JPH07292453A - Heat shielding coating method for preventing high temperature oxidation - Google Patents
Heat shielding coating method for preventing high temperature oxidationInfo
- Publication number
- JPH07292453A JPH07292453A JP6089300A JP8930094A JPH07292453A JP H07292453 A JPH07292453 A JP H07292453A JP 6089300 A JP6089300 A JP 6089300A JP 8930094 A JP8930094 A JP 8930094A JP H07292453 A JPH07292453 A JP H07292453A
- Authority
- JP
- Japan
- Prior art keywords
- zro
- layer
- high temperature
- coating method
- heat shielding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Coating By Spraying Or Casting (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は高温ガスと接する金属部
材に適用される遮熱コーティング方法に関し、ブロワ、
回収タービンの製作、特にガスタービンの高温化、高効
率と対応可能な動、静翼の製作に有利に適用しうる同方
法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal barrier coating method applied to a metal member in contact with a high temperature gas, including a blower,
The present invention relates to a method that can be advantageously applied to the production of a recovery turbine, particularly to the production of a moving vane and a dynamic turbine that can cope with high temperature and high efficiency of a gas turbine.
【0002】[0002]
【従来の技術】コンバインドサイクルプラントに代表さ
れる高効率化された最近の産業用ガスタービンのタービ
ン入口ガス温度の上昇は著しく1300℃以上となって
いる。このような高温ガスに曝露される動、静翼に使用
される耐熱合金は精力的に研究開発が行われ、その許容
使用温度も年々上昇しているが、実用合金では850〜
900℃程度である。このため実機ガスタービンでは薄
肉化した内部冷却翼が用いられている。一方、使用され
る燃料はLNG、副生ガスや重油および最近では石炭を
液化又はガス化して利用することも研究されており、空
気冷却翼の高温酸化や高温腐食防止を目的として低圧プ
ラズマ溶射(VPS)法によりMCrAlY(M:Ni
及び/又はCo)の耐食合金のコーティングを施したの
ち、ZrO2 −Y2 O3を大気溶射でコーティングし、
この遮熱効果を利用して基材合金の温度を低下させ、結
果としてガス温度の高温化に対処している。2. Description of the Related Art The temperature of the gas at the turbine inlet of a recent highly efficient industrial gas turbine represented by a combined cycle plant rises significantly to 1300 ° C. or more. Heat-resistant alloys used for moving and stationary blades exposed to such high-temperature gas have been energetically researched and developed, and their allowable operating temperatures have been increasing year by year.
It is about 900 ° C. For this reason, thin-walled internal cooling blades are used in actual gas turbines. On the other hand, the fuel used is LNG, by-product gas, heavy oil, and recently, coal has been studied for liquefaction or gasification, and low-pressure plasma spray ( By using the VPS method, MCrAlY (M: Ni
And / or Co) and then a ZrO 2 —Y 2 O 3 coating is applied by atmospheric spraying,
By utilizing this heat shielding effect, the temperature of the base alloy is lowered, and as a result, the gas temperature is raised.
【0003】そのように処理された遮熱コーティングの
従来例を図5に示す。図5において、1は金属部材、2
はMCrAlY(M:Ni及び/又はCo)中間層(低
圧プラズマ溶射層)、3はZrO2 −Y2 O3 セラミッ
ク層(大気プラズマ溶射層)を示す。A conventional example of the thermal barrier coating thus treated is shown in FIG. In FIG. 5, 1 is a metal member, 2
Indicates an MCrAlY (M: Ni and / or Co) intermediate layer (low pressure plasma sprayed layer), and 3 indicates a ZrO 2 —Y 2 O 3 ceramic layer (atmospheric plasma sprayed layer).
【0004】[0004]
【発明が解決しようとする課題】ガスタービン入口温度
の高温化に対応するため、ZrO2 −Y2 O3 の遮熱コ
ーティングを利用されていることは前記のとおりである
が、このZrO2 −Y2O3 層は大気溶射で形成される
ため、燃焼ガス等が透過し、中間層のMCrAlY
(M:Ni及び/又はCo)コーティング層まで到達す
る。このため、高温条件で長時間使用すると、その中間
層表面で高温酸化又は高温腐食を生じ、これによって高
温化と対応するためのZrO2 −Y2 O3 層を剥離させ
る欠点がある。本発明は上記技術水準に鑑み、ZrO2
−Y2 O3 層の剥離が防止される高温酸化防止用遮熱コ
ーティングを施こす方法を提供しようとするものであ
る。To accommodate high temperature of the gas turbine inlet temperature [0008], although it has been used a thermal barrier coating of ZrO 2 -Y 2 O 3 it is as defined above, the ZrO 2 - Since the Y 2 O 3 layer is formed by thermal spraying in the atmosphere, the combustion gas and the like are transmitted therethrough, and the intermediate layer MCrAlY
Reach the (M: Ni and / or Co) coating layer. For this reason, when used under high temperature conditions for a long time, there is a drawback that high temperature oxidation or high temperature corrosion occurs on the surface of the intermediate layer, and thereby the ZrO 2 —Y 2 O 3 layer is peeled off in order to cope with the high temperature. In view of the above technical level, the present invention is directed to ZrO 2
An object of the present invention is to provide a method for applying a thermal barrier coating for high-temperature oxidation prevention in which peeling of the Y 2 O 3 layer is prevented.
