Nothing Special   »   [go: up one dir, main page]

JPH07302510A - Conductive paste composition - Google Patents

Conductive paste composition

Info

Publication number
JPH07302510A
JPH07302510A JP6120642A JP12064294A JPH07302510A JP H07302510 A JPH07302510 A JP H07302510A JP 6120642 A JP6120642 A JP 6120642A JP 12064294 A JP12064294 A JP 12064294A JP H07302510 A JPH07302510 A JP H07302510A
Authority
JP
Japan
Prior art keywords
silver powder
weight
powder
average particle
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6120642A
Other languages
Japanese (ja)
Inventor
Akito Ishikawa
明人 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP6120642A priority Critical patent/JPH07302510A/en
Publication of JPH07302510A publication Critical patent/JPH07302510A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Non-Adjustable Resistors (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Conductive Materials (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

PURPOSE:To prevent the formation of cracks and leakage of glass at the time of sintering, heighten the adhesion strength between a substrate and an electrode, and prevent the electrode from being invaded by containing a silver powder as a conductive component in a prescribed condition. CONSTITUTION:As conductive components, 29-43 pts. by wt. of finely spherical silver powder, 0.5-12 pts. by wt. of roughly granular silver powder or roughly granular silver-coated nickle powder, and 26-41 pts. by wt. of flaky silver powder are contained in a conductive paste composition. In the case the average particle size of the finely spherical silver powder is less than 0.05mum, the silver powder coagulates itself easily and the dispersibility in a vehicle is lowered and thus the amount to be used is increased. In the case the size is over 0.4mum, no film with sufficient density can be obtained. In the case the average particle size of the roughly granular silver powder or the roughly granular silver-coated nickel powder is less than 0.8mum, no effect to suppress the sinterability of the film is obtained and in the case the size exceeds 3mum, the density of the film is lowered. As the flaky silver powder, one with 2-5.5mum average particle size of longer diameter is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば電子工業で用い
られている厚膜チップ抵抗器の電極を形成する場合など
に使用する導電ペースト組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive paste composition used for forming electrodes of thick film chip resistors used in the electronics industry.

【0002】[0002]

【従来の技術】上記のような厚膜チップ抵抗器は、一般
に次のような工程を経て製造される。即ち、アルミナ基
板上面に銀−パラジウム導電ペーストを印刷、乾燥、焼
成して上面電極を形成した後に、その上面電極の一部に
重なるようにルテニウム系抵抗ペーストを印刷、乾燥、
焼成して抵抗体を形成する。その抵抗体の上面にガラス
ペースト(プリコートガラス)を印刷、乾燥したのち温
度約600℃で焼成し、次いでレーザー光によって前記
抵抗体の一部を破壊して抵抗値修正を行った後、再び抵
抗体上にガラスペースト(オーバーコートガラス)を印
刷、乾燥し、温度約500〜600℃で焼成する。
2. Description of the Related Art The thick film chip resistor as described above is generally manufactured through the following steps. That is, a silver-palladium conductive paste is printed on the upper surface of an alumina substrate, dried, and baked to form an upper electrode, and then a ruthenium-based resistor paste is printed, dried so as to overlap a part of the upper electrode, dried,
Bake to form a resistor. A glass paste (pre-coated glass) is printed on the upper surface of the resistor, dried and then baked at a temperature of about 600 ° C. Then, a part of the resistor is destroyed by laser light to correct the resistance value, and then the resistor is re-set. A glass paste (overcoat glass) is printed on the body, dried, and baked at a temperature of about 500 to 600 ° C.

【0003】次に、上記のアルミナ基板を小さなチップ
に切断し、ディッピングあるいはローラ等によって側面
に銀−パラジウム導電ペーストを塗布し、乾燥後空気中
で温度約500〜600℃で焼成して側面電極を形成す
る。そして最後に、露出した上面電極および側面電極
に、半田付け時の電極食われ防止のために、Niメッ
キ、Sn−Pbメッキ等が施されて厚膜チップ抵抗器が
作製される。
Next, the above alumina substrate is cut into small chips, a silver-palladium conductive paste is applied to the side surface by dipping or a roller, dried and then baked in air at a temperature of about 500 to 600 ° C. to form a side surface electrode. To form. Finally, the exposed top surface electrode and side surface electrode are plated with Ni, Sn-Pb, or the like to prevent the electrodes from being damaged during soldering, and a thick film chip resistor is manufactured.

【0004】そして最近は、コストダウンのために前記
の上面電極と抵抗体を1回の焼成工程で形成する同時焼
成が行われるようになった。その同時焼成はアルミナ基
板上に銀−パラジウム導電ペーストを印刷、乾燥し、そ
の一部に重なるようにルテニウム系抵抗ペーストを印
刷、乾燥し、温度約850℃で焼成して上面電極と抵抗
体を形成する方法である。
Recently, in order to reduce the cost, the above-mentioned upper electrode and the resistor are simultaneously fired in one firing step. In the simultaneous firing, a silver-palladium conductive paste is printed and dried on an alumina substrate, a ruthenium-based resistance paste is printed and dried so as to overlap a part thereof, and the firing is performed at a temperature of about 850 ° C. to form a top electrode and a resistor. It is a method of forming.

【0005】しかし、上記の同時焼成をおこなった場
合、上面電極と抵抗体の接合部付近の抵抗体に焼成時の
熱収縮の差によりクラックが発生したり、導電ペースト
成分と抵抗ペースト成分が焼成中に反応し、上面電極と
抵抗体の重なり部分に発泡を生じたりして、抵抗値のバ
ラツキや電流ノイズの悪化が生じたり、メッキ性の悪化
が生じる問題があった。
However, when the above-mentioned simultaneous firing is performed, cracks may occur in the resistor near the junction between the upper electrode and the resistor due to the difference in heat shrinkage during firing, or the conductive paste component and the resistance paste component may be fired. There is a problem in that the reaction occurs inside and the foaming occurs in the overlapping portion of the upper surface electrode and the resistor, which causes variations in resistance value, deterioration of current noise, and deterioration of plating property.

【0006】また、一般の導電ペーストにおいては、基
板−電極間の接着強度の更なる向上が望まれているが、
チップ抵抗器の場合、Niメッキ工程におけるメッキ液
の内部浸入およびメッキ時に発生する水素による接着層
の劣化によって基板−電極間の接着強度は著しく低下す
る。その接着強度を向上させるためには緻密な電極膜を
形成しなければならない。しかし、電極膜を緻密にする
と、焼成中に抵抗体中のガラスが電極表面に滲みだし、
メッキの付着性を著しく低下させる等の問題があった。
Further, in the general conductive paste, it is desired to further improve the adhesive strength between the substrate and the electrode.
In the case of a chip resistor, the adhesive strength between the substrate and the electrode is significantly reduced due to the internal penetration of the plating solution in the Ni plating step and the deterioration of the adhesive layer due to hydrogen generated during plating. In order to improve the adhesive strength, a dense electrode film has to be formed. However, if the electrode film is made dense, the glass in the resistor will exude to the electrode surface during firing,
There is a problem that the adhesion of the plating is significantly reduced.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記の問題点
に鑑みて提案されたもので、厚膜チップ抵抗器等を製造
する際の焼成時に熱収縮差によるクラックが生じたり、
焼成中に抵抗体中のガラスが電極表面に滲みだすことが
なく、また基板と電極との接着強度の高い、更にはメッ
キ工程でのメッキ不良によりメッキ付着性がよくない場
合でも電極食われのない導電ペースト組成物を提供する
ことを目的とする。
SUMMARY OF THE INVENTION The present invention has been proposed in view of the above problems, and cracks due to a difference in heat shrinkage may occur during firing when manufacturing a thick film chip resistor or the like.
The glass in the resistor does not ooze onto the electrode surface during firing, the adhesion strength between the substrate and the electrode is high, and even if the plating adhesion is not good due to poor plating in the plating process, the electrode will not be eaten away. An object of the present invention is to provide a conductive paste composition that does not have a conductive paste.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに本発明による導電ペースト組成物は、以下の構成と
したものである。即ち、本発明による導電ペースト組成
物は、導電成分として少なくとも平均粒径0.05〜
0.4μmの微細球状銀粉29〜43重量部と、平均粒
径0.8〜3μmの粗粒球状銀粉または粗粒球状銀被覆
ニッケル粉0.5〜12重量部と、長径における平均粒
径が2〜5.5μmのフレーク状銀粉26〜41重量部
とを含有させたことを特徴とする。
In order to achieve the above object, the conductive paste composition according to the present invention has the following constitution. That is, the conductive paste composition according to the present invention has at least an average particle size of 0.05 to 0.5 as a conductive component.
29 to 43 parts by weight of 0.4 μm fine spherical silver powder, 0.5 to 12 parts by weight of coarse spherical silver powder or coarse spherical silver-coated nickel powder having an average particle diameter of 0.8 to 3 μm, and the average particle diameter in the major axis is It is characterized by containing 26 to 41 parts by weight of flake-shaped silver powder of 2 to 5.5 μm.

【0009】[0009]

【作用】前記のクラック等が生じるのは、焼成時の上面
電極と抵抗体の収縮のタイミングおよび上面電極の収縮
量に起因する。その電極の収縮速度は、使用する銀粉の
粒径に依存し、一般に粒径が小さいほど収縮開始温度は
低温側にシフトして収縮速度も速くなる。一方、電極の
収縮量は乾燥時の膜の充填性を向上させると減少する。
そのため、銀粉の比表面積が小さく、かつ表面の凹凸が
少なく、しかも有機ビヒクルとよく濡れることが肝要で
ある。このことに鑑み、本発明者は、導電ペースト組成
物に好適な導電成分の銀粉の最適な形状、粒径及びその
配合量を見い出し、上記の構成としたもので、それによ
って焼成時にクラック等が生じることのない良好な導電
ペーストを提供することが可能となる。
The above-mentioned cracks and the like are caused by the contraction timing of the upper surface electrode and the resistor during firing and the contraction amount of the upper surface electrode. The contraction speed of the electrode depends on the particle size of the silver powder used, and generally, the smaller the particle size, the more the contraction start temperature shifts to the lower temperature side and the faster the contraction speed. On the other hand, the amount of shrinkage of the electrode decreases when the filling property of the film during drying is improved.
Therefore, it is important that the silver powder has a small specific surface area, has little surface irregularity, and is well wetted with the organic vehicle. In view of this, the present inventor has found the optimum shape of the conductive component silver powder suitable for the conductive paste composition, the particle size and the blending amount thereof, and has the above-mentioned configuration, whereby cracks and the like during firing are caused. It is possible to provide a good conductive paste that does not occur.

【0010】なお本発明の導電ペーストには前記の導電
成分の他にビヒクルを混合するもので、そのビヒクルと
しては、例えばセルロース系もしくはアクリル系の樹脂
をテルピネオール等の溶剤に溶解させたもの等、従来公
知のものが使用できる。
The conductive paste of the present invention is a mixture of a vehicle in addition to the above-mentioned conductive components. Examples of the vehicle include a cellulosic or acrylic resin dissolved in a solvent such as terpineol. Conventionally known ones can be used.

【0011】前記の微細球状銀粉の球状とは、長短度
(長径/短径)が1〜2.5のものを指し、特にその長
短度が1〜1.25のものが、より好ましい。球状のも
のを用いるのは、球形でないと膜の焼結性が低下して好
ましくないためである。また微細球状銀粉の平均粒径
を、0.05〜0.4μmとしたのは、平均粒径が0.
05μm未満であると、銀粉同士の凝集が起こりやす
く、ビヒクル中の分散性が低下したり、ビヒクルの使用
量が多くなってしまう。また平均粒径が0.4μmを越
えると、十分に緻密な膜が得られず好ましくないためで
ある。なお、ビヒクル等との混練性を考慮すると、微細
球状銀粉の平均粒径は0.1〜0.3μm程度がより好
ましい。
The spherical shape of the above-mentioned fine spherical silver powder refers to one having a major / minor degree (major axis / minor axis) of 1 to 2.5, and particularly preferably having a major to minor degree of 1 to 1.25. The reason why a spherical shape is used is that the sinterability of the film decreases unless the shape is spherical, which is not preferable. The average particle size of the fine spherical silver powder is set to 0.05 to 0.4 μm because the average particle size is 0.
If it is less than 05 μm, the silver powders are likely to aggregate with each other, the dispersibility in the vehicle is lowered, and the amount of the vehicle used is increased. On the other hand, if the average particle size exceeds 0.4 μm, a sufficiently dense film cannot be obtained, which is not preferable. Considering the kneadability with a vehicle or the like, the average particle size of the fine spherical silver powder is more preferably about 0.1 to 0.3 μm.

【0012】粗粒球状銀粉または粗粒球状銀被覆ニッケ
ル粉の長短度は、上記微細球状銀粉の場合と同様であ
り、平均粒径を0.8〜3μmとしたのは、0.8μm
未満であると膜の焼結性を抑える効果が殆どなく、また
平均粒径が3μmを越えると焼成膜の緻密性が著しく低
下し、アルミナ基板等との接着強度が弱くなり好ましく
ないためである。なお上記の平均粒径は、粗粒球状銀粉
にあっては0.8〜2μm、粗粒球状銀被覆ニッケル粉
にあっては2〜3μm程度がより好ましい。
The coarseness and shortness of the coarse-grained spherical silver powder or the coarse-grained spherical silver-coated nickel powder is the same as that of the fine spherical silver powder described above, and the average grain size of 0.8 to 3 μm is 0.8 μm.
If it is less than the above range, there is almost no effect of suppressing the sinterability of the film, and if the average particle size exceeds 3 μm, the denseness of the baked film is remarkably lowered and the adhesion strength with the alumina substrate or the like is weakened, which is not preferable. . The average particle diameter is more preferably 0.8 to 2 μm in the case of coarse-grained spherical silver powder and about 2 to 3 μm in the case of coarse-grained spherical silver-coated nickel powder.

【0013】粗粒球状銀粉と粗粒球状銀被覆ニッケル粉
は、いずれを使用してもよいが、銀被覆ニッケル粉を使
用した場合には、電極膜自体の耐半田食われ性を向上さ
せることができるので、より好ましい。又その銀被覆ニ
ッケル粉のニッケル含有量は20〜60原子%の範囲が
好ましく、20原子%未満であると半田付け時の電極食
われを防ぐ効果が低下し、60原子%を越えると電極膜
の焼結性が低下する。
Either coarse-grained spherical silver powder or coarse-grained spherical silver-coated nickel powder may be used. However, when silver-coated nickel powder is used, the solder corrosion resistance of the electrode film itself should be improved. Is more preferable because it can Further, the nickel content of the silver-coated nickel powder is preferably in the range of 20 to 60 atomic%. If it is less than 20 atomic%, the effect of preventing electrode erosion during soldering is lowered, and if it exceeds 60 atomic%. Sinterability is reduced.

