Nothing Special   »   [go: up one dir, main page]

JPH07316612A - Consummable electrode - Google Patents

Consummable electrode

Info

Publication number
JPH07316612A
JPH07316612A JP6106389A JP10638994A JPH07316612A JP H07316612 A JPH07316612 A JP H07316612A JP 6106389 A JP6106389 A JP 6106389A JP 10638994 A JP10638994 A JP 10638994A JP H07316612 A JPH07316612 A JP H07316612A
Authority
JP
Japan
Prior art keywords
electrode
powder
particle size
depth
protrusions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6106389A
Other languages
Japanese (ja)
Inventor
Ryohei Kumagai
良平 熊谷
Masami Yoshitake
雅美 吉武
Kensuke Hidaka
謙介 日高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP6106389A priority Critical patent/JPH07316612A/en
Publication of JPH07316612A publication Critical patent/JPH07316612A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To improve yield by improving the uniformity of grain diameter and reducing the unnecessary secondary grain, in the production of powder by a rotary electrode method. CONSTITUTION:In a consummable electrode 1 used in the powder production by the rotary electrode method, plural pieces of angular projections having crest parts and trough parts in the working direction 3 of centrifugal force are arranged at the peripheral part of the electrode 1, and desirably, the interval between the projections is made to 1-4mm and the depth of the trough is made to >=0.2mm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属粉末製造方法の一
つである回転電極法において、使用される消耗電極棒の
形状に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the shape of a consumable electrode rod used in a rotating electrode method which is one of the methods for producing metal powder.

【0002】[0002]

【従来の技術】回転電極法では、得られる粉末の粒径
は、電極の回転速度に依存し、さらに詳しくは、同質の
電極棒については回転角速度と電極の半径がかかわる遠
心力によって、得られる粉末粒径が決まる。従って、工
業的には、材料の品種と電極の直径に応じて求められた
回転速度を管理することにより、所定粒径の粉末を得て
いる。その速度は、1分間に数千回以上の高速度である
ため、消耗電極は丸棒状,円筒状あるいは円板状とし、
回転体として安定した形状のものが用いられる。
2. Description of the Related Art In the rotating electrode method, the particle size of the obtained powder depends on the rotating speed of the electrode, and more specifically, for a homogeneous electrode rod, it is obtained by the centrifugal force that relates the rotating angular velocity and the radius of the electrode. The powder particle size is determined. Therefore, industrially, a powder having a predetermined particle size is obtained by controlling the rotation speed determined according to the material type and the electrode diameter. Since the speed is high speed of several thousand times or more per minute, the consumable electrode has a round bar shape, a cylindrical shape, or a disk shape.
A rotating body having a stable shape is used.

【0003】[0003]

【発明が解決しようとする問題点】回転電極法で得られ
る金属粉末は、真球状で粒径の均一性が他の粉末製法に
比べ極めて優れている。しかし、その反面、いくつかの
本質的問題点もある。その一つに消耗電極棒に対する得
られる粉末の歩留りが低く、コスト高の要因となってい
る事があげられる。言うまでもなく、粉末歩留りは、製
造諸経費の大部分の項目にかかってくるので、歩留りを
些かでも上げ得たら、コストダウンに大きく貢献するも
のである。また、回転電極法は、他の方法ではつくれな
い活性で高価な材料に利用できることからその意義が大
きい。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention The metal powder obtained by the rotating electrode method has a perfect spherical shape and is extremely excellent in particle size uniformity as compared with other powder manufacturing methods. However, on the other hand, there are some essential problems. One of the reasons is that the yield of powder obtained with respect to the consumable electrode rod is low, which is a factor of high cost. Needless to say, the powder yield depends on most of the manufacturing expenses, so even if the yield can be raised even a small amount, it will greatly contribute to the cost reduction. Further, the rotating electrode method is significant because it can be used for an active and expensive material that cannot be produced by other methods.