【0005】[0005]
【課題を解決するための手段】本発明は (1)高温ガスと接する金属部材に適用される遮熱コー
ティング方法において、金属部材上に低圧プラズマ溶射
法にてMCrAlY(M:Ni及び/又はCo)をコー
ティングした後、ZrO2 −Y2 O3 を大気プラズマ溶
射し、さらに無機質のゆう薬をハケ塗り後焼成又は直接
溶射することを特徴とする高温酸化防止用遮熱コーティ
ング方法。 (2)無機質のゆう薬とZrO2 −Y2 O3 を混合した
混合物をハケ塗り後焼成又は直接溶射することを特徴と
する上記(1)記載の高温酸化防止用遮熱コーティング
方法。 (3)無機質のゆう薬とZrO2 −Y2 O3 の混合物の
混合比を2種以上に変えて順次ハケ塗り後焼成又は直接
溶射することを特徴とする上記(2)記載の高温酸化防
止用遮熱コーティング方法。である。The present invention provides (1) a thermal barrier coating method applied to a metal member in contact with a high temperature gas, wherein MCrAlY (M: Ni and / or Co is formed on the metal member by a low pressure plasma spraying method. ), ZrO 2 —Y 2 O 3 is plasma-sprayed in the atmosphere, and an inorganic wax is applied by brushing, followed by firing or direct spraying. (2) The thermal barrier coating method for high temperature oxidation prevention according to the above (1), characterized in that a mixture obtained by mixing an inorganic wax and ZrO 2 —Y 2 O 3 is applied by brushing, followed by firing or direct thermal spraying. (3) High temperature oxidation prevention according to the above (2), characterized in that the mixture ratio of the mixture of the inorganic eluent and ZrO 2 —Y 2 O 3 is changed to two or more, and the coating is applied sequentially by brushing, followed by firing or direct thermal spraying. For thermal barrier coating. Is.
【0006】MCrAlY(M:Ni及び/又はCo)
を低圧プラズマ溶射法により適用するのは、通常の遮熱
コーティングと同様に酸化物の巻き込みを少なくし、緻
密な皮膜が得られるようにするためである。一般的にそ
の皮膜厚さが50μm未満では施工対象の金属部材及び
後工程で適用されるZrO2 −Y2 O3 層との熱膨張率
を緩和する中間層としての機能が不足し、また200μ
mを越えるとその効果は飽和するので、一般的にその皮
膜の厚さは50〜200μmである。MCrAlY (M: Ni and / or Co)
Is applied by a low pressure plasma spraying method in order to reduce oxide entrainment and to obtain a dense film as in the case of a normal thermal barrier coating. Generally, if the coating thickness is less than 50 μm, the function as an intermediate layer for relaxing the coefficient of thermal expansion between the metal member to be applied and the ZrO 2 —Y 2 O 3 layer applied in the subsequent step is insufficient, and the thickness is 200 μm.
Since the effect is saturated when the thickness exceeds m, the thickness of the film is generally 50 to 200 μm.
【0007】ZrO2 −Y2 O3 は一般的にZrO2 に
加えるY2 O3 量は4〜12wt%のものが使用され、
ZrO2 −Y2 O3 は大気プラズマ溶射法で適用され
る。大気プラズマ溶射法に特定した理由は、低圧プラズ
マ溶射法に比しポロシティー(空孔)が多くなり、遮熱
効果が大となり、かつ熱膨張も緩和されるからである。
このZrO2 −Y2 O3 の皮膜の厚さは遮熱効果を確保
するためと、剥離の難易性を考慮して一般的には100
〜300μm程度に施される。ZrO 2 --Y 2 O 3 is generally used in which the amount of Y 2 O 3 added to ZrO 2 is 4 to 12 wt%.
ZrO 2 -Y 2 O 3 is applied by air plasma spraying method. The reason for specifying the atmospheric plasma spraying method is that the porosity is larger than that in the low pressure plasma spraying method, the heat shielding effect is large, and the thermal expansion is also relaxed.
The thickness of the ZrO 2 —Y 2 O 3 coating is generally 100 in order to secure the heat shield effect and in consideration of the difficulty of peeling.
Approximately 300 μm.
【0008】無機質のゆう薬としてはNa2 O−BaO
−SiO2 系ゆう薬、CaO−BaO−Al2 O3 −S
iO2 系ゆう薬など焼成又は溶射時のみ完全に溶融し、
皮膜を形成した後、ガスタービン運転中のガス温度では
溶融飛散しない融点をもつものが一般的に使用される。
また、これらゆう薬にZrO2 −Y2 O3 の混合して使
用することもできる。混合使用の場合、ゆう薬:ZrO
2 −Y2 O3 =10〜20:90〜80(wt%)の割
合で使用するのが一般的である。ゆう薬又はゆう薬とZ
rO2 −Y2 O3 の混合物はハケ塗り後焼成するか直接
溶射することによって適用される。その皮膜の厚さはガ
ス侵入防止効果の下限値と先に適用したZrO2 −Y2
O3 への影響(熱伝導率、熱膨張率)を考慮して一般的
には10〜70μm程度に施こされる。また、ゆう薬と
ZrO2 −Y2 O3 混合物とZrO2 −Y2 O3 皮膜上
に適用するに当って、上記混合割合の範囲で、混合比を
2種以上に、変えて適用してもよい。この場合、ZrO
2 −Y2 O3 皮膜に接する側のものゝ混合物中のZrO
2 −Y2 O3 の量を上記範囲内で多いものを適用するの
がよい。[0008] As an inorganic medicine2O-BaO
-SiO2System Yuyu, CaO-BaO-Al2O3-S
iO2Completely melts only when firing or spraying a system yuyu,
After forming the film, at the gas temperature during gas turbine operation
A material having a melting point that does not melt and scatter is generally used.
In addition, ZrO2-Y2O3Mixed and used
It can also be used. In case of mixed use, Yu medicine: ZrO
2-Y2O3= 10 to 20: 90 to 80 (wt%)
It is generally used in combination. Yu medicine or Yu medicine and Z
rO2-Y2O3The mixture of
Applied by spraying. The thickness of the film is
The lower limit of the intrusion prevention effect and ZrO applied earlier2-Y2
O3General considering the effect on the product (thermal conductivity, coefficient of thermal expansion)
Is applied to about 10 to 70 μm. Also, with Yu medicine
ZrO2-Y2O3Mixture and ZrO2-Y2O3On the film
When applying to the above, the mixing ratio should be within the above mixing ratio range.
You may change and apply to 2 or more types. In this case, ZrO
2-Y2O3On the side in contact with the coating "ZrO in the mixture"
2-Y2O3The amount of
Is good.
【0009】[0009]
【作用】ZrO2 −Y2 O3 コーティング層上にハケ塗
り後焼成又は直接溶射されるゆう薬又はゆう薬とZrO
2 −Y2 O3 の混合物は焼成又は溶射中に一部又は全て
が溶融し、先に適用されたZrO2 −Y2 O3 コーティ
ング層上で気密性の高い皮膜を形成して、燃焼ガス等腐
食性成分の侵入を防止する。また、ゆう薬の一部はZr
O2 −Y2 O3 コーティング層中へ侵入し、ゆう薬とZ
rO2 −Y2 O3コーティング層の密着性を確保すると
ともに気密性をより一層向上させる。ゆう薬は無機混合
物であり、熱伝導率が低いため遮熱効果も向上する。ま
た、ZrO2 −Y2 O3 コーティング層上に形成される
ゆう薬とZrO2 −Y2 O3の混合物溶射膜は混合比を
変化させることができるので、ZrO2 −Y2 O3 コー
ティング層との熱膨張率の差を小さくすることが可能で
ある。[Function] A ZuO agent and a ZuO agent which is baked or directly sprayed after being applied on the ZrO 2 -Y 2 O 3 coating layer by brushing.
The mixture of 2- Y 2 O 3 is partially or wholly melted during firing or thermal spraying to form a highly airtight film on the previously applied ZrO 2 -Y 2 O 3 coating layer to form a combustion gas. Prevents the entry of isocorrosive components. Also, some of the medicines are Zr
O 2 -Y 2 O 3 penetrates into the coating layer, Yuukusuri and Z
It secures the adhesion of the rO 2 —Y 2 O 3 coating layer and further improves the airtightness. Since the elixir is an inorganic mixture and has a low thermal conductivity, the heat shielding effect is also improved. Moreover, since the mixture sprayed film of Yuukusuri and ZrO 2 -Y 2 O 3 formed on the ZrO 2 -Y 2 O 3 coating layer can vary the mixing ratio, ZrO 2 -Y 2 O 3 coating layer It is possible to reduce the difference in the coefficient of thermal expansion from
【0010】[0010]
【実施例】以下、本発明の具体的な実施例をあげ、本発
明の効果を明らかにする。 (実施例1)図1によって、本発明の一実施例を説明す
る。図1において、1は金属部材、2はNiCrAlY
中間層、3はZrO2 −Y2 O3 セラミック層、4はゆ
う薬層を示す。代表的なガスタービン静翼材のCo基超
合金ECY768(重量%で、Cr:23.5%、N
i:9.86%、Ti:0.22%、W:7.18%、
Ta:3.75%、C:0.61%、Al:0.21
%、Zr:0.01%、B:0.001%、Fe:0.
06%、Si:<0.10%、Mn:<0.10%、
S:0.001%、Co:残部)を金属部材1として、
NiCrAlY(Ni−25Cr−6Al−0.5Y:
数値は重量%を示す)を中間層2として膜厚:100μ
m程度を目標に低圧プラズマ溶射を行い、引き続きZr
O2 −8%Y2 O3 (%は重量%)セラミック層3とし
て大気プラズマにて膜厚:250μmを目標に溶射し
た。次に2.5%Na2 O−7.0%BaO−75%S
iO2 (%は重量%)系ゆう薬を膜厚:20μmにハケ
塗りし、空気雰囲気中1000℃で焼成してゆう薬層4
とした。EXAMPLES The effects of the present invention will be clarified by giving concrete examples of the present invention. (Embodiment 1) An embodiment of the present invention will be described with reference to FIG. In FIG. 1, 1 is a metal member, 2 is NiCrAlY
The intermediate layer, 3 is a ZrO 2 —Y 2 O 3 ceramic layer, and 4 is a metallic layer. A typical gas turbine stationary vane material is Co-based superalloy ECY768 (% by weight: Cr: 23.5%, N:
i: 9.86%, Ti: 0.22%, W: 7.18%,
Ta: 3.75%, C: 0.61%, Al: 0.21
%, Zr: 0.01%, B: 0.001%, Fe: 0.
06%, Si: <0.10%, Mn: <0.10%,
S: 0.001%, Co: balance) as the metal member 1,
NiCrAlY (Ni-25Cr-6Al-0.5Y:
(Numerical values indicate weight%) as the intermediate layer 2 and film thickness: 100 μ
Low-pressure plasma spraying with a target of m
O 2 -8% Y 2 O 3 (% is% by weight) The ceramic layer 3 was thermally sprayed by atmospheric plasma to a film thickness of 250 μm. Next, 2.5% Na 2 O-7.0% BaO-75% S
An iO 2 (% is% by weight) -based wax agent is applied by a brush to a film thickness of 20 μm, and baked at 1000 ° C. in an air atmosphere.
And
【0011】この実施例で施工された遮熱コーティング
材と従来法によるゆう薬のない遮熱コーティング材とを
900℃の空気中で1000時間高温酸化試験を行った
ところ、従来材のZrO2 −Y2 O3 層と接するNiC
rAlY中間層上に8〜10μm程度の酸化皮膜が形成
されていたのに対し、この実施例1では1〜3μmの酸
化皮膜が形成されていたに過ぎず、中間層の酸化抑制効
果があることが確認された。中間層の酸化皮膜厚さが1
5〜20μmに達すると、ZrO2 −Y2 O3層が剥離
するトラブルが度々出現するが、この実施例1による酸
化皮膜の成長速度を著しく低減できるため、ZrO2 −
Y2 O3 皮膜を剥離させるに至る時間を大幅に延長させ
る効果が奏されることが判る。When the thermal barrier coating material constructed in this example and the conventional thermal barrier coating material without a glaze were subjected to a high temperature oxidation test for 1000 hours in air at 900 ° C., the conventional material ZrO 2 − NiC in contact with Y 2 O 3 layer
The oxide film of about 8 to 10 μm was formed on the rAlY intermediate layer, whereas the oxide film of 1 to 3 μm was only formed in this Example 1, and the intermediate layer has an effect of suppressing oxidation. Was confirmed. The oxide film thickness of the intermediate layer is 1
When it reaches 5 to 20 μm, the trouble of peeling off the ZrO 2 —Y 2 O 3 layer often appears, but the growth rate of the oxide film according to Example 1 can be remarkably reduced, and therefore ZrO 2 —
It can be seen that the effect of significantly extending the time until the Y 2 O 3 film is peeled off is exhibited.
【0012】(実施例2)図2により、本発明の他の実
施例を説明する。図2において、1は金属部材、2はC
oNiCrAlY中間層、3はZrO2 −Y2 O3 セラ
ミック層、4はゆう薬層を示す。代表的なガスタービン
動翼材のNi基超合金IN738LC(重量%で、C
o:8.30%、Cr:15.9%、Ti:1.75
%、W:2.54%、Ta:1.73%、C:0.09
%、Al:3.42%、Zr:0.03%、B:0.0
08%、Fe:0.10%、Si:<0.05%、M
n:<0.05%、S:<0.005%、Ni:残部)
を金属部材1として、CoNiCrAlY(Co−20
Ni−25Cr−8Al−0.5Y:数値は重量%を示
す)を中間層2として膜厚:100μm程度を目標に低
圧プラズマ溶射後、ZrO2 −8%Y2 O 3 をセラミッ
ク層3として大気プラズマ溶射にて膜厚:250μmを
目標に溶射した。次に10%CaO−5%BaO−15
%Al2 O3 −65%SiO2 系ゆう薬を膜厚:約50
μmを目標にアセチレンガス溶射機を利用して溶射して
ゆう薬層4とした。(Embodiment 2) Another embodiment of the present invention will be described with reference to FIG.
An example will be described. In FIG. 2, 1 is a metal member, 2 is C
oNiCrAlY intermediate layer, 3 is ZrO2-Y2O3Sera
Mick layer and 4 are Yuyu layers. Typical gas turbine
Ni-base superalloy IN738LC for rotor blades (% by weight, C
o: 8.30%, Cr: 15.9%, Ti: 1.75
%, W: 2.54%, Ta: 1.73%, C: 0.09
%, Al: 3.42%, Zr: 0.03%, B: 0.0
08%, Fe: 0.10%, Si: <0.05%, M
n: <0.05%, S: <0.005%, Ni: balance)
As the metal member 1, CoNiCrAlY (Co-20
Ni-25Cr-8Al-0.5Y: Numerical value shows weight%
Is used as the intermediate layer 2 and the film thickness is about 100 μm.
After pressure plasma spraying, ZrO2-8% Y2O 3The ceramic
Layer 3 by atmospheric plasma spraying with a film thickness of 250 μm
The target was sprayed. Next, 10% CaO-5% BaO-15
% Al2O3-65% SiO2Film thickness of system Yu drug: about 50
Thermal spraying using an acetylene gas sprayer with a target of μm
It was designated as Yu-yu layer 4.
【0013】この実施例で施工された遮熱コーティング
材を900℃の空気中で1000時間高温酸化試験を行
ったところ、CoNiCrAlY中間層上に僅かに2〜
5μm程度の酸化皮膜が形成されたに過ぎなかった。When the thermal barrier coating material applied in this example was subjected to a high temperature oxidation test in air at 900 ° C. for 1000 hours, only 2 to 2 was formed on the CoNiCrAlY intermediate layer.
Only an oxide film of about 5 μm was formed.
【0014】(実施例3)図3により、本発明の他の実
施例を説明する。図3において、1は金属部材、2はN
iCrAlY中間層、3はZrO2 −Y2 O3 セラミッ
ク層、5はゆう薬とZrO2 −Y2 O3 セラミック混合
層を示す。実施例1に示した代表的なガスタービン静翼
材のCo基超合金ECY768を金属部材1として、同
じく実施例1に示したNiCrAlYを中間層2として
膜厚:100μm程度を目標に低圧プラズマ溶射を行
い、引き続き実施例1と同じZrO2 −8%Y2 O3 を
セラミック層3として大気プラズマにて膜厚:250μ
mを目標に溶射した。次に、実施例1に示したNa2 O
・BaO・SiO2 系のゆう薬粉末20wt%とZrO
2 −8%Y2 O3 粉末80wt%よりなる混合物を大気
プラズマ溶射し、約20μm膜厚のセラミック−ゆう薬
混合層5を形成した。(Embodiment 3) Another embodiment of the present invention will be described with reference to FIG. In FIG. 3, 1 is a metal member, 2 is N
iCrAlY intermediate layer, 3 represents a ZrO 2 —Y 2 O 3 ceramic layer, and 5 represents a mixture of a filler and a ZrO 2 —Y 2 O 3 ceramic layer. The Co-based superalloy ECY768, which is a representative gas turbine vane material shown in Example 1, is used as the metal member 1 and the NiCrAlY shown in Example 1 is used as the intermediate layer 2 with a target thickness of about 100 μm and low pressure plasma spraying. Then, the same ZrO 2 -8% Y 2 O 3 as in Example 1 was used as the ceramic layer 3 by atmospheric plasma to a film thickness: 250 μm.
Sprayed with m as the target. Next, Na 2 O shown in Example 1 was used.
・ BaO / SiO 2 system powder powder 20 wt% and ZrO
A mixture of 80% by weight of 2-8% Y 2 O 3 powder was plasma sprayed in the atmosphere to form a ceramic-metal mixture layer 5 having a thickness of about 20 μm.
