸h、パッケージの熱抵抗及び封止性等
を評価した。Thereafter, as in Example 1, warpage of die attach, unevenness h of the copper plate, thermal resistance of the package, sealing property, etc. were evaluated.
【0079】また、実施例1と同様ダイアタッチの反
り、銅板の凹凸が小さく、製造時及び製造後の熱サイク
ルによるセラミック枠へのクラック発生が殆どなく、封
止性も良好であることが確認された。また、熱抵抗も、
実施例1と同様、銅に起因する極めて良好な結果を示し
た。Also, as in Example 1, it was confirmed that the warp of the die attach and the unevenness of the copper plate were small, cracks were hardly generated in the ceramic frame due to the thermal cycle during and after the production, and the sealing property was good. Was done. Also, the thermal resistance
Similar to Example 1, extremely good results due to copper were shown.
【0080】実施例5 実施例1において、応力固定部材4をW、Mo、Cu−
W(10%Cu−90%W及び20%Cu−80%
W)、Cu−Mo(30〜70%Cu−残りMo)、C
u−Mo−Cu(重量比1:1:1)のクラッド材、A
lN、BeO、SiC及びSiに変更した以外は、応力
固定部材4の厚み、大きさ、また、銅板の厚み範囲等を
実施例1と同様にしてそれぞれ異なる応力固定部材を接
合した半導体素子搭載用パッケージを得た。その後実施
例1と同様に銅板の凹凸h、封止性及びパッケージの熱
抵抗等をそれぞれ評価した。Example 5 In Example 1, the stress fixing member 4 was made of W, Mo, Cu--.
W (10% Cu-90% W and 20% Cu-80%
W), Cu-Mo (30 to 70% Cu-remaining Mo), C
u-Mo-Cu clad material (weight ratio 1: 1: 1), A
1N, BeO, SiC and for mounting semiconductor elements in which different stress fixing members are joined in the same manner as in Example 1 with respect to the thickness and size of the stress fixing member 4, the thickness range of the copper plate, etc. Got the package. Thereafter, in the same manner as in Example 1, the unevenness h of the copper plate, the sealing property, the thermal resistance of the package, and the like were evaluated.
【0081】また、実施例1と同様ダイアタッチの反
り、銅板の凹凸が小さく、製造時及び製造後の熱サイク
ルによるセラミック枠へのクラック発生が殆どなく、封
止性も良好であることが確認された。また、熱抵抗も、
実施例1と同様、銅に起因する極めて良好な結果を示し
た。Also, as in Example 1, it was confirmed that the warp of the die attach and the unevenness of the copper plate were small, almost no cracks were generated in the ceramic frame due to the heat cycle during and after the production, and the sealing property was also good. Was done. Also, the thermal resistance
Similar to Example 1, extremely good results due to copper were shown.
【0082】実施例6 応力固定部材4を厚さ1.5mm、大きさ19.5mm
角のAlN(熱伝導率180W/K・m)に変更した以
外は実施例1と同様にしてパッケージを得た。その後実
施例1と同様にダイアタッチの反り、銅板の凹凸h及び
封止性を評価した。実施例1のサンプル4と同様な結果
が得られた。また、表5はパッケージの熱抵抗評価結果
である。高熱伝導の応力固定部材4を使用したことによ
り熱抵抗が低下したのがわかる。Example 6 The stress fixing member 4 has a thickness of 1.5 mm and a size of 19.5 mm.
A package was obtained in the same manner as in Example 1 except that the corner was changed to AlN (thermal conductivity 180 W / K · m). Thereafter, similarly to Example 1, the warp of the die attach, the unevenness h of the copper plate and the sealing property were evaluated. Results similar to those of Sample 4 of Example 1 were obtained. Table 5 shows the thermal resistance evaluation results of the package. It can be seen that the thermal resistance is lowered by using the stress fixing member 4 having high thermal conductivity.
【0083】[0083]
【表5】 [Table 5]
【0084】実施例7 実施例1と同様なセラミック枠体に、図5(C)に示さ
れる様な応力固定部材4として、銅板の厚みを厚くした
無酸素銅製の銅板を共晶銀ロウで接合し、図5(A)で
示されるパッケージを作製した。ここでt1=1.5m
m、t2=0.4mm、a=19.5mm角、b=35
mm角及び間隙dは0.5mmである。t1は応力固定
領域Eの厚みであり、t2は応力吸収領域Gの厚みであ
る。Example 7 A ceramic frame similar to that of Example 1 was used as a stress fixing member 4 as shown in FIG. 5 (C). They were joined together to produce the package shown in FIG. Where t1 = 1.5m
m, t2 = 0.4 mm, a = 19.5 mm square, b = 35
The mm square and the gap d are 0.5 mm. t1 is the thickness of the stress fixing region E, and t2 is the thickness of the stress absorbing region G.
【0085】従って、本例は応力固定領域Eにある応力
固定部材は銅より成る。Therefore, in this example, the stress fixing member in the stress fixing region E is made of copper.
【0086】次いで、上記パッケージについて、実施例
1と同様にダイアタッチの反り、銅板の凹凸h及びパッ
ケージの熱抵抗を評価した。表6は評価結果である。Then, with respect to the above-mentioned package, the warp of die attachment, the unevenness h of the copper plate and the thermal resistance of the package were evaluated in the same manner as in Example 1. Table 6 shows the evaluation results.
【0087】[0087]
【表6】 [Table 6]
【0088】また、半導体素子との熱膨張の整合をとる
ため上記応力固定領域の銅の上に図5(B)に示される
様にNiメッキした厚さ0.2mm、大きさ19.5m
m角のMo板を銀ロウ付けし、その結果も合わせて表6
に示した。Further, in order to match the thermal expansion with the semiconductor element, Ni is plated on the copper in the stress fixing region as shown in FIG. 5B to have a thickness of 0.2 mm and a size of 19.5 m.
Table 6 also shows the results of the brazing of m square Mo plates with silver brazing.
It was shown to.
【0089】この場合、応力固定部材上にMoをロウ付
けしてもパッケージの性能に何等不具合は生じなかっ
た。In this case, even if Mo was brazed onto the stress fixing member, no problem occurred in the performance of the package.
【図1】本発明の半導体素子用パッケージの代表的な態
様を模式的に示す断面図、平面図及び応力吸収領域の変
形の状態を模式的に示す断面図FIG. 1 is a sectional view schematically showing a typical aspect of a semiconductor device package of the present invention, a plan view and a sectional view schematically showing a deformed state of a stress absorption region.
【図2】Cu−Wをヒートシンクとした従来のセラミッ
クパッケージの一例の断面模式図FIG. 2 is a schematic sectional view of an example of a conventional ceramic package using Cu-W as a heat sink.
【図3】セラミック枠体に銅板のみを接合した比較例を
示す断面模式図FIG. 3 is a schematic sectional view showing a comparative example in which only a copper plate is joined to a ceramic frame body.
【図4】本発明の半導体素子搭載用パッケージの一例の
断面模式図FIG. 4 is a schematic sectional view of an example of a semiconductor element mounting package of the present invention.
【図5】本発明の半導体素子用パッケージの他の態様を
模式的に示す断面図(銅板の各部の寸法を示す断面図を
含む)FIG. 5 is a cross-sectional view schematically showing another aspect of the semiconductor element package of the present invention (including a cross-sectional view showing dimensions of each part of the copper plate).
1 銅板 2 セラミック枠体 2−1 セラミック枠体(平枠) 2−2 セラミック枠体(平枠) 3−1 接着剤 3−2 接着剤 4 応力固定部材 5 半導体素子 6 金属板(ヒートシンク) 7 キャビティー 8 電源用リード 9 接地用リード 10 信号用リード 11 リード固着ガラス G 応力吸収領域 d セラミック枠体と応力固定部材との間隙 h 応力吸収領域における銅板の凹凸 D 半導体搭載部分(ダイアタッチ) 1 Copper Plate 2 Ceramic Frame 2-1 Ceramic Frame (Flat Frame) 2-2 Ceramic Frame (Flat Frame) 3-1 Adhesive 3-2 Adhesive 4 Stress Fixing Member 5 Semiconductor Element 6 Metal Plate (Heat Sink) 7 Cavity 8 Power supply lead 9 Grounding lead 10 Signal lead 11 Lead fixing glass G Stress absorption area d Gap between ceramic frame and stress fixing member h Concavity and convexity of copper plate in stress absorption area D Semiconductor mounting part (die attach)
Claims (3)
ャビティーを構成したパッケージであって、該セラミッ
ク枠体と銅板との熱膨張係数の差に起因する応力を該銅
板の変形によって吸収する応力吸収領域を該キャビティ
ーの底面を構成する銅板の周縁部に形成したことを特徴
とする半導体素子搭載用パッケージ。1. A package in which a copper plate is bonded to one surface of a ceramic frame body to form a cavity, and stress caused by a difference in thermal expansion coefficient between the ceramic frame body and the copper plate is absorbed by deformation of the copper plate. A semiconductor element mounting package, wherein the stress absorbing region is formed on the peripheral edge of a copper plate forming the bottom surface of the cavity.
部に、セラミック枠体内壁と間隙をあけて応力固定部材
を接合することにより、該応力固定部材とセラミック枠
体との間隙に位置する銅板部分で応力吸収領域が形成さ
れた請求項1記載の半導体素子搭載用パッケージ。2. A stress fixing member is joined to the central portion of a copper plate forming the bottom surface of the cavity with a gap between the inner wall of the ceramic frame and the inner wall of the ceramic frame, so that the stress fixing member and the ceramic frame are positioned in the gap. The semiconductor element mounting package according to claim 1, wherein the stress absorbing region is formed in the copper plate portion.
1100μmである請求項1記載の半導体素子搭載用パ
ッケージ。3. The thickness of the copper plate in the stress absorbing region is 50 to 50.
The semiconductor element mounting package according to claim 1, which has a thickness of 1100 μm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6126640A JPH07335792A (en) | 1994-06-08 | 1994-06-08 | Package for mounting semiconductor element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6126640A JPH07335792A (en) | 1994-06-08 | 1994-06-08 | Package for mounting semiconductor element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07335792A true JPH07335792A (en) | 1995-12-22 |
Family
ID=14940208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6126640A Pending JPH07335792A (en) | 1994-06-08 | 1994-06-08 | Package for mounting semiconductor element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07335792A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008042084A (en) * | 2006-08-09 | 2008-02-21 | Hitachi Ltd | Semiconductor device |
US7386935B2 (en) * | 2004-02-27 | 2008-06-17 | Hitachi Global Storage Technologies Netherlands B.V. | Methods and apparatus for controlling the lapping of a slider based on an amplitude of a readback signal produced from an externally applied magnetic field |
US7467460B2 (en) * | 2006-01-27 | 2008-12-23 | Sae Magnetics (H.K.) Ltd. | Method of manufacturing slider |
JP2014067971A (en) * | 2012-09-27 | 2014-04-17 | Mitsubishi Materials Corp | Substrate for power module |
CN117287453A (en) * | 2023-09-25 | 2023-12-26 | 哈尔滨工业大学 | Ceramic material bonding process with bonding stress eliminating effect |
-
1994
- 1994-06-08 JP JP6126640A patent/JPH07335792A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7386935B2 (en) * | 2004-02-27 | 2008-06-17 | Hitachi Global Storage Technologies Netherlands B.V. | Methods and apparatus for controlling the lapping of a slider based on an amplitude of a readback signal produced from an externally applied magnetic field |
US7703193B2 (en) * | 2004-02-27 | 2010-04-27 | Hitachi Global Storage Technologies Netherlands B.V. | Methods and apparatus for controlling the lapping of a slider based on an amplitude of a readback signal produced from an externally applied magnetic field |
US7467460B2 (en) * | 2006-01-27 | 2008-12-23 | Sae Magnetics (H.K.) Ltd. | Method of manufacturing slider |
JP2008042084A (en) * | 2006-08-09 | 2008-02-21 | Hitachi Ltd | Semiconductor device |
JP2014067971A (en) * | 2012-09-27 | 2014-04-17 | Mitsubishi Materials Corp | Substrate for power module |
CN117287453A (en) * | 2023-09-25 | 2023-12-26 | 哈尔滨工业大学 | Ceramic material bonding process with bonding stress eliminating effect |
CN117287453B (en) * | 2023-09-25 | 2024-04-30 | 哈尔滨工业大学 | Ceramic material bonding process with bonding stress eliminating effect |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6327860B2 (en) | ||
EP0183016A1 (en) | Material for a semiconductor device and process for its manufacture | |
US5821617A (en) | Surface mount package with low coefficient of thermal expansion | |
JPH07335792A (en) | Package for mounting semiconductor element | |
JPH08222658A (en) | Semiconductor element package and production thereof | |
JP6946107B2 (en) | Power module | |
JP2002231850A (en) | Semiconductor device storing wiring board | |
JPH03218031A (en) | Semiconductor integrated circuit device and preform bonding material used in the same | |
TWI267959B (en) | Semiconductor package with chip-supporting member | |
JPH09307020A (en) | Ceramic package | |
JP2517024B2 (en) | Ceramic package and its manufacturing method | |
WO2024047959A1 (en) | Semiconductor device and bonding method | |
JP2003152141A (en) | Ceramic heat dissipation circuit board | |
CN110943057A (en) | Power semiconductor module device | |
JP4277582B2 (en) | Semiconductor device | |
JP2525873B2 (en) | Connection structure between semiconductor device parts | |
JPS6010633A (en) | Semiconductor device | |
JP3552623B2 (en) | Composite material and heat sink for semiconductor device using the same | |
JP2845634B2 (en) | Ceramic package | |
JPH0424947A (en) | Ceramic package for semiconductor | |
KR19990044862A (en) | Heat transfer enhancer attachment method and device | |
JPH06105722B2 (en) | Ceramic bonding method, ceramic package manufacturing method, and ceramic package | |
JPH0778918A (en) | Semiconductor device | |
JPH08125076A (en) | Semiconductor package | |
JPH04348061A (en) | Package for semiconductor device |