【0014】銀被覆ニッケル粉の製法は適宜であるが、
例えば無電解メッキ法等で製造することができる。具体
的には、例えば予めニッケル粉を分散させた水素化ホウ
素ナトリウム、アスコルビン酸等の水溶液中に銀イオン
を含む溶液を攪拌しながら添加すればよく、ニッケル粉
の量をコントロールすることによって任意の銀被覆量を
有する銀被覆ニッケル粉が得られる。また例えば、蒸着
法によっても製造することが可能であり、具体的には例
えばニッケル粉充填層中に加熱蒸発させた銀蒸気を通過
させればよく、その蒸着時間をコントロールすることに
よって任意の量の銀を被覆したニッケル粉が得られる。
Although the method for producing the silver-coated nickel powder is appropriate,
For example, it can be manufactured by an electroless plating method or the like. Specifically, for example, sodium borohydride in which nickel powder is dispersed in advance, a solution containing silver ions may be added to an aqueous solution of ascorbic acid or the like with stirring, and the amount of nickel powder may be adjusted to any value. A silver-coated nickel powder having a silver coverage is obtained. Further, for example, it can be produced also by a vapor deposition method. Specifically, for example, it suffices to pass silver vapor which has been heated and vaporized in a nickel powder filling layer, and an arbitrary amount can be obtained by controlling the vapor deposition time. A nickel powder coated with silver is obtained.

【0015】フレーク状銀粉は、前述のように長径にお
ける平均粒径が2〜5.5μmの範囲のものを使用す
る。その長径における平均粒径が2μm未満であると、
均一な混合が困難となる上に乾燥時の膜の充填率を向上
させる効果が少ない。また5.5μmを越えると焼成膜
の緻密性が著しく低下し、しかもスクリーン印刷等を行
う際にスクリーンの目詰まりを生じ易くなるためであ
る。さらに電極膜の収縮特性を考慮すると、2.5〜5
μmの範囲のものがより好ましい。またフレーク状銀粉
の長短度は1〜5、更に好ましくは1〜3.5の範囲内
のものを用いるとよく、厚さは0.05〜2μm、更に
好ましくは0.1〜1.2μmのものを使用するとよ
い。
As described above, the flake-shaped silver powder has an average particle diameter in the major axis range of 2 to 5.5 μm. When the average particle diameter in the major axis is less than 2 μm,
Uniform mixing becomes difficult, and the effect of improving the filling rate of the film during drying is small. On the other hand, if it exceeds 5.5 μm, the denseness of the fired film is remarkably lowered, and the screen is likely to be clogged during screen printing or the like. Further, considering the shrinkage characteristics of the electrode film, 2.5 to 5
The range of μm is more preferable. The flake-shaped silver powder having a length of 1 to 5, more preferably 1 to 3.5 is preferably used, and the thickness thereof is 0.05 to 2 μm, more preferably 0.1 to 1.2 μm. You should use one.

【0016】上記の微細球状銀粉、粗粒球状銀粉または
粗粒球状銀被覆ニッケル粉、およびフレーク状銀粉の配
合量は、前記のように微細球状銀粉を29〜43重量
部、粗粒球状銀粉または粗粒球状銀被覆ニッケル粉を
0.5〜12重量部、フレーク状銀粉を26〜41重量
部とする。
The fine spherical silver powder, coarse spherical silver powder or coarse spherical silver-coated nickel powder, and flake silver powder are blended in the amount of 29 to 43 parts by weight of fine spherical silver powder, coarse spherical silver powder or Coarse-grained spherical silver-coated nickel powder is 0.5 to 12 parts by weight, and flaky silver powder is 26 to 41 parts by weight.

【0017】微細球状銀粉を29〜43重量部としたの
は、29重量部未満であると、電極膜がポーラスとな
り、アルミナ基板等との接着強度が低下したり、導電抵
抗値が上昇したりして好ましくなく、また43重量部を
越えると、焼成膜が緻密になりすぎ、焼結時の電極の収
縮率が大きくなり過ぎるため抵抗体ガラスの滲み出しや
クラックが発生しやすくなるためである。
The reason why the amount of the fine spherical silver powder is 29 to 43 parts by weight is that when the amount is less than 29 parts by weight, the electrode film becomes porous and the adhesive strength with an alumina substrate or the like is lowered, or the conductive resistance value is increased. If the amount exceeds 43 parts by weight, the fired film becomes too dense, and the shrinkage ratio of the electrode during sintering becomes too large, so that exudation or cracking of the resistor glass is likely to occur. .

【0018】粗粒球状銀粉または粗粒球状銀被覆ニッケ
ル粉を、0.5〜12重量部の範囲内としたのは、0.
5重量部未満では焼成膜の緻密性をコントロールするこ
とが難しく、12重量部を越えると焼成膜の緻密性が著
しく低下して好ましくないためである。
The coarse spherical silver powder or the coarse spherical silver-coated nickel powder is set within the range of 0.5 to 12 parts by weight.
This is because if the amount is less than 5 parts by weight, it is difficult to control the denseness of the fired film, and if it exceeds 12 parts by weight, the denseness of the fired film is significantly reduced, which is not preferable.

【0019】フレーク状銀粉を26〜41重量部の範囲
内としたのは、41重量部を越えると焼成膜の緻密性が
低くなり接着強度が低下し、導電抵抗値が上昇してしま
い好ましくなく、また26重量部未満であると焼成時の
収縮が大きくなり過ぎてクラックが発生し易くなるため
である。
The flake-shaped silver powder is set in the range of 26 to 41 parts by weight because when it exceeds 41 parts by weight, the denseness of the fired film is lowered, the adhesive strength is lowered, and the conductive resistance value is increased, which is not preferable. If the amount is less than 26 parts by weight, shrinkage during firing becomes too large and cracks are likely to occur.

【0020】なお粗粒球状銀粉を用いる場合には、微細
球状銀粉を29〜38重量部、粗粒球状銀粉を3.5〜
11.5重量部、フレーク状銀粉を26.5〜40.5
重量部の範囲とするのがより好ましく、また粗粒球状銀
被覆ニッケル粉を用いる場合には、微細球状銀粉を29
〜43重量部、粗粒球状銀被覆ニッケル粉を0.8〜
1.5重量部、フレーク状銀粉を29〜38重量部の範
囲とするのがより好ましい。
When the coarse spherical silver powder is used, 29 to 38 parts by weight of the fine spherical silver powder and 3.5 to 3.5 of the coarse spherical silver powder are used.
11.5 parts by weight of flaky silver powder 26.5 to 40.5
It is more preferable that the content is in the range of parts by weight, and if the coarse-grained spherical silver-coated nickel powder is used, the fine spherical silver powder is 29
~ 43 parts by weight, 0.8 ~ of coarse-grained spherical silver-coated nickel powder
It is more preferable that the amount of the flaky silver powder is 1.5 parts by weight and the amount of the flaky silver powder is 29 to 38 parts by weight.

【0021】次に、上記以外の導電成分として、パラジ
ウム粉を添加してもよい。そのパラジウム粉は必ずしも
添加しなくてもよいが、銀の硫化を防ぐため、例えば電
極等を形成する銀が空気中の硫黄性ガス等により硫化さ
れて電極が断線するおそれがあるような場合には添加す
るのが望ましい。その添加量は、0.5〜2重量部程度
が好ましい。それよりも少ないと硫化を防ぐ効果が少な
く、あまり多いと材料コストが増大するためである。ま
たパラジウム粉の粒径については、特に制限はなく、一
般に使用される0.05〜3μm程度のものでよい。
Next, palladium powder may be added as a conductive component other than the above. The palladium powder is not necessarily added, but in order to prevent the sulfuration of silver, for example, when the silver forming the electrode or the like is sulfurized by the sulfur gas in the air or the like, the electrode may be broken. Is preferably added. The amount added is preferably about 0.5 to 2 parts by weight. This is because if it is less than that, the effect of preventing sulfidation is small, and if it is too much, the material cost increases. The particle size of the palladium powder is not particularly limited and may be about 0.05 to 3 μm which is generally used.

【0022】また基板と電極との接着強度を高めるため
に、固形成分としてガラスフリットや、無機結合剤とし
て銅または酸化銅もしくはその両方を添加するとよい。
その場合、ガラスフリットとしては屈服温度が400〜
550℃でかつ、熱膨張係数が5〜9.5×10-6/℃
程度のものを使用するとよい。
Further, in order to enhance the adhesive strength between the substrate and the electrode, it is preferable to add glass frit as a solid component and copper or copper oxide or both as an inorganic binder.
In that case, a glass frit with a yielding temperature of 400-
550 ° C and a thermal expansion coefficient of 5 to 9.5 × 10 -6 / ° C
It is good to use a good one.

【0023】ガラスフリットの屈服温度を400〜55
0℃の範囲としたのは、屈服温度が400℃未満では電
極表面にガラスが浮き出たり、電極膜中に気泡が入った
りして、メッキ付け性の低下や導電抵抗値が上昇する等
の不具合が生じるおそれがあり、また屈服温度が550
℃を越えると、ガラスが充分流動化せず銀の焼結および
銅とアルミナ基板の反応を促進する効果が得られないた
めである。
The glass frit yielding temperature is 400-55.
The range of 0 ° C is that when the yielding temperature is less than 400 ° C, glass floats on the electrode surface or bubbles are contained in the electrode film, resulting in a decrease in plating property and an increase in conductive resistance. May occur, and the yielding temperature is 550
This is because if the temperature exceeds ℃, the glass is not sufficiently fluidized and the effect of promoting the sintering of silver and the reaction between the copper and the alumina substrate cannot be obtained.

【0024】またガラスフリットの熱膨張係数を5〜
9.5×10-6/℃としたのは、ガラスフリットの熱膨
張係数がアルミナ基板等の熱膨張係数(約7×10-6
℃)と大きく異なると、熱エージングや冷熱サイクルに
よってガラス相に過大な応力が生じて接着強度が低下す
る不具合が生じるためである。
Further, the coefficient of thermal expansion of the glass frit is set to 5
9.5 × 10 −6 / ° C. is set because the glass frit has a thermal expansion coefficient of about 7 × 10 −6 /
This is because when the temperature is significantly different from (° C.), excessive stress is generated in the glass phase due to heat aging and cooling / heating cycles, and the adhesive strength is reduced.

【0025】ガラスフリットの種類は特に限定されず、
PbO−B2 3 −SiO2 系、PbO−B2 3 −Z
nO系、PbO−SiO2 −Al2 3 系等の種々のも
のが使用できる。なお、前記ガラスフリットには、Ni
メッキによるガラス相の強度劣化を抑えるため、TiO
2 を含んだものがより好適である。そのTiO2 の含有
量は3〜10重量%程度がよい。3重量%未満ではガラ
ス相の耐酸性を向上させる効果が少なく、10重量%を
越えるとガラスの屈服温度が高くなり過ぎるためであ
る。
The type of glass frit is not particularly limited,
PbO-B 2 O 3 -SiO 2 system, PbO-B 2 O 3 -Z
Various materials such as nO type and PbO—SiO 2 —Al 2 O 3 type can be used. The glass frit contains Ni.
To suppress the strength deterioration of the glass phase due to plating, TiO 2
Those containing 2 are more preferable. The content of TiO 2 is preferably about 3 to 10% by weight. This is because if it is less than 3% by weight, the effect of improving the acid resistance of the glass phase is small, and if it exceeds 10% by weight, the yielding temperature of the glass becomes too high.

【0026】ガラスフリットの平均粒径は、一般に1〜
2.5μmのものが使用される。またガラスフリットの
配合量は0.5〜2重量部程度が好ましい。0.5重量
部未満では電極とアルミナ基板の接着強度が低下し、2
重量部を越えるとガラスの滲み出しが生じやすくなるた
めである。
The average particle size of the glass frit is generally 1 to
A 2.5 μm one is used. The amount of glass frit compounded is preferably about 0.5 to 2 parts by weight. If the amount is less than 0.5 parts by weight, the adhesive strength between the electrode and the alumina substrate decreases, and
This is because if it exceeds the weight part, the glass is likely to seep out.

【0027】さらに、必要に応じて前記のように銅粉ま
たは酸化銅もしくはその両者を無機結合剤として添加す
るとよく、その添加量は0.5〜1.5重量部程度が好
ましい。、0.5重量部未満であると電極とアルミナ基
板との接着強度が低下してしまい、また1.5重量部を
越えると抵抗値や抵抗温度係数等の抵抗体特性を劣って
しまうためである。
Further, if necessary, copper powder or copper oxide or both may be added as an inorganic binder as described above, and the addition amount thereof is preferably about 0.5 to 1.5 parts by weight. If it is less than 0.5 parts by weight, the adhesive strength between the electrode and the alumina substrate will be reduced, and if it exceeds 1.5 parts by weight, the resistance characteristics such as the resistance value and the temperature coefficient of resistance will be deteriorated. is there.

【0028】[0028]

【実施例】以下、本発明による導電ペースト組成物の具
体的な実施例および比較例について説明する。なお後述
する実施例および比較例では、以下の銀粉およびガラス
フリット等を用いた。
EXAMPLES Specific examples and comparative examples of the conductive paste composition according to the present invention will be described below. In the examples and comparative examples described below, the following silver powder and glass frit were used.

【0029】銀粉としては、微細球状銀粉、粗粒球状銀
粉、粗粒フレーク状銀粉を含めて下記表1に示すものを
使用した。なお球状銀粉としては自社製のものを使用
し、またフレーク状銀粉としては、平均粒径1〜2μm
の球状銀粉をアトライターミルにより任意時間処理して
フレーク状に形成したものを使用した。それらの銀粉の
種類と粒子形状および平均粒径を下記表1にまとめて示
す。
As the silver powder, those shown in Table 1 below were used, including fine spherical silver powder, coarse spherical silver powder, and coarse flake silver powder. The spherical silver powder used is made in-house, and the flake-shaped silver powder has an average particle size of 1 to 2 μm.
The spherical silver powder was treated in an attritor mill for an arbitrary time to form flakes. The types, particle shapes and average particle diameters of these silver powders are summarized in Table 1 below.

【0030】 [0030]

【0031】なお上記表中の球状銀粉S1〜S6は、い
ずれも長短度(長径/短径)が1〜1.25の球状であ
る。またフレーク状銀粉F1〜F4の表中の平均粒径
は、長径の平均粒径であり、走査型電子顕微鏡により直
接測定して求めたものである。また各フレーク状銀粉
は、いずれも長短度が1〜3.5の範囲内で、厚さが
0.1〜1.2μmの鱗片状のものである。
The spherical silver powders S1 to S6 in the above table are all spherical with a major / minor degree (major axis / minor axis) of 1 to 1.25. Further, the average particle diameters of the flaky silver powders F1 to F4 in the table are the average particle diameters of long diameters, and are obtained by directly measuring with a scanning electron microscope. Each of the flaky silver powders is in the form of flakes having a length within a range of 1 to 3.5 and a thickness of 0.1 to 1.2 μm.

【0032】銀被覆ニッケル粉としては、無電解メッキ
法によって作製した種々のものを使用した。それらの平
均粒径と銀被覆量を下記表2にまとめて示す。なお、形
状はいずれも球状である。
Various silver-coated nickel powders prepared by electroless plating were used. The average particle size and the amount of silver coating are summarized in Table 2 below. The shape is spherical.

【0033】 [0033]

【0034】また、ガラスフリットとしては下記表3に
示す組成のものを用意した。屈服温度、熱膨張係数を併
せて表中に示す。なお、ガラスフリットの平均粒径はい
ずれも1〜2.5μmであった。
Further, glass frit having the composition shown in Table 3 below was prepared. The yielding temperature and the coefficient of thermal expansion are shown together in the table. The average particle size of the glass frit was 1 to 2.5 μm.

【0035】 [0035]

【0036】〔実施例〕実施例1〜16として、上記の
銀粉または銀被覆ニッケル粉の中から適宜選択し、それ
にガラスフリット、無機結合剤、パラジウム(Pd)
粉、ビヒクルとを3本ロールミルで混練して種々のペー
ストを作成した。それらの各実施例における配合比率を
下記表4に示す。
[Examples] In Examples 1 to 16, a silver frit, an inorganic binder, and palladium (Pd) were appropriately selected from the above silver powder or silver-coated nickel powder.
The powder and the vehicle were kneaded with a three-roll mill to prepare various pastes. Table 4 below shows the compounding ratio in each of these Examples.

【0037】 [0037]

【0038】なお、上記実施例においては無機結合剤と
して、表中にも記載したように試薬一級の酸化第一銅
(Cu2 O)または試薬1級の酸化第二銅(CuO)も
しくは金属銅粉を用いた。またパラジウム粉としては、
平均粒径0.3μmの球状のもの(自社製;商品名SP
F−030)を用いた。さらに、ビヒクルとしては、エ
チルセルロースを15重量%溶解したテルピネオールを
用いた。
In the above examples, as the inorganic binder, as shown in the table, reagent-grade cuprous oxide (Cu 2 O), reagent-grade cupric oxide (CuO), or metallic copper was used. Powder was used. Also, as palladium powder,
Spherical particles with an average particle size of 0.3 μm (made in-house; trade name SP
F-030) was used. Furthermore, as the vehicle, terpineol in which 15% by weight of ethyl cellulose was dissolved was used.

【0039】〔比較例〕上記実施例1〜16に対する比
較例1〜9として下記表5に示す配合比率よりなるペー
ストを作成した。なお、そのペーストの作製要領や他の
条件は上記実施例の場合と同様である。
Comparative Example As Comparative Examples 1 to 9 with respect to Examples 1 to 16, pastes having the compounding ratios shown in Table 5 below were prepared. In addition, the manufacturing procedure of the paste and other conditions are the same as those in the above-mentioned embodiment.

【0040】 [0040]

【0041】上記実施例1〜16および比較例1〜9で
得られたペーストを用いて接着強度、クラックの発生、
ガラスの滲みだしの程度を調べた。その結果を下記表6
および表7に示す。
Using the pastes obtained in Examples 1 to 16 and Comparative Examples 1 to 9 described above, the adhesive strength, the occurrence of cracks,
The extent of oozing of the glass was examined. The results are shown in Table 6 below.
And shown in Table 7.

【0042】 [0042]

【0043】 [0043]

【0044】なお上記の接着強度は以下のようにして調
べた。先ず、純度96重量%の1インチ角のアルミナ基
板(京セラ株式会社製商品名A473)上に、前記実施
例および比較例で得られたペーストを、焼成時の厚さが
約8μmとなるように2mm角のパッドをスクリーン印
刷したものを、温度120℃で15分間乾燥したのち
に、ベルト式連続焼成炉によりピーク温度850℃×9
分間焼成し、そのパッド上に厚さ5μmのニッケルメッ
キを施したのちに、直径0.65mmのスズメッキ銅線
を63重量%Sn−37重量%Pd半田で半田付けし
た。
The above-mentioned adhesive strength was examined as follows. First, on a 1-inch square alumina substrate (Kyocera Corporation, trade name A473) having a purity of 96% by weight, the pastes obtained in the above Examples and Comparative Examples were made to have a thickness of about 8 μm when fired. A 2-mm square pad screen-printed was dried at a temperature of 120 ° C for 15 minutes, and then a peak temperature of 850 ° C x 9 was measured by a belt-type continuous firing furnace.
After firing for minutes, a nickel plating having a thickness of 5 μm was applied on the pad, and then a tin-plated copper wire having a diameter of 0.65 mm was soldered with 63 wt% Sn-37 wt% Pd solder.

【0045】次に、上記のスズメッキ銅線をパッド端部
で基板に対して直角に折曲げ、引っ張り試験機により、
基板を固定したままでスズメッキ銅線を引っ張って接着
強度を測定した。なお、上記の引っ張り試験は半田付け
直後のもの(初期強度)と、半田付けしたのち温度15
0℃で24時間エージング処理を行ったもの(エージン
グ強度)との2種類の試料について測定した。
Next, the above tin-plated copper wire was bent at a pad end at a right angle to the substrate, and a tensile tester was used.
The tin-plated copper wire was pulled while the substrate was fixed, and the adhesive strength was measured. In addition, the above-mentioned tensile test is performed immediately after soldering (initial strength)
The measurement was performed on two types of samples, one that was aged at 0 ° C. for 24 hours (aging strength).

【0046】上記の初期強度およびエージング強度は、
ともに60(N/4mm2 )以上あれば実用に供するこ
とができるもので、本発明による実施例1〜16のペー
ストはいずれも60(N/4mm2 )以上であった。こ
れに対し、比較例2、3、5〜7、9のものは60以下
で実用に供することができないことが分かった。
The above initial strength and aging strength are
If both are 60 (N / 4 mm 2 ) or more, they can be put to practical use, and all the pastes of Examples 1 to 16 according to the present invention were 60 (N / 4 mm 2 ) or more. On the other hand, it was found that those of Comparative Examples 2, 3, 5, 7 and 9 were 60 or less and could not be put to practical use.

【0047】またクラックの有無については以下の要領
で調べた。すなわち、上記の接着強度試験で形成した2
mm角のパッドの代わりに1.5mm角の複数個のパッ
ドをスクリーン印刷し乾燥した後に、隣り合うパッド間
(距離は1mm)に自社製の抵抗ペースト(商品名R−
12SX)を焼成膜厚が8μmになるようにスクリーン
印刷し乾燥した後に焼成して同時焼成試験片を作った。
The presence or absence of cracks was examined by the following procedure. That is, 2 formed by the above adhesive strength test
After screen-printing a plurality of 1.5 mm-square pads instead of the mm-square pads and drying, a self-made resistor paste (trade name R-
12SX) was screen-printed so that the fired film thickness was 8 μm, dried and fired to prepare a co-fired test piece.

【0048】その同時焼成試験片の電極と抵抗体との接
合付近にクラックが発生しているか否かを走査型電子顕
微鏡により調べた。前記表6および表7には、クラック
が認められなかったものに○印を、認められたものには
×印を付したもので、本発明による実施例1〜16にお
いては、いずれもクラックが認められなかった。これに
対し、比較例2〜7および9においてはクラックが生じ
ていた。
Whether or not cracks were generated in the vicinity of the joint between the electrode of the co-fired test piece and the resistor was examined by a scanning electron microscope. In Tables 6 and 7, those with no cracks were marked with a circle, and those with cracks were marked with a cross. In Examples 1 to 16 according to the present invention, cracks were observed. I was not able to admit. On the other hand, in Comparative Examples 2 to 7 and 9, cracks were generated.

【0049】さらにガラスの滲みだしに関しては、上記
のクラックの有無を調べた場合と同様に同時焼成試験片
を使用し、電極(パッド)と抵抗体との接合部付近につ
いてEDXによる面分析によりガラスの滲みだしを評価
した。前記表6および表7には、ガラスの滲みだしがな
かったものに○印を、滲みだしがあったものに×印を付
したもので、本発明による実施例1〜16においては、
いずれもガラスの滲みだしが認められなかった。これに
対し、比較例1においてはガラスの滲みだしが認められ
た。
Further, regarding the exudation of the glass, a co-fired test piece was used in the same manner as in the case of checking the presence of cracks as described above, and the glass was subjected to surface analysis by EDX in the vicinity of the joint between the electrode (pad) and the resistor. The bleeding of the was evaluated. In Tables 6 and 7, those having no glass bleeding are marked with a circle, and those having a glass bleeding are marked with a cross. In Examples 1 to 16 according to the present invention,
No bleeding of the glass was observed in any of them. On the other hand, in Comparative Example 1, exudation of glass was observed.

【0050】またガラスフリットは、屈服温度が400
〜550℃でかつ、熱膨張係数が5〜9.5×10-6
℃の特性を有するものが好ましく、又そのガラスフリッ
トの添加量は0.5〜1.5重量部、無機結合剤は0.
5〜1.5重量部が好適であることを確認した。
Further, the glass frit has a yielding temperature of 400.
Up to 550 ° C. and a thermal expansion coefficient of 5 to 9.5 × 10 −6 /
The glass frit is added in an amount of 0.5 to 1.5 parts by weight, and the inorganic binder is 0.1.
It was confirmed that 5 to 1.5 parts by weight was suitable.

【0051】なお前記実施例および比較例で得られたペ
ーストの耐半田性についても以下の要領で試験を行っ
た。即ち、前記の接着強度試験で形成したパッドの代わ
りに幅0.5mm、延べ長さ50mmの回路パターンを
スクリーン印刷したものを前記と同様の要領で焼成して
電極を形成し、その電極を形成した導体パターン試料を
温度250±5℃に保った2重量%Ag−62重量%S
n−36重量%Pb組成の半田浴中に10秒間浸漬した
のちに引き上げることを繰り返し行い、電極の抵抗値が
測定できなくなるほどに抵抗値が高くなるまでの浸漬回
数の多寡により耐半田性を評価した。
The solder resistance of the pastes obtained in the above Examples and Comparative Examples was also tested in the following manner. That is, instead of the pad formed in the above-described adhesive strength test, a circuit pattern having a width of 0.5 mm and a total length of 50 mm is screen-printed and baked in the same manner as described above to form an electrode, and the electrode is formed. 2 wt% Ag-62 wt% S in which the temperature of the conductor pattern sample was maintained at 250 ± 5 ° C.
It is immersed in a solder bath of n-36 wt% Pb composition for 10 seconds and then repeatedly pulled up, and the solder resistance is increased by the number of dippings until the resistance value becomes so high that the resistance value of the electrode cannot be measured. evaluated.

【0052】その結果、銀被覆ニッケル粉を用いた実施
例6〜10のペーストにおいては、いずれも10回以上
浸漬しても電極の抵抗値を測定することができ、銀被覆
ニッケル粉を用いたものは特に耐半田性がよいことが分
かった。これは銀被覆ニッケル粉を用いることによって
電極膜自体の耐半田食われ性が改善されるためであり、
又それによってメッキ工程でのメッキ不良によりメッキ
付着性がよくない場合でも電極食われを防止することが
可能となる。また比較例6、7、9のように銀被覆ニッ
ケル粉を用いたものについても上記と同様であったが、
比較例8のように銀被覆量の少ない前記のN1を用いた
ものは数回浸漬するまでに電極の抵抗値を測定すること
ができなくなり、銀被覆量が少ないと耐半田性が低下す
ることが確認できた。
As a result, in the pastes of Examples 6 to 10 using the silver-coated nickel powder, the resistance value of the electrode could be measured even after dipping 10 times or more, and the silver-coated nickel powder was used. It has been found that the product has particularly good solder resistance. This is because the solder corrosion resistance of the electrode film itself is improved by using silver-coated nickel powder,
In addition, this makes it possible to prevent electrode erosion even when the plating adhesion is poor due to defective plating in the plating process. The same applies to the cases using silver-coated nickel powder as in Comparative Examples 6, 7, and 9, but
In the case of using N1 having a small amount of silver coating as in Comparative Example 8, the resistance value of the electrode cannot be measured until it is dipped several times, and the solder resistance is deteriorated when the amount of silver coating is small. Was confirmed.

【0053】[0053]

【発明の効果】以上説明したように本発明による導電ペ
ースト組成物は、導電成分として微細球状銀粉と、粗粒
球状銀粉または球状銀被覆ニッケル粉およびフレーク状
銀粉を前記の条件で含有させたことによって、接着強度
等の特性に優れた導電ペーストを提供できると共に、例
えば厚膜チップ抵抗器を製造する際に上面電極と抵抗体
を1回の焼成工程で形成する場合にも前記従来のように
クラックの発生やガラスの滲み出しを防止することがで
きる。また特に銀被覆ニッケル粉を用いた場合には耐半
田性を大幅に向上させることができる等の効果がある。
As described above, the conductive paste composition according to the present invention contains fine spherical silver powder, coarse spherical silver powder or spherical silver-coated nickel powder and flake silver powder as the conductive components under the above-mentioned conditions. By this, it is possible to provide a conductive paste having excellent characteristics such as adhesive strength, and also in the case of forming a top electrode and a resistor in one firing step when manufacturing a thick film chip resistor, for example, as in the conventional case. It is possible to prevent the generation of cracks and the exudation of glass. Further, particularly when silver-coated nickel powder is used, there is an effect that solder resistance can be greatly improved.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径0.05〜0.4μmの微細球
状銀粉29〜43重量部と、平均粒径0.8〜3μmの
粗粒球状銀粉または粗粒球状銀被覆ニッケル粉0.5〜
12重量部と、長径における平均粒径が2〜5.5μm
のフレーク状銀粉26〜41重量部とを導電成分として
含有する導電ペースト組成物。
1. 29 to 43 parts by weight of fine spherical silver powder having an average particle diameter of 0.05 to 0.4 μm, and coarse spherical silver powder or coarse spherical silver-coated nickel powder 0.5 having an average particle diameter of 0.8 to 3 μm. ~
12 parts by weight and the average particle diameter in the major axis is 2 to 5.5 μm
A conductive paste composition containing 26 to 41 parts by weight of the flake-shaped silver powder as described above as a conductive component.
【請求項2】 平均粒径0.05〜0.4μmの微細球
状銀粉29〜38重量部と、平均粒径0.8〜2μmの
粗粒球状銀粉3.5〜11.5重量部と、長径における
平均粒径が2〜5μmのフレーク状銀粉26.5〜4
0.5重量部とを導電成分として含有する導電ペースト
組成物。
2. A fine spherical silver powder having an average particle diameter of 0.05 to 0.4 μm, 29 to 38 parts by weight, and a coarse spherical silver powder having an average particle diameter of 0.8 to 2 μm, 3.5 to 11.5 parts by weight, Flake-shaped silver powder 26.5-4 having an average particle diameter of 2-5 μm in the major axis
A conductive paste composition containing 0.5 part by weight as a conductive component.
【請求項3】 平均粒径0.05〜0.4μmの微細球
状銀粉29〜43重量部と、平均粒径が2〜3μmでニ
ッケル含有量が20〜60原子%の粗粒球状銀被覆ニッ
ケル粉0.8〜1.5重量部と、長径における平均粒径
が2〜5μmのフレーク状銀粉29〜38重量部とを導
電成分として含有する導電ペースト組成物。
3. A spherical spherical silver-coated nickel having an average particle diameter of 0.05 to 0.4 μm, 29 to 43 parts by weight, and an average particle diameter of 2 to 3 μm, and a nickel content of 20 to 60 atomic%. A conductive paste composition containing 0.8 to 1.5 parts by weight of powder and 29 to 38 parts by weight of flake silver powder having an average particle diameter in the major axis of 2 to 5 μm as conductive components.
【請求項4】 導電成分としてパラジウム粉0.5〜2
重量部を添加してなる請求項1、2または3に記載の導
電ペースト組成物。
4. Palladium powder 0.5 to 2 as a conductive component
The conductive paste composition according to claim 1, 2 or 3, which is obtained by adding a part by weight.
【請求項5】 固形成分として屈服温度が400〜55
0℃で熱膨張係数が5〜9.5×10-6/℃のガラスフ
リット0.5〜2重量部と、銅又は/及び酸化銅0.5
〜1.5重量部とを含有する請求項1、2、3または4
に記載の導電ペースト組成物。
5. A solid component having a yielding temperature of 400 to 55.
0.5 to 2 parts by weight of a glass frit having a thermal expansion coefficient of 5 to 9.5 × 10 −6 / ° C. at 0 ° C. and copper or / and copper oxide 0.5.
To 1.5 parts by weight.
The conductive paste composition according to.
JP6120642A 1994-05-10 1994-05-10 Conductive paste composition Withdrawn JPH07302510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6120642A JPH07302510A (en) 1994-05-10 1994-05-10 Conductive paste composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6120642A JPH07302510A (en) 1994-05-10 1994-05-10 Conductive paste composition

Publications (1)

Publication Number Publication Date
JPH07302510A true JPH07302510A (en) 1995-11-14

Family

ID=14791282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6120642A Withdrawn JPH07302510A (en) 1994-05-10 1994-05-10 Conductive paste composition

Country Status (1)

Country Link
JP (1) JPH07302510A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134351A (en) * 2000-10-30 2002-05-10 Kyocera Corp Conductive paste and laminated ceramic capacitor using the same
JP2003091367A (en) * 2001-09-17 2003-03-28 Kawaguchiko Seimitsu Co Ltd Touch panel
JP2004362950A (en) * 2003-06-05 2004-12-24 Noritake Co Ltd Conductive paste mainly composed of silver powder, and its manufacturing method
JP2005203304A (en) * 2004-01-19 2005-07-28 Hitachi Chem Co Ltd Mixed conductive powder
JP2006028213A (en) * 2004-07-12 2006-02-02 Toyama Prefecture Functional electroconductive coating, electronic circuit using the same and its formation method
JP2006059169A (en) * 2004-08-20 2006-03-02 Fujitsu Ltd Touch panel device and manufacturing method
JP2006128608A (en) * 2004-09-29 2006-05-18 Kyocera Corp Electronic part, method for manufacturing the same, chip resistor using the same, ferrite core and inductor
US7157023B2 (en) 2001-04-09 2007-01-02 E. I. Du Pont De Nemours And Company Conductor compositions and the use thereof
JP2007035353A (en) * 2005-07-25 2007-02-08 Namics Corp Metal paste
JP2007123832A (en) * 2005-09-27 2007-05-17 Hokuriku Electric Ind Co Ltd Terminal structure of chip-like electrical part
JP2008182128A (en) * 2007-01-25 2008-08-07 Taiyosha Electric Co Ltd Chip resistor
US7470380B2 (en) 2003-04-01 2008-12-30 E.I. Du Pont De Nemours And Company Conductor compositions for use in electronic circuits
JP2010056092A (en) * 2009-11-30 2010-03-11 Hitachi Chem Co Ltd Mixed conductive powder
JP2010170916A (en) * 2009-01-23 2010-08-05 Nichia Corp Conductive material and method of manufacturing the same, electronic device including conductive material, and light-emitting device
JP2011054313A (en) * 2009-08-31 2011-03-17 Sharp Corp Conductive paste, electrode for semiconductor device, semiconductor device, and method of manufacturing semiconductor device
JP2011204688A (en) * 2011-06-08 2011-10-13 Hitachi Chem Co Ltd Mixed conductive powder
JP2012221765A (en) * 2011-04-11 2012-11-12 Tdk Corp Paste for conductor, glass ceramic substrate and electronic component module
JP2012238443A (en) * 2011-05-11 2012-12-06 Fukuda Metal Foil & Powder Co Ltd Conductive composition
JP2014510990A (en) * 2011-01-18 2014-05-01 ヘレウス プレシャス メタルズ ノース アメリカ コンショホーケン エルエルシー Conductive paste composition and solar cell electrodes and contacts formed therefrom
JP2014156393A (en) * 2008-10-02 2014-08-28 E.I.Du Pont De Nemours And Company Silver paste composition for electroless nickel and gold plating
CN104078094A (en) * 2014-06-30 2014-10-01 合肥中南光电有限公司 Nanometer titanium powder low-temperature conductive silver paste and preparing method thereof
WO2014163157A1 (en) * 2013-04-05 2014-10-09 n-tech株式会社 Snow-melting paint and construction method using same, and snow-melting system
JP2016054098A (en) * 2014-09-04 2016-04-14 日立化成株式会社 Silver paste, semiconductor device using the same and method for producing silver paste
JP2017530205A (en) * 2014-07-11 2017-10-12 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Flowable compositions that cure at low temperatures to form a heat conduction path for electronics applications and related methods
JP2019067828A (en) * 2017-09-28 2019-04-25 Tdk株式会社 Multilayer ceramic electronic component
CN113168931A (en) * 2020-06-24 2021-07-23 千住金属工业株式会社 Conductive paste, laminate, and method for bonding Cu substrate or Cu electrode and conductor
WO2021260960A1 (en) * 2020-06-24 2021-12-30 千住金属工業株式会社 Conductive paste, laminate body, method of bonding copper laminate/copper electrode and conductor
CN114334214A (en) * 2021-12-31 2022-04-12 深圳先进电子材料国际创新研究院 Conductive silver paste and preparation method and application thereof

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134351A (en) * 2000-10-30 2002-05-10 Kyocera Corp Conductive paste and laminated ceramic capacitor using the same
US7157023B2 (en) 2001-04-09 2007-01-02 E. I. Du Pont De Nemours And Company Conductor compositions and the use thereof
US7914709B2 (en) 2001-04-09 2011-03-29 E.I. Du Pont De Nemours And Company Conductor compositions and the use thereof
JP2003091367A (en) * 2001-09-17 2003-03-28 Kawaguchiko Seimitsu Co Ltd Touch panel
US7470380B2 (en) 2003-04-01 2008-12-30 E.I. Du Pont De Nemours And Company Conductor compositions for use in electronic circuits
US8257618B2 (en) 2003-04-01 2012-09-04 E I Du Pont De Nemours And Company Conductor composition V
JP2004362950A (en) * 2003-06-05 2004-12-24 Noritake Co Ltd Conductive paste mainly composed of silver powder, and its manufacturing method
JP2005203304A (en) * 2004-01-19 2005-07-28 Hitachi Chem Co Ltd Mixed conductive powder
JP2006028213A (en) * 2004-07-12 2006-02-02 Toyama Prefecture Functional electroconductive coating, electronic circuit using the same and its formation method
JP2006059169A (en) * 2004-08-20 2006-03-02 Fujitsu Ltd Touch panel device and manufacturing method
JP2006128608A (en) * 2004-09-29 2006-05-18 Kyocera Corp Electronic part, method for manufacturing the same, chip resistor using the same, ferrite core and inductor
JP2007035353A (en) * 2005-07-25 2007-02-08 Namics Corp Metal paste
US7825769B2 (en) 2005-09-27 2010-11-02 Hokuriku Electric Co., Ltd. Terminal structure of chiplike electric component
JP2007123832A (en) * 2005-09-27 2007-05-17 Hokuriku Electric Ind Co Ltd Terminal structure of chip-like electrical part
JP2008182128A (en) * 2007-01-25 2008-08-07 Taiyosha Electric Co Ltd Chip resistor
JP2014156393A (en) * 2008-10-02 2014-08-28 E.I.Du Pont De Nemours And Company Silver paste composition for electroless nickel and gold plating
JP2010170916A (en) * 2009-01-23 2010-08-05 Nichia Corp Conductive material and method of manufacturing the same, electronic device including conductive material, and light-emitting device
JP2011054313A (en) * 2009-08-31 2011-03-17 Sharp Corp Conductive paste, electrode for semiconductor device, semiconductor device, and method of manufacturing semiconductor device
JP2010056092A (en) * 2009-11-30 2010-03-11 Hitachi Chem Co Ltd Mixed conductive powder
JP2014510990A (en) * 2011-01-18 2014-05-01 ヘレウス プレシャス メタルズ ノース アメリカ コンショホーケン エルエルシー Conductive paste composition and solar cell electrodes and contacts formed therefrom
JP2012221765A (en) * 2011-04-11 2012-11-12 Tdk Corp Paste for conductor, glass ceramic substrate and electronic component module
JP2012238443A (en) * 2011-05-11 2012-12-06 Fukuda Metal Foil & Powder Co Ltd Conductive composition
JP2011204688A (en) * 2011-06-08 2011-10-13 Hitachi Chem Co Ltd Mixed conductive powder
WO2014163157A1 (en) * 2013-04-05 2014-10-09 n-tech株式会社 Snow-melting paint and construction method using same, and snow-melting system
JP2014201683A (en) * 2013-04-05 2014-10-27 n−tech株式会社 Snow-melting paint and construction method using the same, and snow-melting system
CN104078094A (en) * 2014-06-30 2014-10-01 合肥中南光电有限公司 Nanometer titanium powder low-temperature conductive silver paste and preparing method thereof
JP2017530205A (en) * 2014-07-11 2017-10-12 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Flowable compositions that cure at low temperatures to form a heat conduction path for electronics applications and related methods
JP2016054098A (en) * 2014-09-04 2016-04-14 日立化成株式会社 Silver paste, semiconductor device using the same and method for producing silver paste
JP2019067828A (en) * 2017-09-28 2019-04-25 Tdk株式会社 Multilayer ceramic electronic component
CN113168931A (en) * 2020-06-24 2021-07-23 千住金属工业株式会社 Conductive paste, laminate, and method for bonding Cu substrate or Cu electrode and conductor
KR102307809B1 (en) * 2020-06-24 2021-09-30 센주긴조쿠고교 가부시키가이샤 Conductive paste, laminate, and bonding method of Cu substrate or Cu electrode and conductor
WO2021260960A1 (en) * 2020-06-24 2021-12-30 千住金属工業株式会社 Conductive paste, laminate body, method of bonding copper laminate/copper electrode and conductor
US11278955B2 (en) 2020-06-24 2022-03-22 Senju Metal Industry Co., Ltd. Electrically conductive paste, laminated body, and method for bonding Cu substrate or Cu electrode to electrical conductor
CN114334214A (en) * 2021-12-31 2022-04-12 深圳先进电子材料国际创新研究院 Conductive silver paste and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JPH07302510A (en) Conductive paste composition
US4122232A (en) Air firable base metal conductors
EP0425073B1 (en) Copper paste composition
KR101172723B1 (en) Copper conductor paste, conductor circuit board and electronic part
US4687597A (en) Copper conductor compositions
JP3941201B2 (en) Conductive paste composition and circuit board
KR20140143714A (en) Thick print copper pastes for aluminum nitride substrates
US4695403A (en) Thick film conductor composition
JP3767514B2 (en) Conductive paste
KR102441705B1 (en) Conductive paste for forming external electrodes of multilayer ceramic electronic components
US4871608A (en) High-density wiring multilayered substrate
JP2017199543A (en) Conductive composition, method for manufacturing conductor, and method for forming wiring of electronic component
JP2001307547A (en) Conductive composition and printed circuit board using the same
JP2004311438A (en) Conductor composition for using in electronic circuit
JPH1021744A (en) Copper conductor paste and substrate printed therewith
JPH0817241A (en) Copper conductive paste and manufacture of copper conductive film
JP2795467B2 (en) Good adhesive metal paste
JPH07335402A (en) Paste for forming electrode on chip resistor
US6406774B1 (en) Electrically conductive composition for use in through hole of electric component
JP3756283B2 (en) Copper conductor paste for aluminum nitride substrate and aluminum nitride substrate
JPH04277406A (en) Copper conductor paste
JP2000138010A (en) Copper conductor paste
JPH10188671A (en) Copper conductive paste and board printed therewith
JPH11111052A (en) Conductive paste composition, manufacture of conductive paste composition, surface layer conductor forming method, and ceramic multi-layer substrate
JPH04190502A (en) Copper conductor paste

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010731