【0004】このような観点でみると、回転電極法でつ
くられる粉末は、粒径の均等性が良いとは言え、一部に
は、従来技術では不可否な粒径ロスが付随している。す
なわち、回転電極法の本質的な問題として、得られる粉
末粒径が1次粒子および2次粒子と称されるふたつの粒
度分布で構成され、電極の回転速度で管理された1次粒
子に対し、2次粒子は予定されない副産物である。本発
明はこの2次粒子の生成を減少させ得る消耗電極棒を提
供するものである。
From this point of view, although the powder produced by the rotating electrode method has good particle size uniformity, some of the powder particles are accompanied by particle size loss, which is impossible in the prior art. . That is, as an essential problem of the rotating electrode method, the obtained powder particle size is composed of two particle size distributions called primary particles and secondary particles, and the primary particle is controlled by the rotating speed of the electrode. Secondary particles are an unplanned by-product. The present invention provides a consumable electrode rod that can reduce the production of secondary particles.

【0005】[0005]

【問題を解決するための手段】本発明は、回転電極法に
より粉末製造を行う際に用いる消耗電極棒において、電
極棒の周縁部に遠心力の働く方向に山と谷を有する角状
の突起を複数個設けたことを特徴とする消耗電極棒であ
る。さらに好ましくは、突起と突起の間隔を1〜4mmと
し、且つ、谷の深さを0.2mm 以上にした角状突起を設け
ることによって、2次粒子の発生を減少し、予定された
粒径のものの製造歩留りを向上できるものである。
DISCLOSURE OF THE INVENTION The present invention relates to a consumable electrode rod used when powder is produced by the rotating electrode method, in the form of angular protrusions having peaks and valleys in the peripheral direction of the electrode rod in the direction of centrifugal force. The consumable electrode rod is characterized in that a plurality of electrodes are provided. More preferably, the spacing between the projections is set to 1 to 4 mm, and the angular projections having a valley depth of 0.2 mm or more are provided to reduce the generation of secondary particles and to reduce the size of the projected particles. The product yield can be improved.

【0006】[0006]

【作用】回転電極法は消耗電極をその軸方向に高速回転
させ、その一方の端面をアーク等を用いて溶解すること
により、生成された融液は遠心力の作用により、液膜と
なって流れ、電極の周縁部へ向い、いったんここで拘束
された液膜は次に分断し、液滴となって離脱し、電極の
外周へ飛行する。飛行中に表面張力によって球形となり
凝固し、粉末として回収される。
In the rotating electrode method, the consumable electrode is rotated in the axial direction at a high speed, and one end face of the consumable electrode is melted by using an arc or the like, and the generated melt becomes a liquid film by the action of centrifugal force. The liquid film flows and heads to the peripheral portion of the electrode, and then the liquid film once restrained here is divided into droplets, which are separated and fly to the outer periphery of the electrode. During flight, it becomes spherical due to surface tension, solidifies, and is collected as powder.

【0007】ここで、2次粒子が形成される位置は図1
(b)に示すように液膜分離から液滴となって引きちぎ
れ、分離の際に、主液滴である粉末の1次粒子2に引張
られ、あとを引いた部分が電極側または主液滴側へ戻り
得ず独立した液滴になり、粉末化したものが2次粒子4
である。これと類似の現象は高粘性の液体を引きちぎる
場合とか、平面の天井から自然落下する水滴のように拘
束力が離脱力に対し比較的大きいときに見られる。
The position where the secondary particles are formed is shown in FIG.
As shown in (b), the liquid film separation is torn into droplets, and at the time of separation, the particles are pulled by the primary particles 2 of the powder, which is the main droplet, and the portion that is left behind is the electrode side or the main droplet. The secondary particles 4 are independent droplets that cannot return to the side and are powdered.
Is. A phenomenon similar to this is observed when a highly viscous liquid is torn off, or when the restraining force is relatively large with respect to the detaching force, such as a water drop that naturally falls from a flat ceiling.