【0015】この実施例で施工された遮熱コーティング
材を900℃の空気中で1000時間高温酸化試験を行
ったところ、NiCrAlY中間層上に形成された酸化
皮膜層は3μm以下であり、中間層の酸化抑制効果が確
認された。When the thermal barrier coating material applied in this example was subjected to a high temperature oxidation test in air at 900 ° C. for 1000 hours, the oxide film layer formed on the NiCrAlY intermediate layer was 3 μm or less. The effect of suppressing the oxidation was confirmed.
【0016】(実施例4)図4により、本発明の他の実
施例を説明する。図4中、1,2及び3は実施例3にお
いて説明した金属部材、中間層及びZrO2 −Y2 O3
セラミック層と同じものを示す。5A,5Bは共にゆう
薬とZrO2 −Y2 O3 セラミック混合層であるが、そ
の混合割合の異なるものを示す。実施例3のZrO2 −
8%Y2 O3 粉末を大気プラズマ溶射するまでは同じ処
理を行い、この層3上に実施例2に示したCaO−Ba
O−Al2 O3 −SiO 2 系ゆう薬粉末とZrO2 −8
%Y2 O3 粉末の混合割合の異なる混合物5A,5Bを
大気プラズマ溶射した。すなわち、先ず前記ゆう薬粉末
10wt%とZrO2 −8%Y2 O3 粉末90wt%よ
りなる混合物Aを大気プラズマ溶射して混合層5Aを形
成させた後、前記ゆう薬粉末20wt%とZrO2 −8
%Y2 O3粉末80wt%よりなる混合物Bを大気プラ
ズマ溶射して混合層5Bを形成させ、その合計の膜厚を
30〜50μmとした。(Embodiment 4) Another embodiment of the present invention will be described with reference to FIG.
An example will be described. In FIG. 4, 1, 2 and 3 are the same as those in the third embodiment.
Described above, the metal member, the intermediate layer, and ZrO2-Y2O3
The same as the ceramic layer is shown. 5A and 5B are both
Medicine and ZrO2-Y2O3Although it is a ceramic mixed layer,
Different mixing ratios are shown. ZrO of Example 32−
8% Y2O3Same process until powder plasma spraying in air
And the CaO—Ba shown in Example 2 was formed on this layer 3.
O-Al2O3-SiO 2System Yuyu powder and ZrO2-8
% Y2O3Mixtures 5A and 5B with different powder mixing ratios
Atmospheric plasma sprayed. That is, first, the aforementioned Yuyaku powder
10 wt% and ZrO2-8% Y2O390% powder
Mixture A consisting of
20% by weight of the above powder and ZrO2-8
% Y2O3Mixture B consisting of 80 wt.
Zuma thermal spraying is performed to form the mixed layer 5B, and the total film thickness is
It was set to 30 to 50 μm.
【0017】この実施例で施工された遮熱コーティング
材の実施例3に示した高温酸化試験の結果、中間層上に
形成された酸化皮膜層は3μm以下であり、中間層の酸
化抑制効果が確認された。この実施例の場合、ZrO2
−8%Y2 O3 セラミック層に接する側の混合物中のZ
rO2 −8%Y2 O3 の割合が多いので、ZrO2 −8
%Y2 O3 セラミック層と熱膨張率が近似し、混合物層
の剥離が防止できる効果も奏する。As a result of the high temperature oxidation test shown in Example 3 of the thermal barrier coating material applied in this Example, the oxide film layer formed on the intermediate layer was 3 μm or less, and the effect of suppressing the oxidation of the intermediate layer was found. confirmed. In this example, ZrO 2
-8% Y 2 O 3 Z in the mixture on the side in contact with the ceramic layer
Since rO 2 -8% Y 2 ratio of O 3 is large, ZrO 2 -8
The coefficient of thermal expansion is similar to that of the% Y 2 O 3 ceramic layer, and the effect of preventing peeling of the mixture layer is also obtained.
【0018】[0018]
【発明の効果】本発明によれば、ゆう薬の作用により外
部からの燃焼ガスの侵入を抑制することができるので、
中間層(MCrAlY層)の酸化皮膜の成長速度を著し
く低減でき、ZrO2 −Y2 O3 層の剥離に至るまでの
時間を大幅に延長させることができる効果を奏する。EFFECTS OF THE INVENTION According to the present invention, the intrusion of combustion gas from the outside can be suppressed by the action of the glaze,
The effect of significantly reducing the growth rate of the oxide film of the intermediate layer (MCrAlY layer) and significantly extending the time until the peeling of the ZrO 2 —Y 2 O 3 layer is achieved.
【図1】本発明の実施例1によって遮熱コーティングを
施こされた金属部材の断面模式図。FIG. 1 is a schematic cross-sectional view of a metal member provided with a thermal barrier coating according to a first embodiment of the present invention.
【図2】本発明の実施例2によって遮熱コーティングを
施こされた金属部材の断面模式図。FIG. 2 is a schematic cross-sectional view of a metal member provided with a thermal barrier coating according to a second embodiment of the present invention.
【図3】本発明の実施例3によって遮熱コーティングを
施こされた金属部材の断面模式図。FIG. 3 is a schematic cross-sectional view of a metal member provided with a thermal barrier coating according to Example 3 of the present invention.
【図4】本発明の実施例4によって遮熱コーティングを
施こされた金属部材の断面模式図。FIG. 4 is a schematic sectional view of a metal member provided with a thermal barrier coating according to Example 4 of the present invention.
【図5】従来の遮熱コーティングを施こされた金属部材
の一態様の断面模式図。FIG. 5 is a schematic cross-sectional view of one embodiment of a conventional metal member provided with a thermal barrier coating.
Claims (3)
遮熱コーティング方法において、金属部材上に低圧プラ
ズマ溶射法にてMCrAlY(M:Ni及び/又はC
o)をコーティングした後、ZrO2 −Y2 O3 を大気
プラズマ溶射し、さらに無機質のゆう薬をハケ塗り後焼
成又は直接溶射することを特徴とする高温酸化防止用遮
熱コーティング方法。1. A thermal barrier coating method applied to a metal member in contact with a high temperature gas, wherein MCrAlY (M: Ni and / or C) is formed on the metal member by a low pressure plasma spraying method.
After coating with o), ZrO 2 —Y 2 O 3 is plasma-sprayed in the atmosphere, and an inorganic wax is applied by brushing, followed by firing or direct thermal spraying.
混合した混合物をハケ塗り後焼成又は直接溶射すること
を特徴とする請求項1記載の高温酸化防止用遮熱コーテ
ィング方法。2. The thermal barrier coating method for high temperature oxidation prevention according to claim 1, wherein a mixture of an inorganic wax and ZrO 2 —Y 2 O 3 is applied and then sprayed or directly sprayed.
混合物の混合比を2種以上に変えて順次ハケ塗り後焼成
又は直接溶射することを特徴とする請求項2記載の高温
酸化防止用遮熱コーティング方法。3. The high temperature oxidation according to claim 2, wherein the mixture ratio of the mixture of the inorganic eluent and ZrO 2 —Y 2 O 3 is changed to two or more, and the coating is applied successively by brushing or followed by firing or direct thermal spraying. Thermal barrier coating method for prevention.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08930094A JP3219594B2 (en) | 1994-04-27 | 1994-04-27 | Thermal barrier coating method for high temperature oxidation prevention |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08930094A JP3219594B2 (en) | 1994-04-27 | 1994-04-27 | Thermal barrier coating method for high temperature oxidation prevention |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07292453A true JPH07292453A (en) | 1995-11-07 |
JP3219594B2 JP3219594B2 (en) | 2001-10-15 |
Family
ID=13966826
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08930094A Expired - Fee Related JP3219594B2 (en) | 1994-04-27 | 1994-04-27 | Thermal barrier coating method for high temperature oxidation prevention |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3219594B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001226759A (en) * | 1999-10-01 | 2001-08-21 | General Electric Co <Ge> | Method for smoothing surface of protective film |
WO2001063006A1 (en) * | 2000-02-25 | 2001-08-30 | Forschungszentrum Jülich GmbH | Combined heat insulating layer systems |
JP2002530525A (en) * | 1998-11-13 | 2002-09-17 | フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング | Glass-metal / ceramic-insulation layer |
DE102004034687A1 (en) * | 2004-07-17 | 2006-02-02 | Öko-Insel Energietechnik GmbH | Ceramic composite material, formed by surrounding base member with protective layer, applying ceramic insulation layers, and firing |
JP2008088548A (en) * | 2006-08-18 | 2008-04-17 | United Technol Corp <Utc> | Turbine engine component |
JP2011012287A (en) * | 2009-06-30 | 2011-01-20 | Hitachi Ltd | Heat-resistant member, and gas turbine hot part |
JP2011167994A (en) * | 2010-02-22 | 2011-09-01 | Hitachi Ltd | Heat-resistant member having thermal barrier coating and gas turbine component using the same |
JP2012137073A (en) * | 2010-12-28 | 2012-07-19 | Hitachi Ltd | Gas turbine component having thermal barrier coating and gas turbine using the component |
DE102011103731A1 (en) * | 2011-05-31 | 2012-12-06 | Man Diesel & Turbo Se | Method for applying a protective layer, with a protective layer coated component and gas turbine with such a component |
WO2014069180A1 (en) | 2012-10-31 | 2014-05-08 | 福田金属箔粉工業株式会社 | Ni-Cr-Co-BASED ALLOY HAVING HIGH-TEMPERATURE CORROSION RESISTANCE PROPERTIES, AND POPPET VALVE HAVING SURFACE MODIFIED WITH SAME |
-
1994
- 1994-04-27 JP JP08930094A patent/JP3219594B2/en not_active Expired - Fee Related
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002530525A (en) * | 1998-11-13 | 2002-09-17 | フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング | Glass-metal / ceramic-insulation layer |
JP2001226759A (en) * | 1999-10-01 | 2001-08-21 | General Electric Co <Ge> | Method for smoothing surface of protective film |
WO2001063006A1 (en) * | 2000-02-25 | 2001-08-30 | Forschungszentrum Jülich GmbH | Combined heat insulating layer systems |
EP1514953A3 (en) * | 2000-02-25 | 2005-05-18 | Forschungszentrum Jülich Gmbh | Combined heat insulating layer systems |
DE102004034687A1 (en) * | 2004-07-17 | 2006-02-02 | Öko-Insel Energietechnik GmbH | Ceramic composite material, formed by surrounding base member with protective layer, applying ceramic insulation layers, and firing |
JP2008088548A (en) * | 2006-08-18 | 2008-04-17 | United Technol Corp <Utc> | Turbine engine component |
JP2011012287A (en) * | 2009-06-30 | 2011-01-20 | Hitachi Ltd | Heat-resistant member, and gas turbine hot part |
US8460799B2 (en) | 2009-06-30 | 2013-06-11 | Hitachi, Ltd. | High-temperature resistant component and gas turbine hot part |
JP2011167994A (en) * | 2010-02-22 | 2011-09-01 | Hitachi Ltd | Heat-resistant member having thermal barrier coating and gas turbine component using the same |
JP2012137073A (en) * | 2010-12-28 | 2012-07-19 | Hitachi Ltd | Gas turbine component having thermal barrier coating and gas turbine using the component |
DE102011103731A1 (en) * | 2011-05-31 | 2012-12-06 | Man Diesel & Turbo Se | Method for applying a protective layer, with a protective layer coated component and gas turbine with such a component |
WO2014069180A1 (en) | 2012-10-31 | 2014-05-08 | 福田金属箔粉工業株式会社 | Ni-Cr-Co-BASED ALLOY HAVING HIGH-TEMPERATURE CORROSION RESISTANCE PROPERTIES, AND POPPET VALVE HAVING SURFACE MODIFIED WITH SAME |
US9441287B2 (en) | 2012-10-31 | 2016-09-13 | Fukuda Metal Foil & Powder Co., Ltd. | Ni-Cr-Co-based alloy having high-temperature corrosion resistance, and poppet valve surface-modified with the same |
Also Published As
Publication number | Publication date |
---|---|
JP3219594B2 (en) | 2001-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4942732A (en) | Refractory metal composite coated article | |
JP3370676B2 (en) | Protective layer for protecting members against corrosion, oxidation and thermal overload, and method of manufacturing the same | |
US5277936A (en) | Oxide containing MCrAlY-type overlay coatings | |
JP3258599B2 (en) | Insulation barrier coating system | |
KR101519131B1 (en) | Metal alloy compositions and articles comprising the same | |
US6548190B2 (en) | Low thermal conductivity thermal barrier coating system and method therefor | |
EP0304176B1 (en) | Refractory metal composite coated article | |
JPH01279781A (en) | Ceramic coated heat resistant member | |
US5223045A (en) | Refractory metal composite coated article | |
JPH11172404A (en) | Execution of bonding coat for heat shielding coating system | |
JPH09296702A (en) | Heat insulating coated product and coating method | |
JPH11229161A (en) | Method for promoting densification and intergranular bonding of bonding coat for heat insulating coating system | |
JPH0251978B2 (en) | ||
KR101681195B1 (en) | Thermal Barrier Coating System with Self-Healing Ability | |
JP2008064089A (en) | Turbine engine component and manufacturing method | |
JPH07292453A (en) | Heat shielding coating method for preventing high temperature oxidation | |
JPS63118059A (en) | Adiabatic coating method and gas turbine combustor | |
JPH07243018A (en) | Surface modification method for heat insulating film | |
EP1260608A1 (en) | Method of depositing a MCrAIY bond coating | |
JP2002339052A (en) | Heat-insulating film coated member and thermal-spray powder | |
US3443978A (en) | Method of coating metals with a silicide layer and an outer layer of aluminasilicate | |
JPH0688197A (en) | Surface layer of dynamic and static vanes | |
JP2934599B2 (en) | High temperature corrosion resistant composite surface treatment method | |
JPH0563555B2 (en) | ||
JPS62210329A (en) | Ceramic coated heat-resistant material and manufacture thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20010710 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070810 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080810 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080810 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090810 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |