Nothing Special   »   [go: up one dir, main page]

JPH0732406B2 - Demodulation circuit - Google Patents

Demodulation circuit

Info

Publication number
JPH0732406B2
JPH0732406B2 JP22772484A JP22772484A JPH0732406B2 JP H0732406 B2 JPH0732406 B2 JP H0732406B2 JP 22772484 A JP22772484 A JP 22772484A JP 22772484 A JP22772484 A JP 22772484A JP H0732406 B2 JPH0732406 B2 JP H0732406B2
Authority
JP
Japan
Prior art keywords
phase
output signal
signal
circuit
phase detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22772484A
Other languages
Japanese (ja)
Other versions
JPS61107849A (en
Inventor
信孝 尼田
勉 野田
敬郎 新川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22772484A priority Critical patent/JPH0732406B2/en
Priority to KR1019850007082A priority patent/KR900000464B1/en
Priority to US06/783,521 priority patent/US4642573A/en
Priority to CA000492125A priority patent/CA1238952A/en
Publication of JPS61107849A publication Critical patent/JPS61107849A/en
Publication of JPH0732406B2 publication Critical patent/JPH0732406B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • H04L27/227Demodulator circuits; Receiver circuits using coherent demodulation
    • H04L27/2271Demodulator circuits; Receiver circuits using coherent demodulation wherein the carrier recovery circuit uses only the demodulated signals
    • H04L27/2272Demodulator circuits; Receiver circuits using coherent demodulation wherein the carrier recovery circuit uses only the demodulated signals using phase locked loops
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D3/00Demodulation of angle-, frequency- or phase- modulated oscillations
    • H03D3/02Demodulation of angle-, frequency- or phase- modulated oscillations by detecting phase difference between two signals obtained from input signal
    • H03D3/24Modifications of demodulators to reject or remove amplitude variations by means of locked-in oscillator circuits
    • H03D3/241Modifications of demodulators to reject or remove amplitude variations by means of locked-in oscillator circuits the oscillator being part of a phase locked loop
    • H03D3/242Modifications of demodulators to reject or remove amplitude variations by means of locked-in oscillator circuits the oscillator being part of a phase locked loop combined with means for controlling the frequency of a further oscillator, e.g. for negative frequency feedback or AFC
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D3/00Demodulation of angle-, frequency- or phase- modulated oscillations
    • H03D3/02Demodulation of angle-, frequency- or phase- modulated oscillations by detecting phase difference between two signals obtained from input signal
    • H03D3/24Modifications of demodulators to reject or remove amplitude variations by means of locked-in oscillator circuits
    • H03D3/241Modifications of demodulators to reject or remove amplitude variations by means of locked-in oscillator circuits the oscillator being part of a phase locked loop
    • H03D3/245Modifications of demodulators to reject or remove amplitude variations by means of locked-in oscillator circuits the oscillator being part of a phase locked loop using at least twophase detectors in the loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/087Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal using at least two phase detectors or a frequency and phase detector in the loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D2200/00Indexing scheme relating to details of demodulation or transference of modulation from one carrier to another covered by H03D
    • H03D2200/0001Circuit elements of demodulators
    • H03D2200/0031PLL circuits with quadrature locking, e.g. a Costas loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/16Multiple-frequency-changing
    • H03D7/161Multiple-frequency-changing all the frequency changers being connected in cascade

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はバースト状あるいは他の変調信号と時分割多重
された搬送波抑圧両側帯波信号の復調器に係り、特に受
信搬送波周波数の変動が大きい環境下においても安定に
中間周波数を発生する回路に関する。
Description: FIELD OF THE INVENTION The present invention relates to a demodulator of a carrier suppressed double sideband signal time-division multiplexed with a burst-like or other modulated signal, and particularly in an environment where the received carrier frequency fluctuates greatly. The present invention also relates to a circuit that stably generates an intermediate frequency.

〔発明の背景〕[Background of the Invention]

従来の装置は、例えば特開昭58−197944号に記載のよう
に、検波後の復調信号から位相誤差を検出し、電圧制御
発振器に帰還することで安定な搬送波を再生していた。
また、特開昭58−136160号においては、受信搬送波周波
数の変動が大きい場合でも安定性を保つように工夫され
ていた。しかし、これらは連続的な信号入力を想定した
ものであり、バースト状あるいは他の変調波と時分割多
重された信号入力に対しては配慮されていなかつた。
A conventional device detects a phase error from a demodulated signal after detection and feeds back to a voltage controlled oscillator to reproduce a stable carrier, as described in, for example, Japanese Patent Laid-Open No. 58-197944.
Further, in JP-A-58-136160, it was devised to maintain stability even when the received carrier frequency fluctuates greatly. However, these are intended for continuous signal input, and no consideration has been given to signal inputs that are time-division-multiplexed with burst-like or other modulated waves.

〔発明の目的〕[Object of the Invention]

本発明の目的はバースト的に入力される4相位相変調波
など搬送波抑圧両側帯波信号を安定に復調するヘテロダ
イン受信機の復調回路を提供することにある。
An object of the present invention is to provide a demodulation circuit for a heterodyne receiver that stably demodulates a carrier-suppressed double-sideband signal such as a 4-phase phase-modulated wave that is input in bursts.

〔発明の概要〕[Outline of Invention]

上記目的を達成するため、本発明は入力変調波を混合器
により中間周波数に変換し、この周波数変換された変調
波と基準発振器の出力信号との位相誤差をコスタスルー
プ方式により復調波形から検出するとともに、直接入力
変調波と基準発振器出力とを位相検波して検出し、この
二つの位相誤差信号を変調されているデータの種類に応
じて切り換えて周波数変換用局部発振器に帰還させるよ
うにしたことにある。
To achieve the above object, the present invention converts an input modulated wave into an intermediate frequency by a mixer, and detects a phase error between the frequency-converted modulated wave and the output signal of the reference oscillator from the demodulated waveform by the Costas loop method. At the same time, the direct input modulated wave and the reference oscillator output are detected by phase detection, and these two phase error signals are switched according to the type of data being modulated and fed back to the local oscillator for frequency conversion. It is in.

〔発明の実施例〕Example of Invention

以下、本発明を実施例を用いて詳述する。 Hereinafter, the present invention will be described in detail with reference to examples.

第1図は本発明による復調回路の一実施例を示す構成図
であり、搬送波抑圧両側帯波としては代表的な4相位相
変調(4相PSK)波を想定している。まず、入力端子1
から入力された4相PSK信号Vinは局部発振器2,混合器3
および帯域フイルタ(BPF)4で中間周波数(IF)に変
換される。ここで局部発振器2には外部入力により発振
周波数が変化する電圧制御発振器(VCO)を用い、これ
を以下に述べるような制御を行なうことにより、4相PS
K信号の搬送波周波数変動に対しても常に一定のIF周波
数が得られるようにしている点が本発明の第1の特徴で
ある。以下、この制御方法に関連して本実施例を説明す
る。
FIG. 1 is a block diagram showing an embodiment of a demodulation circuit according to the present invention, and a typical 4-phase phase-modulated (4-phase PSK) wave is assumed as a carrier suppression double sideband wave. First, input terminal 1
The 4-phase PSK signal Vin input from the local oscillator 2 and mixer 3
And converted to an intermediate frequency (IF) by the band filter (BPF) 4. Here, a voltage controlled oscillator (VCO) whose oscillation frequency changes by an external input is used as the local oscillator 2, and by performing the control as described below, a 4-phase PS
The first feature of the present invention is that a constant IF frequency is always obtained even when the carrier frequency of the K signal changes. The present embodiment will be described below with reference to this control method.

IF周波数に変換された4相PSK信号VIFは位相検波器5,6
および低域フイルタ(LPF)7,8により同期検波される。
この同期検波用搬送波信号には基準発振器17の出力信号
VRを移相器15,16でそれぞれ+45゜,−45゜移相した信
号VI,VQを用いる。符号判別器9,10は同期検波された信
号V01,V02の正負を判別し、正の場合は正の,負の場合
は負の一定レベルの電圧を出力する。この出力信号V11,
V12は出力端子11,12を通して出力される。さらに、これ
らV01,V02とV11,V12を乗算器13,14でそれぞれ交互に乗
算し、それら減算器18で引算するとVIFとVI,VQの位相誤
差信号Ve1が得られる。これはコスタスループ方式とし
て知られる位相誤差検出方法であり、従来はこの信号Ve
1をループフイルタ19を介して基準発振器17に帰還させ
ていた。本発明ではこれを基準発振器17ではなく、局部
発振器2に帰還させることにより、先に述べたようにIF
周波数を常に一定(基準発振器17の発振周波数)に保つ
ようにしている。これにより従来問題であつた周波数変
動によるBPF4の中心周波数ずれや移相器15,16の移相特
性の劣化が解消される。
The 4-phase PSK signal V IF converted to the IF frequency is the phase detector 5, 6
And low-pass filters (LPF) 7 and 8 perform synchronous detection.
This synchronous detection carrier signal is the output signal of the reference oscillator 17.
The signals V I and V Q obtained by phase shifting V R by + 45 ° and −45 ° by the phase shifters 15 and 16 are used. The sign discriminators 9 and 10 discriminate between positive and negative of the synchronously detected signals V 01 and V 02 , and output a positive constant voltage when positive and a negative constant level voltage when negative. This output signal V 11 ,
V 12 is output through output terminals 11 and 12. Further, these V 01 , V 02 and V 11 , V 12 are alternately multiplied by the multipliers 13 and 14, respectively, and when they are subtracted by the subtracter 18, the phase error signal Ve 1 of V IF and V I and V Q is obtained. can get. This is a phase error detection method known as the Costas loop method.
1 was fed back to the reference oscillator 17 via the loop filter 19. In the present invention, this is fed back to the local oscillator 2 instead of the reference oscillator 17, so that the IF
The frequency is always kept constant (oscillation frequency of the reference oscillator 17). As a result, the center frequency shift of the BPF 4 and the deterioration of the phase shift characteristics of the phase shifters 15 and 16 due to frequency fluctuations, which have been problems in the past, are eliminated.

ところで、入力信号Vinがバースト的に入力される場
合、Vinが入力されてから位相同期するまでの時間が問
題となる。この時間内は実質的に復調できないわけであ
るから受信データに欠落を生じることになる。従つてこ
の同期時間は可能な限り短くする必要がある。これに対
して先に述べたコスタスループ方式は同期した後の定常
特性は優れているが、検波出力から位相誤差を検出して
帰還をかけるため同期するまでには比較的長時間を要す
る。通常は、この同期時間を見越してプリアンブルワー
ドと呼ばれる欠落しても良いデータが先行して伝送され
るがごく限られた短い時間であり、この時間内に同期を
完了させることはかなり難しい問題である。
By the way, when the input signal Vin is input in a burst manner, the time from the input of Vin to the phase synchronization becomes a problem. Since the demodulation cannot be substantially performed within this time, the received data will be lost. Therefore, this synchronization time needs to be as short as possible. On the other hand, the Costas loop method described above has excellent steady-state characteristics after synchronization, but it takes a relatively long time to synchronize because it detects phase error from the detection output and applies feedback. Normally, in anticipation of this synchronization time, data that may be missing, called a preamble word, is transmitted in advance, but this is a very short time, and it is a very difficult problem to complete synchronization within this time. is there.

そこで本発明では、第1図に示すように、VIFとVRを直
接位相検波20で位相比較して位相誤差信号Ve2を検出
し、それをループフイルタ21を介して局部発振器2に帰
還させることにより、短時間で同期させる構成をとつて
いる。そして同期が完了し、本来のデータが伝送されて
来る直前に位相誤差検出ループを切換回路22によりコス
タスループに切り換えて復調する。ここで、ループを切
り換える理由は、本来4相PSK信号は搬送波抑圧信号で
あるため、これを直接位相検波しても位相誤差信号は得
られないためである。逆に、プリアンブル期間はいわゆ
る無変調状態で伝送されてくるため、通常の位相同期ル
ープ(PLL)でも同期をかけることができる。尚、23は
このループ切換制御信号の入力端子である。
Therefore, in the present invention, as shown in FIG. 1, the phase error signal Ve 2 is detected by directly comparing the phase of V IF and V R with the phase detection 20 and fed back to the local oscillator 2 via the loop filter 21. By doing so, the configuration is such that synchronization is achieved in a short time. Immediately before the synchronization is completed and the original data is transmitted, the phase error detection loop is switched to the Costas loop by the switching circuit 22 and demodulated. Here, the reason why the loop is switched is that since the four-phase PSK signal is originally a carrier suppression signal, a phase error signal cannot be obtained even if the phase is directly detected. On the contrary, since the preamble period is transmitted in a so-called non-modulation state, it is possible to synchronize even in a normal phase locked loop (PLL). Reference numeral 23 is an input terminal for this loop switching control signal.

第2図は本発明の他の実施例を示す構成図であり、入力
信号ViがFM変調など他の変調波と時分割多重された4相
PSK信号の場合に好適な復調回路を示す。同図におい
て、24はサンプルボールド回路,25はその制御信号の入
力端子その他第1図と同一符号は同一機能を示す。サン
プルホールド回路24は4相PSK信号が入力されている時
は位相誤差信号Ve1あるいはVe2をそのまま局部発振器2
に伝え、他の変調波が入力されている時は以前のVe1
るいはVe2の値をホールドする。これにより他の変調波
が入力されている時においても周波数変換された入力信
号VIFとVR,VI,VQとの位相関係は以前の同期した状態が
ほぼ維持されるため、次に4相PSK信号が入力された時
には短時間で同期する。このように本実施例では4相SP
Kの復調という点からみれば妨害波に等しい他の変調波
が時分割多重されて入力される場合においても位相同期
時間が遅延しないという効果がある。
FIG. 2 is a block diagram showing another embodiment of the present invention, in which the input signal Vi is time-division multiplexed with another modulation wave such as FM modulation.
A demodulation circuit suitable for a PSK signal is shown. In the figure, 24 is a sample bold circuit, 25 is an input terminal for the control signal thereof, and the same reference numerals as those in FIG. 1 indicate the same functions. The sample hold circuit 24 receives the phase error signal Ve 1 or Ve 2 as it is when the 4-phase PSK signal is input,
When other modulated waves are input, hold the previous Ve 1 or Ve 2 value. As a result, the phase relationship between the frequency-converted input signals V IF and V R , V I , and V Q is maintained almost the same as before even when other modulated waves are input. When a 4-phase PSK signal is input, it synchronizes in a short time. Thus, in this embodiment, the four-phase SP
From the viewpoint of K demodulation, there is an effect that the phase synchronization time is not delayed even when another modulated wave equal to the interfering wave is time-division multiplexed and input.

第3図は本発明のさらに他の実施例を示す構成図であ
り、第2図の実施例と同様な効果がある。同図におい
て、26,28はサンプルホールド回路、27,29はそれらの制
御入力端子,30は加算回路,その他第1図,第2図と同
一符号は同一機能を示す。サンプルホールド回路28は4
相SPK信号入力時のうち、プリアンブル期間だけVe2をそ
のまま出力してPLLを閉じ、その他の期間はホールド状
態となつてPLLを開く。サンプルホールド回路は逆にプ
リアンブル期間を除く4相PSK信号入力時はコスタスル
ープを閉じ、その他の期間はホールド状態となつてルー
プを開く。従つて4相PSK信号入力時はコスタスループ
か通常のPLLのどちらか一方が閉じて位相同期し、他の
変調波入力時は両者ともループが開くという動作は第2
図の実施例と全く同一である。相差点は入力端子23,25
と27,29に入力される制御信号のタイミングが異なると
いう1点のみである。
FIG. 3 is a constitutional view showing still another embodiment of the present invention, and has the same effect as the embodiment of FIG. In the figure, 26 and 28 are sample hold circuits, 27 and 29 are control input terminals thereof, 30 is an adder circuit, and the same reference numerals as those in FIGS. 1 and 2 indicate the same functions. Sample hold circuit 28 is 4
During the phase SPK signal input, Ve 2 is output as it is during the preamble period and the PLL is closed. In the other periods, the hold state is entered and the PLL is opened. Conversely, the sample-hold circuit closes the Costas loop when a 4-phase PSK signal is input, excluding the preamble period, and remains in the hold state during other periods to open the loop. Therefore, when the 4-phase PSK signal is input, either the Costas loop or the normal PLL is closed and the phases are synchronized, and when other modulated waves are input, both loops open.
This is exactly the same as the illustrated embodiment. Phase difference point is input terminal 23,25
The only difference is that the timings of the control signals input to and 27 and 29 are different.

これらの制御信号を得る方法としては時分割多重された
他の変調波(例えばFM)を復調して得る等の方法がある
が、本発明はこの方法で限定されるものではない。
As a method for obtaining these control signals, there is a method of demodulating another modulated wave (for example, FM) which is time-division multiplexed, but the present invention is not limited to this method.

また、他の変調波による位相誤差検出ループへの妨害を
除去するという観点からみれば、例えば第1図に示す実
施例において、入力端子1と混合器3,あるいはBPF4と位
相検波器5,6,20の間にしや断回路を挿入して妨害波をし
や断すれば実質的に単純なバースト波と等価となり、第
2図や第3図に示した実施例と同様の効果が得られる。
また、第3図の実施例において、サンプルホールド回路
26をLPF9,10の後段に配置しても同様である。
Further, from the viewpoint of eliminating the interference to the phase error detection loop due to other modulated waves, for example, in the embodiment shown in FIG. 1, the input terminal 1 and the mixer 3, or the BPF 4 and the phase detectors 5 and 6 are used. If a breaking circuit is inserted between 20 and 20, and an interfering wave is cut or cut, it becomes substantially equivalent to a simple burst wave, and the same effect as that of the embodiment shown in FIGS. 2 and 3 can be obtained. .
Further, in the embodiment of FIG. 3, a sample hold circuit is provided.
The same applies when 26 is arranged in the latter stage of LPFs 9 and 10.

以上、4相PSK信号の復調回路に関して本発明を述べて
きたが、本発明はこれに限定されるものではなく、コス
タスループ復調が可能なすべての搬送波抑圧両側帯波信
号に適用できることは言うまでもない。
Although the present invention has been described above with respect to a demodulation circuit for a four-phase PSK signal, it is needless to say that the present invention is not limited to this and can be applied to all carrier suppressed double sideband signals capable of Costas loop demodulation. .

〔発明の効果〕〔The invention's effect〕

以上述べたように、本発明によれば、周波数変動が大き
く、かつ、バースト的に伝送されてくる搬送波抑圧両側
帯波信号でも、周波数変換したIF信号を短時間で位相同
期させることができるため、安定な復調動作が可能であ
る。
As described above, according to the present invention, a frequency-converted IF signal can be phase-synchronized in a short time even with a carrier suppressed double sideband signal that has large frequency fluctuation and is transmitted in bursts. A stable demodulation operation is possible.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による復調回路の一実施例を示す構成
図、第2図は本発明による他の実施例を示す構成図、第
3図は本発明によるさらに他の実施例を示す構成図であ
る。 2……局部発振器、3……混合器 17……基準発振器、20……位相検波器 22……切換回路 24,26,28……サンプルホールド回路 30……加算器
FIG. 1 is a block diagram showing an embodiment of a demodulation circuit according to the present invention, FIG. 2 is a block diagram showing another embodiment of the present invention, and FIG. 3 is a block diagram showing yet another embodiment of the present invention. Is. 2 …… Local oscillator, 3 …… Mixer 17 …… Reference oscillator, 20 …… Phase detector 22 …… Switching circuit 24,26,28 …… Sample hold circuit 30 …… Adder

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】伝送路からの入力変調波を混合器および局
部発振器により中間周波数に変換し、該中間周波数に変
換された該入力変調波を同期検波する第1および第2の
パスと、該中間周波数に相当する基準発振器を備えたヘ
テロダイン受信機において、該基準発振器の出力信号を
それぞれ+45゜及び−45゜移相した信号を与えられる該
第1のパス内に設けられた第1の移相検波器および該第
2のパス内に設けられた第2の位相検波器と、該第1お
よび第2のパス内にそれぞれ設けられ、該第1および第
2の位相検波器の出力が正か負かを判別する第1および
第2の判別回路と、該第1および第2の位相検波器の出
力信号と該第1および第2の判別回路の出力信号をそれ
ぞれ交差して乗算する第1および第2の乗算器と、該第
1および第2の乗算器の出力の一方から他方を引算する
減算器と、該基準発振器の出力信号を受け、該中間周波
数に変換された該入力変調波を同期検波する第3の位相
検波器と、該第3の位相検波器の出力信号と該減算器の
出力信号を受け、どちらか一方を出力する切換回路を設
け、該切換回路の出力信号で該局部発振器の発振周波数
を制御することを特徴とする復調回路。
1. A first and a second path for converting an input modulated wave from a transmission line into an intermediate frequency by a mixer and a local oscillator, and synchronously detecting the input modulated wave converted to the intermediate frequency, In a heterodyne receiver having a reference oscillator corresponding to an intermediate frequency, a first shifter provided in the first path provided with a signal obtained by shifting the output signal of the reference oscillator by + 45 ° and -45 °, respectively. The phase detector and the second phase detector provided in the second path, and the outputs of the first and second phase detectors provided in the first and second paths, respectively, are positive. First and second discriminating circuits for discriminating between negative and negative; and first and second output signals of the first and second phase detectors and first and second discriminating circuits for crossing and multiplying, respectively. First and second multipliers and the first and second multiplications A subtracter for subtracting the other from one of the outputs of the detector, a third phase detector for receiving the output signal of the reference oscillator and synchronously detecting the input modulated wave converted to the intermediate frequency, and the third phase detector. Demodulation, characterized in that a switching circuit for receiving the output signal of the phase detector and the output signal of the subtractor, and outputting either one is provided, and the oscillation frequency of the local oscillator is controlled by the output signal of the switching circuit. circuit.
【請求項2】特許請求の範囲第1項において、前記切換
回路の出力信号をサンプルホールド回路を介して前記局
部発振器に加えることを特徴とする復調回路。
2. A demodulation circuit according to claim 1, wherein the output signal of the switching circuit is applied to the local oscillator through a sample hold circuit.
【請求項3】特許請求の範囲第1項において、前記切換
回路の代わりに、前記減算器および前記第3の位相検波
器の出力端にそれぞれ第1および第2のサンプルホール
ド回路と、該第1および第2のサンプルホールド回路の
出力信号を加算する加算器を設け、該加算器の出力信号
で前記局部発振器を制御することを特徴とする復調回
路。
3. The first and second sample-hold circuits at the output ends of the subtractor and the third phase detector, respectively, in place of the switching circuit, according to claim 1. A demodulation circuit, characterized in that an adder for adding the output signals of the first and second sample hold circuits is provided, and the local oscillator is controlled by the output signal of the adder.
JP22772484A 1984-10-05 1984-10-31 Demodulation circuit Expired - Lifetime JPH0732406B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP22772484A JPH0732406B2 (en) 1984-10-31 1984-10-31 Demodulation circuit
KR1019850007082A KR900000464B1 (en) 1984-10-05 1985-09-26 A demodulation circuit
US06/783,521 US4642573A (en) 1984-10-05 1985-10-03 Phase locked loop circuit for demodulating suppressed carrier signals
CA000492125A CA1238952A (en) 1984-10-05 1985-10-03 Demodulation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22772484A JPH0732406B2 (en) 1984-10-31 1984-10-31 Demodulation circuit

Publications (2)

Publication Number Publication Date
JPS61107849A JPS61107849A (en) 1986-05-26
JPH0732406B2 true JPH0732406B2 (en) 1995-04-10

Family

ID=16865361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22772484A Expired - Lifetime JPH0732406B2 (en) 1984-10-05 1984-10-31 Demodulation circuit

Country Status (1)

Country Link
JP (1) JPH0732406B2 (en)

Also Published As

Publication number Publication date
JPS61107849A (en) 1986-05-26

Similar Documents

Publication Publication Date Title
KR900000464B1 (en) A demodulation circuit
US5610946A (en) Radio communication apparatus
US4394626A (en) Phase synchronizing circuit
US4419759A (en) Concurrent carrier and clock synchronization for data transmission system
EP0637883B1 (en) Carrier recovery circuit for offset QPSK demodulators
US4472817A (en) Non-PLL concurrent carrier clock synchronization
EP0763919B1 (en) QPSK demodulator with frequency and phase tracking
EP0529618B1 (en) Demodulating device
US5656971A (en) Phase demodulator having reliable carrier phase synchronization
US5170131A (en) Demodulator for demodulating digital signal modulated by minimum shift keying and method therefor
JPH0542863B2 (en)
JPH0732406B2 (en) Demodulation circuit
JPH0723072A (en) Detection system
JPH0897874A (en) Offset qpsk demodulator
JPS6330049A (en) Msk demodulation circuit
JP2689579B2 (en) Pseudo-lock detection circuit for Costas loop demodulator
JPS61125262A (en) 4-phase demodulating circuit
JPS61107848A (en) Demodulation circuit
JPH01152846A (en) Phase demodulation system for tdma data transmission system
JPS60189354A (en) Communication system
JPH02228849A (en) Quadruple phase shift keying detection circuit
JPH04262649A (en) Demodulation circuit for minimum deviation modulation wave
JPS6028457B2 (en) clock regeneration circuit
JPS6330805B2 (en)
JP2001036594A (en) Method for digitally demodulating phase modulation signal in hierarchical transmission to detect frame synchronization pattern and its system