【0008】回転電極法では、電極固体の円周部が遠心
力の方向に対し直交しているため、ここでも拘束力が大
きく働くことに2次粒子発生の要因がある。そこで本発
明では、図1(a)に示すように液滴が離脱する電極周
縁部に、遠心力の方向に山と谷を有する角状の突起を設
けることにより、液滴の拘束力を弱め、離脱しやすくし
た。その具体的手段として、電極棒の側面に突起を複数
個設けている。突起のつくり方は、溶解が進行しても、
溶解断面が常に突起部をもつものであれば良い。但し、
遠心力の方向に山と谷を有することが必須で、特に谷の
ないもの、例えば多角柱に加工したものでは、液滴の拘
束力を弱めることが期待できない。また、液滴の離脱
は、電極の溶解面におけるほぼ全周縁部より起こり、放
射状に飛散するものであるから、本目的からして、角状
の突起は1箇所ではなく、全周に亘って複数個設けるも
のである。
In the rotating electrode method, since the circumference of the electrode solid is orthogonal to the direction of centrifugal force, a large binding force also causes the generation of secondary particles. In view of this, in the present invention, as shown in FIG. 1 (a), an angular projection having peaks and troughs in the direction of centrifugal force is provided on the peripheral edge of the electrode from which the droplet separates, thereby weakening the constraint force of the droplet. , Made it easier to leave. As a concrete means thereof, a plurality of protrusions are provided on the side surface of the electrode rod. How to make the protrusions is
It suffices that the melting cross section always has a protrusion. However,
It is essential to have peaks and troughs in the direction of centrifugal force, and it is not possible to expect weakening of the constraint force of the liquid droplets especially in those without troughs, for example, those processed into polygonal columns. Further, since the liquid droplets are detached from almost the entire periphery of the melting surface of the electrode and are scattered radially, for the purpose of the present invention, the angular projection is not located at one location but over the entire circumference. A plurality is provided.

【0009】また、突起の形では、突起と突起の間隔を
1〜4mmとし、且つ、谷の深さを0.2mm 以上とするのが
好ましい。突起と突起の間隔が 1mm未満であると、通常
の回転電極法がとり得る低速回転において、液滴が突起
と突起の隣りどおしに跨がることがあり、突起による液
滴の区分けが不充分となり、2次粒子の減少効果は薄れ
る。また、この間隔が4mmを越えると、突起と突起の間
からも溶滴が離脱する場合があり、特にその傾向は高速
回転において顕著に現れる。このような時も、2次粒子
の量は、本発明を適用しない場合に近づいて増加の傾向
を示す。なお、このような現象は、溶解熱源を解除した
のち回転を停めて、消耗電極を観察すれば容易に判別で
きるものである。
In the shape of the protrusions, it is preferable that the distance between the protrusions is 1 to 4 mm and the depth of the valley is 0.2 mm or more. If the distance between the protrusions is less than 1 mm, the droplets may straddle the protrusions and the adjacent protrusions at low speed rotation that can be achieved by the normal rotating electrode method, and the droplets may be separated by the protrusions. It becomes insufficient and the effect of reducing secondary particles is weakened. Further, if this distance exceeds 4 mm, the droplets may sometimes separate from between the protrusions, and this tendency is particularly remarkable at high speed rotation. Even in such a case, the amount of the secondary particles tends to increase in the case where the present invention is not applied. It should be noted that such a phenomenon can be easily identified by observing the consumable electrode after stopping the rotation after stopping the melting heat source.

【0010】さらに、谷の深さを 0.2mm以上とするの
は、これ以下では、融液の離脱が突起部に集中せず実質
的に突起のない場合と溶滴の拘束力が同じとなり、発明
の効果が期待できないためである。深さの上限について
は、本発明の溶滴の離脱に関する限り支障となるものは
なく、特定していない。しかし、実質的には加工方法,
電極棒の回転に耐える材料強度等により極端な数値はと
り得るべくもなく、極く常識的に上限が制限される。
Further, the reason for setting the depth of the valley to be 0.2 mm or more is that, when the depth is less than this, the desorption force of the melt is not concentrated on the protrusions and the droplet restraining force is the same as when there is substantially no protrusion, This is because the effect of the invention cannot be expected. The upper limit of the depth is not specified as it does not hinder the separation of the droplet of the present invention. However, in practice,
It is impossible to take an extreme value due to the strength of the material that can withstand the rotation of the electrode rod, and the upper limit is extremely common sense.

【0011】[0011]

【実施例・比較例】消耗電極に純チタン棒を用い、原寸
径50mmのものに切削およびローレット加工ならびに研削
加工方法を用いて、下記に示す各種サイズの突起加工を
全側面に長手方向へ谷が形成されるようにした。従っ
て、輪切り断面では、どの位置においても同じサイズの
山と谷を有するものである。回転電極法による溶解はヘ
リウムガス雰囲気の中でヘリウムプラズマによった。得
られたチタン球形粉末は、ASTM規格の篩によって分
級し、その粒径の分布を調べた。また、粒度分布図の特
徴を知るため、消耗電極に本発明の加工を施さない従来
方法の丸棒電極によるものを加えて比較しながら、効果
を判定した。なお、いづれの溶解においてもプラズマト
ランスファー電流は 200A, 電圧は70Vで行った。
[Examples / Comparative Examples] A pure titanium rod was used as a consumable electrode, and a projection, of various sizes shown below, was formed on all sides in the longitudinal direction by using cutting, knurling, and grinding methods for an original size of 50 mm. Was formed. Therefore, in the sliced cross section, ridges and valleys of the same size are present at any position. Melting by the rotating electrode method was carried out by helium plasma in a helium gas atmosphere. The obtained titanium spherical powder was classified by an ASTM standard sieve, and its particle size distribution was examined. In addition, in order to know the characteristics of the particle size distribution chart, the effect was judged by comparing the consumable electrode with a conventional round bar electrode not processed according to the present invention. In each melting, the plasma transfer current was 200 A and the voltage was 70 V.

【0012】実施例(1) 切削加工により突起間隔4mm, 深さ3mmの山形加工電極
棒を回転速度4,500rpmのもとに使用した。図2(a)にこの
とき得られた粉末の粒度分布を点線で示した。なお、こ
こで実線は比較のために行った丸棒電極によるものであ
る。この図より明らかなように、2次粒子の量はかなり
減少し、加工しないものが12.3%に対し加工したものは
1.9%であった。
Example (1) A chevron-shaped working electrode bar having a projection interval of 4 mm and a depth of 3 mm by cutting was used at a rotation speed of 4,500 rpm. The particle size distribution of the powder obtained at this time is shown by the dotted line in FIG. 2 (a). Here, the solid line is based on the round bar electrode used for comparison. As is clear from this figure, the amount of secondary particles decreased considerably, and the unprocessed one was 12.3%, while the processed one was 12.3%.
It was 1.9%.

【0013】比較例(1) 切削加工により突起間隔4mm, 深さ0mm、つまり多角形
断面を有する電極を使用して、実施例(1) と同じ方法で
粉末を作成した結果、粉末の粒度分布を図2(b)に点線で
示す。同時に丸棒電極によるものを実線で示したが、2
次粒子の量は加工しないもの12.3%に対し、加工したも
のは8.3%で、電極を加工した効果は少ない。
Comparative Example (1) A powder was prepared in the same manner as in Example (1) using an electrode having a protrusion interval of 4 mm and a depth of 0 mm, that is, a polygonal cross section by cutting, and as a result, the particle size distribution of the powder was obtained. Is shown by the dotted line in FIG. At the same time, the solid line shows the one with a round bar electrode.
The amount of secondary particles was 12.3% when not processed, but 8.3% when processed, and the effect of processing the electrode is small.

【0014】実施例(2) ローレット加工により突起間隔1mm, 深さ0.5 mmと突起
間隔 2.5mm, 深さ1mmの2種類の山形加工を行った消耗
電極を電極の回転速度6,000rpmで粉末製造を行った。得
られた粉末の粒度分布図を図3に点線で示し、図3(a)
は、突起間隔1mm, 深さ0.5 mmのものであり、図3(b)は
それらが 2.5mmと1mm のものである。また、ここでも丸
棒電極でのものを実線で示し、比較できるようにした。
いづれの結果も突起を設けたものは、丸棒電極による粉
末の2次粒子の量9.2%に比べ電極を加工したものは
(a)で2.0%、(b)で2.2%と2次粒子の発生が抑制
された。
Example (2) Two kinds of chevron-shaped consumable electrodes having a protrusion interval of 1 mm, a depth of 0.5 mm and a protrusion interval of 2.5 mm, and a depth of 1 mm were knurled to produce powder at an electrode rotation speed of 6,000 rpm. went. A particle size distribution chart of the obtained powder is shown in FIG. 3 by a dotted line, and FIG.
Have a projection interval of 1 mm and a depth of 0.5 mm, and Fig. 3 (b) shows those with 2.5 mm and 1 mm. Also here, the round bar electrode is shown by a solid line for comparison.
In each case, the one with the protrusions was 2.0% in (a) and 2.2% in (b) for the electrode processed, compared to 9.2% of the amount of secondary particles of the powder by the round bar electrode. Occurrence was suppressed.

【0015】実施例(3) 研削加工により突起間隔1mm, 深さ0.2 mmと突起間隔0.
7 mm, 深さ0.2mm の2種の山形加工を行った消耗電極棒
を、電極の回転速度を8,000rpmのもとに粉末製造した。
得られた粉末の粒度分布をそれぞれ図4(a)および図4(b)
に点線で示す。なお、比較のために同じ条件で丸棒電極
によるものを実線で示した。図4に示されるように、加
工しない丸棒の場合は粉末の2次粒子の量が9.0%であ
るのに対し、電極を加工したものは(a)では1.2%、
(b)では7.6%で、本発明のものは2次粒子が減少
し、間隔0.7 mmのものでは、減少の程度は少なかった。
Example (3) The protrusion interval was 1 mm, the depth was 0.2 mm, and the protrusion interval was 0 by grinding.
Two conical consumable electrode rods having a diameter of 7 mm and a depth of 0.2 mm were powder-produced at an electrode rotation speed of 8,000 rpm.
The particle size distribution of the obtained powder is shown in Fig. 4 (a) and Fig. 4 (b), respectively.
Is indicated by a dotted line. In addition, for comparison, a solid bar shows a case where a round bar electrode is used under the same conditions. As shown in FIG. 4, in the case of the round bar which is not processed, the amount of secondary particles of the powder is 9.0%, whereas in the case where the electrode is processed, it is 1.2% in (a),
In (b), the secondary particles decreased in 7.6% in the case of the present invention, and the degree of decrease was small in the case of the interval of 0.7 mm.

【0016】[0016]

【発明の効果】回転電極法において不可否的に発生して
いた2次粒子は、その量が少ないとは言え副産物である
ため工業生産では、生産の進行にともなって蓄積されて
くる。逆に2次粒子が細粒であることに注目し、これを
生産しようとしても量的には少な過ぎ、工業製品たり得
ない。そこで、本発明では、2次粒子の発生を極力減少
しようとしてなされたものであって、その効果のもたら
した意義は大きい。
The secondary particles, which are unavoidably generated in the rotating electrode method, are by-products although the amount thereof is small, so that they are accumulated in industrial production as the production progresses. On the contrary, paying attention to the fact that the secondary particles are fine particles, even if an attempt is made to produce them, the quantity is too small to be an industrial product. Therefore, in the present invention, the generation of secondary particles was sought to be reduced as much as possible, and the effect brought about was significant.

【図面の簡単な説明】[Brief description of drawings]

【図1】電極の溶解面からみた粉末粒子の生成模式図で
あって(a) は、本発明の消耗電極の例であり、(b) は比
較のために示した丸棒電極の場合を示す。
FIG. 1 is a schematic diagram of generation of powder particles as seen from the melting surface of an electrode, (a) is an example of a consumable electrode of the present invention, and (b) is a case of a round bar electrode shown for comparison. Show.

【図2】実施例(1) 及び比較例(1) において得られた粉
末の粒径分布を示し、実線は従来方法によるもの、点線
は側面に角状加工を施した電極によるものを示す。
FIG. 2 shows the particle size distributions of the powders obtained in Example (1) and Comparative Example (1), the solid line shows a conventional method, and the dotted line shows an electrode whose side surface is square-shaped.

【図3】実施例(2) において得られた粉末の粒径分布を
示し、実線は従来方法によるもの、点線は側面に角状加
工を施した電極によるものを示す。
FIG. 3 shows the particle size distribution of the powder obtained in Example (2), the solid line shows that by the conventional method, and the dotted line shows that by the electrode whose side surface is angularly processed.

【図4】実施例(3) において得られた粉末の粒径分布を
示し、実線は従来方法によるもの、点線は側面に角状加
工を施した電極によるものを示す。
FIG. 4 shows the particle size distribution of the powder obtained in Example (3), the solid line shows the one obtained by the conventional method, and the dotted line shows the one obtained by the electrode whose side surface is square-shaped.

【符号の説明】[Explanation of symbols]

1 消耗電極 2 粉末の1次粒子 3 電極の回転方向 4 2次粒子 1 Consumable electrode 2 Primary particle of powder 3 Rotation direction of electrode 4 Secondary particle

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 回転電極法により粉末製造を行う際に用
いる消耗電極棒において、電極棒の周縁部に遠心力の働
く方向に山と谷を有する角状の突起を複数個設けたこと
を特徴とする消耗電極棒。
1. A consumable electrode rod used when powder is produced by a rotating electrode method, wherein a plurality of angular protrusions having peaks and valleys are provided on a peripheral portion of the electrode rod in a direction in which centrifugal force acts. And consumable electrode rod.
【請求項2】 突起と突起の間隔を1〜4mmとし、且
つ、谷の深さを0.2mm以上にしたことを特徴とする請求
項1に記載の消耗電極棒。
2. The consumable electrode rod according to claim 1, wherein the interval between the protrusions is 1 to 4 mm, and the depth of the valley is 0.2 mm or more.
JP6106389A 1994-05-20 1994-05-20 Consummable electrode Pending JPH07316612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6106389A JPH07316612A (en) 1994-05-20 1994-05-20 Consummable electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6106389A JPH07316612A (en) 1994-05-20 1994-05-20 Consummable electrode

Publications (1)

Publication Number Publication Date
JPH07316612A true JPH07316612A (en) 1995-12-05

Family

ID=14432347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6106389A Pending JPH07316612A (en) 1994-05-20 1994-05-20 Consummable electrode

Country Status (1)

Country Link
JP (1) JPH07316612A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6924366B2 (en) 1995-06-07 2005-08-02 Bioteknologisk Institut Recombinant hexose oxidase, a method of producing same and use of such enzyme

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6924366B2 (en) 1995-06-07 2005-08-02 Bioteknologisk Institut Recombinant hexose oxidase, a method of producing same and use of such enzyme

Similar Documents

Publication Publication Date Title
JP4878364B2 (en) Electrostatic wet ionizer used in electrostatic separator
US20010026736A1 (en) Cutting matrix and method applying the same
JPH07316612A (en) Consummable electrode
US2305172A (en) Process for the conversion of liquid substances into finely divided form
US4834298A (en) Crushing method and apparatus
CA1172424A (en) Method of grinding magnesium ingots and such ingots
EP0799157B1 (en) Powder cleaning process and device
JP2017024124A (en) Method for cutting processing of aluminum wheel
JPH0244947Y2 (en)
US6015292A (en) Dental reamers and process for manufacturing same
JP2741205B2 (en) Material melting method for obtaining metal powder with uniform particle size
JPH11319728A (en) Single sphere sorting apparatus
JPH0119440B2 (en)
JP2607293Y2 (en) Ball end mill
WO2018151036A1 (en) Method for processing sputtering target and method for manufacturing sputtering target product
JPS62164804A (en) Production of pulverized metallic powder
US11949088B2 (en) Electrode treatment method
JPS60241943A (en) Manufacture of metallic grain piece
SU1282903A1 (en) Electric drum separator
JPH01172532A (en) Treatment of dry-collected dust from steel manufacturing stage
JPH0522382Y2 (en)
JP2690689B2 (en) Diamond cutter
EP0995500B1 (en) Classification of semiconductor material
KR101969106B1 (en) Method for processing sludge
DE19544887A1 (en) Powder cleaning

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees