Nothing Special   »   [go: up one dir, main page]

JPH0727335A - Production of combustion chamber liner for gas turbine - Google Patents

Production of combustion chamber liner for gas turbine

Info

Publication number
JPH0727335A
JPH0727335A JP17033593A JP17033593A JPH0727335A JP H0727335 A JPH0727335 A JP H0727335A JP 17033593 A JP17033593 A JP 17033593A JP 17033593 A JP17033593 A JP 17033593A JP H0727335 A JPH0727335 A JP H0727335A
Authority
JP
Japan
Prior art keywords
resistant
combustion chamber
corrosion
heat
chamber liner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17033593A
Other languages
Japanese (ja)
Inventor
Hiroshi Wachi
弘 和知
Takao Funamoto
孝雄 舟本
Toshimi Matsumoto
俊美 松本
Hisanobu Okamura
久宣 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17033593A priority Critical patent/JPH0727335A/en
Publication of JPH0727335A publication Critical patent/JPH0727335A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To provide a method of manufacturing a combustion chamber liner, for use in a gas turbine, which is provided with a cooling passage in its interior and is excellent in cooling function to meet the requirement for a high temperature performance of the gas turbine. CONSTITUTION:The material of a combustion chamber liner 11 is produced by a method wherein a heat resistant, anti-corrosive grooved metal plate 11a having a plurality of grooves 60 formed parallel to one another in the one side face thereof and a heat resistant, anti-corrosive flat metal plate 11b are joined together in such a manner as to include the grooves 60 in their joint faces and such joint faces are welded together along the raised parts between each adjacent groove 60 by laser or electron beam welding process. Therefore, a high temperature strength of the joint parts of the combustion chamber liner members is made equal to that of the members.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガスタービン用燃焼室
ライナーの製作方法に係り、特に高温ガスタービン燃焼
器の燃焼室の周壁を構成するライナー材で、高効率冷却
の図れるライナー材を製作する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a combustion chamber liner for a gas turbine, and more particularly to a liner material which constitutes a peripheral wall of a combustion chamber of a high temperature gas turbine combustor and which can be cooled with high efficiency. On how to do.

【0002】[0002]

【従来の技術】ガスタービン燃焼器はガスタービン1台
当たり数個設置され、その主要部である燃焼室は円筒状
で、一端から円筒内に燃料を供給し、円筒内部で燃焼さ
せ、他端より高温高圧ガスを放出するように構成されて
いる。一般に燃焼室の周壁を構成するライナー用材料に
は耐熱耐食合金が用いられ、そしてこの燃焼室ライナー
を高圧空気で冷却することにより保護している。従来の
冷却方法をさらに詳細に説明すると、燃焼室ライナーの
外面は高圧空気により冷却され、また燃焼室内は高温の
燃焼ガスの流路となるため、燃焼室ライナーの内面に冷
却空気を膜状に流すフイルム冷却法が採用され、燃焼室
ライナーの過熱を防止している。
2. Description of the Related Art A plurality of gas turbine combustors are installed per gas turbine, and a combustion chamber, which is a main part of the gas turbine, has a cylindrical shape. Fuel is supplied from one end into the cylinder to burn inside the cylinder, and the other end is combusted. It is configured to emit a higher temperature, high pressure gas. Generally, a heat and corrosion resistant alloy is used as a material for the liner forming the peripheral wall of the combustion chamber, and the combustion chamber liner is protected by cooling with high pressure air. Explaining the conventional cooling method in more detail, the outer surface of the combustion chamber liner is cooled by high-pressure air, and since a high temperature combustion gas flow path is formed in the combustion chamber, cooling air is formed into a film on the inner surface of the combustion chamber liner. A flowing film cooling method is adopted to prevent overheating of the combustion chamber liner.

【0003】しかし、近年、ガスタービンの高効率化を
目的として燃焼ガスの高温高圧化を図ろうとしている
が、上記のように燃焼室ライナーの外面の冷却と内面の
フィルム冷却との組合せ冷却方式では、冷却効果に限界
があり、燃焼器のより高効率化を図ることができない。
また、燃焼器のさらなる高効率化を図るためには従来よ
り燃焼用空気の量を多くし、しかも燃焼室ライナーの冷
却は従来以上に効果的なものが求められている。このた
め前述の燃焼室ライナーの内外面の冷却法に加え、この
ライナー内部にも冷却通路を設け、強制的に冷却空気を
送るようにした冷却方法が考案されている。しかし、燃
焼室ライナー内部に冷却通路を形成する方法については
記述されてない。(特開昭47−9053号、特開昭5
6−168041号、特開平3−221720号の各公
報)従来、ある種の燃焼室ライナーは一枚板から構成さ
れていたので、耐熱耐食合金板を円筒状に成形加工し、
この円筒部材を燃焼室としていた。従って燃焼室ライナ
ー用の素材をわざわざ製作する必要がなく、燃焼器の製
作工数の面では有利であった。しかし、この方法により
製作された燃焼器では前述の如く、燃焼室を構成してい
る耐熱耐食合金板が一枚板であるため燃焼温度が高温化
した場合、冷却の点で対応できない。
However, in recent years, attempts have been made to increase the temperature and pressure of the combustion gas for the purpose of improving the efficiency of the gas turbine, but as described above, a combined cooling system of cooling the outer surface of the combustion chamber liner and the film cooling of the inner surface is used. However, there is a limit to the cooling effect, and it is not possible to achieve higher efficiency of the combustor.
Further, in order to further improve the efficiency of the combustor, it is required to increase the amount of combustion air as compared with the conventional method and to cool the combustion chamber liner more effectively than before. Therefore, in addition to the above-described cooling method for the inner and outer surfaces of the combustion chamber liner, a cooling method has been devised in which a cooling passage is also provided inside the liner to forcibly send cooling air. However, it does not describe how to form the cooling passages inside the combustion chamber liner. (JP-A 47-9053, JP-A 5
6-168041, JP-A-3-221720) Conventionally, since a certain type of combustion chamber liner has been composed of a single plate, a heat and corrosion resistant alloy plate is formed into a cylindrical shape,
This cylindrical member was used as the combustion chamber. Therefore, it is not necessary to purposely manufacture the material for the combustion chamber liner, which is advantageous in terms of the number of manufacturing steps of the combustor. However, in the combustor manufactured by this method, as described above, since the heat-resistant and corrosion-resistant alloy plate forming the combustion chamber is a single plate, it is not possible to cope with cooling when the combustion temperature rises.

【0004】また、内部に冷却通路を設けた燃焼室ライ
ナーを製作する方法として、特開昭63−281767
号公報に開示された積層耐熱合金板の製作方法がある。
この方法では、一枚の板の一面に複数の溝を並行して形
成し、これらの溝を蓋するように他の板を重ね合わせ、
これら2枚の板材の接触面をNi系ろう材を用いて接合
することにより燃焼室壁材を製作するものであるが、ろ
う接部の溶融温度が低いため、ガスタービンの高温化に
は対処しきれないという問題があった。
Further, as a method of manufacturing a combustion chamber liner having a cooling passage inside, a method for manufacturing a combustion chamber liner is disclosed in Japanese Patent Laid-Open No. 63-281767.
There is a method of manufacturing a laminated heat-resistant alloy plate disclosed in Japanese Patent Publication No.
In this method, a plurality of grooves are formed in parallel on one surface of one plate, and other plates are stacked so as to cover these grooves,
A combustion chamber wall material is manufactured by joining the contact surfaces of these two plate materials with a Ni-based brazing material, but the melting temperature of the brazing portion is low, so it is necessary to cope with the high temperature of the gas turbine. There was a problem that I could not do it.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記事情に
鑑みてなされたもので、その目的はガスタービンの高温
化に対応して、内部に冷却流路を設けて冷却能力に優れ
たガスタービン用燃焼室ライナーの製作方法を提供する
ことにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a gas having an excellent cooling capacity by providing a cooling passage inside thereof in response to a high temperature of a gas turbine. A method of manufacturing a combustion chamber liner for a turbine is provided.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明のガスタービン用燃焼室ライナーの製作方法
は、燃焼室ライナー内部に冷却用流路を形成するため、
そのライナーの素材を次のような工程で製作する。
In order to achieve the above object, a method of manufacturing a combustion chamber liner for a gas turbine according to the present invention comprises forming a cooling channel inside the combustion chamber liner,
The material of the liner is manufactured by the following process.

【0007】第1の製作方法は、燃焼室ライナーの素材
を、一つの面に複数の溝を平行に形成した溝付き耐熱耐
食性金属板と平板状耐熱耐食性金属板とを、溝を内部に
含むように重ね合わせ、隣合う溝間の凸部分に沿ってレ
ーザ溶接法または電子ビーム溶接法により溶接して、製
作することを特徴とする。
In the first manufacturing method, the material of the combustion chamber liner includes a grooved heat resistant and corrosion resistant metal plate having a plurality of grooves formed in parallel on one surface and a flat plate-shaped heat resistant and corrosion resistant metal plate inside. As described above, it is characterized in that they are manufactured by welding them by a laser welding method or an electron beam welding method along a convex portion between adjacent grooves.

【0008】第2の製作方法は、燃焼室ライナーの素材
を、一つの面に複数の溝を平行に形成した溝付き耐熱耐
食性金属板の2枚を溝を合わせて重ね合わせ、隣合う溝
間の凸部分に沿ってレーザ溶接法または電子ビーム溶接
法により片面から溶接して、製作することを特徴とす
る。
The second manufacturing method is that the material of the combustion chamber liner is formed by stacking two grooved heat-resistant and corrosion-resistant metal plates having a plurality of grooves formed in parallel on one surface, with the grooves aligned with each other. It is characterized in that it is manufactured by welding from one side along the convex portion of by a laser welding method or an electron beam welding method.

【0009】第1及び第2の製作方法において、溝付き
耐熱耐食性金属板の溝をエッチング、レーザー加工また
は放電加工により形成するのがよい。
In the first and second manufacturing methods, it is preferable that the groove of the grooved heat-resistant and corrosion-resistant metal plate is formed by etching, laser machining or electric discharge machining.

【0010】第3の製作方法は、燃焼室ライナーの素材
を、2枚の耐熱耐食性金属板の間に耐熱耐食性金属から
なる複数の角型バー材を平行に配列して、耐熱耐食性金
属板それぞれの外面側から角型バー材に沿ってレーザ溶
接法または電子ビーム溶接法により溶接して、製作する
ことを特徴とする。
The third manufacturing method is that the material of the combustion chamber liner is formed by arranging a plurality of square bar members made of heat-resistant and corrosion-resistant metal in parallel between two heat-resistant and corrosion-resistant metal plates, and the outer surface of each heat-resistant and corrosion-resistant metal plate is arranged. It is characterized in that it is manufactured by welding from a side along a square bar material by a laser welding method or an electron beam welding method.

【0011】第4の製作方法は、燃焼室ライナーの素材
を、2枚の耐熱耐食性金属板の間に耐熱耐食性金属から
なる波型板を挟み、耐熱耐食性金属板それぞれの外面側
からこの耐熱耐食性金属板に当接する波型板の頂部に沿
ってレーザ溶接法または電子ビーム溶接法により溶接し
て、製作することを特徴とする。
The fourth manufacturing method is that the corrugated plate made of heat-resistant and corrosion-resistant metal is sandwiched between two heat-resistant and corrosion-resistant metal plates, and the heat-resistant and corrosion-resistant metal plate is placed from the outer surface side of each heat-resistant and corrosion-resistant metal plate. It is characterized in that it is manufactured by welding along the top of the corrugated plate abutting against the laser by a laser welding method or an electron beam welding method.

【0012】第5の製作方法は、燃焼室ライナーの素材
を、一つの面に複数の溝を平行に形成した溝付き耐熱耐
食性金属板と平板状耐熱耐食性金属板とを、耐熱耐食性
金属の化学組成にSiを増量しかつBを添加した合金か
らなる箔状インサート材を挟んで、溝を内部に含むよう
に重ね合わせ、液相拡散接合法により接合して、製作す
ることを特徴とする。
A fifth manufacturing method uses a material for a combustion chamber liner, a grooved heat-resistant and corrosion-resistant metal plate having a plurality of grooves formed in parallel on one surface, and a flat plate-shaped heat-resistant and corrosion-resistant metal plate, and a heat-resistant and corrosion-resistant metal chemistry. It is characterized in that a foil-shaped insert material made of an alloy having an increased amount of Si and B added to the composition is sandwiched, the grooves are superposed so as to include the groove therein, and they are bonded by a liquid phase diffusion bonding method.

【0013】第6の製作方法は、燃焼室ライナーの素材
を、2枚の耐熱耐食性金属板の間に耐熱耐食性金属板か
らなる波型板を、各耐熱耐食性金属板と波型板の頂部間
に耐熱耐食性金属の化学組成にSiを増量しかつBを添
加した合金からなる箔状インサート材を介在させて挾
み、液相拡散接合法により接合して、製作することを特
徴とする。
In the sixth manufacturing method, a material for the combustion chamber liner is used, a corrugated plate made of a heat-resistant and corrosion-resistant metal plate is placed between two heat-resistant and corrosion-resistant metal plates, and heat-resistant between each heat-resistant and corrosion-resistant metal plate and the top of the corrugated plate. It is characterized in that it is manufactured by sandwiching a foil-shaped insert material made of an alloy in which Si is added and B is added to the chemical composition of a corrosion-resistant metal, and joining by a liquid phase diffusion joining method.

【0014】[0014]

【作用】上記のように、溝付き耐熱耐食性金属板と平板
状耐熱耐食性金属板とを重ね合わせ、又は溝付き耐熱耐
食性金属板の2枚を重ね合わせ、又は2枚の耐熱耐食性
金属板の間にそれらと同材質の複数の角型バー材を平行
に配列して、又は2枚の耐熱耐食性金属板の間にそれら
と同材質の波型板を挟んで、各部材をレーザ溶接法また
は電子ビーム溶接法により接合して、燃焼室ライナー材
を製作するので、燃焼室ライナーにおける部材の接合部
は部材と同等の高温強度が得られる。また、溝付き耐熱
耐食性金属板と平板状耐熱耐食性金属板とを重ね合わ
せ、又は2枚の耐熱耐食性金属板の間にそれらと同材質
の波型板を挾んで合わせて、かつそれら部材間に耐熱耐
食性金属の化学組成にSiを増量しかつBを添加した合
金からなる箔状インサート材を介在させて、液相拡散接
合法により接合して、燃焼室ライナー材を製作するの
で、インサート材はSiおよびBにより低融点化して接
合を容易にし、また接合部の主成分は耐熱耐食性金属板
のそれにほぼ同様であるので、接合部の高温強度を部材
と同等にすることができる。
As described above, the grooved heat-resistant and corrosion-resistant metal plate and the flat plate-shaped heat-resistant and corrosion-resistant metal plate are overlapped, or two grooved heat-resistant and corrosion-resistant metal plates are overlapped, or they are placed between two heat-corrosion-resistant metal plates. By arranging a plurality of square bar materials of the same material in parallel or sandwiching a corrugated plate of the same material between two heat-resistant and corrosion-resistant metal plates, by laser welding or electron beam welding Since the combustion chamber liner material is manufactured by joining, the joining portion of the members in the combustion chamber liner can obtain high temperature strength equivalent to that of the members. In addition, a grooved heat and corrosion resistant metal plate and a flat plate heat and corrosion resistant metal plate are superposed, or a corrugated plate made of the same material is sandwiched between two heat and corrosion resistant metal plates, and the heat and corrosion resistance is between the members. Since a combustion chamber liner material is manufactured by interposing a foil-like insert material made of an alloy in which Si is added to the chemical composition of metal and adding B, and is joined by a liquid phase diffusion bonding method, the insert material is Si and Since the melting point is lowered by B to facilitate the joining, and the main component of the joint is almost the same as that of the heat and corrosion resistant metal plate, the high temperature strength of the joint can be made equal to that of the member.

【0015】これらの方法で作製したライナー材を円筒
状に成形加工して製作した燃焼室を備えた燃焼器は、従
来型燃焼器の冷却方法に加えて、ライナー内部からも強
制冷却が可能となるため、燃焼室ライナーの冷却用空気
は従来より少ない量でも効率的に冷却できるだけでな
く、燃焼用空気の量を多くできガスタービンの高効率化
が図ることができる。
A combustor having a combustion chamber manufactured by forming the liner material manufactured by these methods into a cylindrical shape is capable of forced cooling from the inside of the liner in addition to the cooling method of the conventional combustor. Therefore, not only can the cooling air for the combustion chamber liner be cooled efficiently with a smaller amount than in the past, but the amount of the combustion air can be increased and the efficiency of the gas turbine can be improved.

【0016】[0016]

【実施例】以下、本発明の実施例を図面を参照して説明
する。図1は本発明により製作した燃焼室ライナーを備
えたガスタービン燃焼器の概略構成図、図2は燃焼器の
軸方向についての燃焼室ライナーの断面図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram of a gas turbine combustor provided with a combustion chamber liner manufactured according to the present invention, and FIG. 2 is a sectional view of the combustion chamber liner in the axial direction of the combustor.

【0017】図1に示すように、ガスタービン燃焼器
(単に燃焼器という)は外筒1と、その外筒1内に設置
された内筒2と、内筒2後方に接続する尾筒3を備えて
おり、内筒2の内部は燃焼室を形成する。燃焼器外部か
ら外筒1と内筒2の間に供給された高圧空気31は内筒
2の壁に設けられた多数の空気導入口61を通じて燃焼
室に流入する。
As shown in FIG. 1, a gas turbine combustor (simply referred to as a combustor) has an outer cylinder 1, an inner cylinder 2 installed in the outer cylinder 1, and a tail cylinder 3 connected to the rear of the inner cylinder 2. And the inside of the inner cylinder 2 forms a combustion chamber. The high-pressure air 31 supplied from the outside of the combustor between the outer cylinder 1 and the inner cylinder 2 flows into the combustion chamber through a large number of air introduction ports 61 provided in the wall of the inner cylinder 2.

【0018】内筒2の周壁を構成する燃焼室ライナー1
1(以後、単にライナー11という)は、図2に示すよ
うに、ライナー11内部には内筒2の軸方向に延びる孔
即ち冷却流路60を、またライナー11の外面から冷却
流路60へと通ずる空気導入口61および冷却流路60
からライナー11の内面に通ずる空気導出口62を設け
て構成されている。内筒2の外側を流れる高圧空気31
はライナー11の外壁部を冷却すると同時に、高圧空気
の一部31aが空気導入口61から冷却流路60内に流
入してライナー11内部を冷却し、それから空気導出口
62から内筒2の内部すなわち燃焼室に流出し、その
際、空気導出口62の出側に設けられた爪12によって
案内されて内筒2の内面に沿ってフィルム空気31bと
して流れて内筒2の内壁部を冷却し、内筒2内に流れる
高温の燃焼ガス40からライナー11を保護する。なお
内筒2のライナー11は、外壁部となる耐熱耐食合金板
11aと、内壁部となり冷却流路60を有する溝付き耐
熱耐食合金板11bとが積層されてなる積層板で構成さ
れている。また爪12は環状で、内筒2の内周に沿って
接合されている。
The combustion chamber liner 1 forming the peripheral wall of the inner cylinder 2
As shown in FIG. 2, 1 (hereinafter, simply referred to as liner 11) has a hole or cooling channel 60 extending in the axial direction of the inner cylinder 2 inside the liner 11, and an outer surface of the liner 11 to the cooling channel 60. Air inlet 61 and cooling channel 60 communicating with
Is provided with an air lead-out port 62 communicating with the inner surface of the liner 11. High pressure air 31 flowing outside the inner cylinder 2
Simultaneously cools the outer wall portion of the liner 11, and at the same time, a part of the high pressure air 31a flows into the cooling flow passage 60 from the air introduction port 61 to cool the inside of the liner 11, and then from the air outlet port 62 to the inside of the inner cylinder 2. That is, it flows out into the combustion chamber, and at that time, it is guided by the claw 12 provided on the outlet side of the air outlet 62 and flows as film air 31b along the inner surface of the inner cylinder 2 to cool the inner wall portion of the inner cylinder 2. The liner 11 is protected from the high temperature combustion gas 40 flowing in the inner cylinder 2. The liner 11 of the inner cylinder 2 is composed of a laminated plate in which a heat-resistant and corrosion-resistant alloy plate 11a that serves as an outer wall portion and a grooved heat-resistant and corrosion resistant alloy sheet 11b that serves as an inner wall portion and has a cooling channel 60 are laminated. The claw 12 is annular and is joined along the inner circumference of the inner cylinder 2.

【0019】〔実施例1〕図3は本発明の第1実施例を
説明する図で、積層構造のライナーの製作方法を示す。
まず2枚のうちの一方の耐熱耐食合金板の片面に、冷却
流路となる複数の溝60を内筒2の軸方向に並行するよ
うに放電加工法で形成して、溝付き耐熱耐食合金板11
bを得る。次に平板状の他の耐熱耐食合金板11aを、
溝60に蓋をするように溝付き耐熱耐食合金板11bの
上に重ね合わせる。それから、平板11a表面からCO
2レーザ溶接法により溶接し、ライナーとなる積層板1
1を製作する。この時、溶接ビード51は溝付き耐熱耐
食合金板11bの溝60,60間の凸部にあたる部分に
その幅が広くなるように形成し、2枚の板11a,11
bを一体として積層板11とする。溶接ビード51幅を
広くすることにより板11a,11b間の熱伝導をよく
することが好ましく、これにより放熱を効果的に行うこ
とができる。
[Embodiment 1] FIG. 3 is a view for explaining a first embodiment of the present invention, and shows a method of manufacturing a liner having a laminated structure.
First, on one surface of one of the two heat-resistant and corrosion-resistant alloy plates, a plurality of grooves 60 serving as cooling channels are formed by an electric discharge machining method so as to be parallel to the axial direction of the inner cylinder 2, and the heat-resistant and corrosion-resistant alloy with grooves is formed. Board 11
get b. Next, another flat heat-resistant and corrosion-resistant alloy plate 11a is
The groove 60 is overlaid on the grooved heat-resistant and corrosion-resistant alloy plate 11b so as to cover the groove 60. Then, from the surface of the flat plate 11a, CO
2 Laminated plate that becomes a liner by welding with the laser welding method 1
Produce 1. At this time, the welding bead 51 is formed such that the width thereof is wide at the portion corresponding to the convex portion between the grooves 60, 60 of the grooved heat-resistant and corrosion-resistant alloy plate 11b, and the two plates 11a, 11 are formed.
The b is integrated into a laminated plate 11. It is preferable to improve the heat conduction between the plates 11a and 11b by widening the width of the welding bead 51, which allows effective heat dissipation.

【0020】耐熱耐食合金板11a、11bはハステロ
イ材とし、溝付き耐熱耐食合金板11aの概略サイズは
2×30×400(mm)で、溝60は1×1(mm)、間
隔5mmとし、耐熱耐食合金板11bの概略サイズは1.
2×30×400(mm)とした時、一例としてCO2
ーザ溶接条件例は出力:2kw,溶接速度:1 m/minで
あった。図4は積層板11の断面形状を示す。なお、こ
の種の耐熱耐食合金板11a、11bは0.5〜5mm板
厚である。
The heat and corrosion resistant alloy plates 11a and 11b are made of Hastelloy material, and the grooved heat resistant and corrosion resistant alloy plate 11a has an approximate size of 2 × 30 × 400 (mm), the grooves 60 are 1 × 1 (mm), and the interval is 5 mm. The heat-resistant and corrosion-resistant alloy plate 11b has an approximate size of 1.
When it was set to 2 × 30 × 400 (mm), as an example, the CO 2 laser welding condition example was output: 2 kw and welding speed: 1 m / min. FIG. 4 shows a sectional shape of the laminated plate 11. The heat and corrosion resistant alloy plates 11a and 11b of this type have a plate thickness of 0.5 to 5 mm.

【0021】図5は積層板11を筒状に加工した状態を
示す図である。積層板11は曲げ加工でリング状に成形
加工し、次いで積層板11端の突合せ部を溶接して、内
筒セグメントを製作する。この内筒セグメントの複数を
軸方向に継ぎ合わせて溶接して所定長さの内筒2を製作
する。上記の溶接は、実際、Ni系フィラーワイヤを用
いてTIG溶接〔溶接電流:55A,シールドガス:A
r(10 l/min)〕した。
FIG. 5 is a view showing a state in which the laminated plate 11 is processed into a cylindrical shape. The laminated plate 11 is formed into a ring shape by bending, and then the abutting portion at the end of the laminated plate 11 is welded to produce an inner cylinder segment. A plurality of the inner cylinder segments are joined together in the axial direction and welded to manufacture the inner cylinder 2 having a predetermined length. The above welding is actually TIG welding using a Ni-based filler wire [welding current: 55 A, shielding gas: A
r (10 l / min)].

【0022】以下は積層板内の冷却流路の形成方法につ
いて、実施例1とは異なる方法で実施したので、その実
施例を述べる。
The method for forming the cooling passages in the laminated plate was carried out by a method different from that of Example 1 below, so that Example will be described.

【0023】〔実施例2〕図6は本発明の実施例2を示
す。耐食耐熱合金板11aの片面に溝60aを、また耐
食耐熱合金板11bの片面の片面に溝60bを放電加工
法で形成し、これら溝60a,60bが対向するように
重ね合わせて実施例1と同様に溶接して、積層板11内
に冷却流路60を形成した。溶接条件は実施例1におけ
ると同様である。
[Second Embodiment] FIG. 6 shows a second embodiment of the present invention. A groove 60a is formed on one surface of the corrosion-resistant heat-resistant alloy plate 11a, and a groove 60b is formed on one surface of the corrosion-resistant heat-resistant alloy plate 11b by an electric discharge machining method. Similarly, welding was performed to form the cooling flow channel 60 in the laminated plate 11. The welding conditions are the same as in Example 1.

【0024】〔実施例3〕図7は本発明の第3実施例を
示す。加工を施さない2枚の平板の耐食耐熱合金板11
b間に、平板と同材質の波型板材13を挟んで、耐食耐
熱合金板11aと波型板材13の一面側の頂部とが線状
に当接する部分、および耐食耐熱合金板11bと波型板
材13の他面側の頂部とが線状に当接する部分をCO2
レーザ溶接法により溶接して、積層板11を製作した。
冷却流路60は、耐食耐熱合金板11aと波型板材13
とで区画される空間および耐食耐熱合金板11bと波型
板材13とで区画される空間によって形成される。一例
としてハステロイの耐食耐熱合金板11a、11bの溶
接条件は、波型板材13が溶けすぎないことを考慮し、
レーザ出力:1.5kw,溶接速度:1 m/minとした。
[Third Embodiment] FIG. 7 shows a third embodiment of the present invention. Two flat, corrosion-resistant and heat-resistant alloy plates without processing 11
A corrugated plate material 13 made of the same material as the flat plate is sandwiched between b, and a portion where the corrosion-resistant heat-resistant alloy plate 11a and the top portion on one side of the corrugated plate material 13 linearly contact each other, and the corrosion-resistant heat-resistant alloy plate 11b and the corrugated shape. The portion of the plate member 13 that is in linear contact with the top of the other surface is CO 2
The laminated plate 11 was manufactured by welding using a laser welding method.
The cooling flow path 60 includes the corrosion-resistant and heat-resistant alloy plate 11 a and the corrugated plate material 13.
It is formed by a space defined by and a space defined by the corrosion-resistant and heat-resistant alloy plate 11b and the corrugated plate material 13. As an example, the welding conditions for the Hastelloy corrosion-resistant heat-resistant alloy plates 11a and 11b are that the corrugated plate material 13 does not melt too much,
The laser output was 1.5 kw and the welding speed was 1 m / min.

【0025】〔実施例4〕図8本発明の実施例4を示
す。2枚の平板の耐食耐熱合金板11b間に、この平板
と同材質の角材14を平行配列して挟み、各平板の上面
より溶接して2枚の耐食耐熱合金板11bと角材14と
を一体とすることにより、積層板11を製作した。図9
に示す積層板11は2枚の耐食耐熱合金板11bの対向
面に、角材14を位置決めできるように淺い溝16を形
成したもので、その他は図8に示す積層板と同様であ
る。ハステロイの耐食耐熱合金板11a,11bの板厚
が1mmの場合、溶接条件は実施例1と同様であった。
[Fourth Embodiment] FIG. 8 shows a fourth embodiment of the present invention. A square bar 14 made of the same material as the flat plate is parallelly arranged and sandwiched between two flat plates of the corrosion resistant heat resistant alloy plate 11b, and the two corrosion resistant heat resistant alloy plates 11b and the square bar 14 are integrated by welding from the upper surface of each flat plate. By doing so, the laminated plate 11 was manufactured. Figure 9
The laminated plate 11 shown in FIG. 8 is one in which a coffered groove 16 is formed on the facing surface of two corrosion-resistant and heat-resistant alloy plates 11b so that the square members 14 can be positioned. Others are the same as those of the laminated plate shown in FIG. When the thickness of the Hastelloy corrosion-resistant heat-resistant alloy plates 11a and 11b was 1 mm, the welding conditions were the same as in Example 1.

【0026】〔実施例5〕図10は本発明の実施例5を
示す。実施例1と同じ方法で作製した溝付き耐食耐熱合
金板11aと耐食耐熱合金板11bを実施例1と同じ方
法で重ねあわせ、電子ビーム溶接法により溶接して、積
層板11を製作した。53は電子ビーム溶接部である。
溶接条件は加速電圧:150V,ビーム電流:50m
A,溶接速度:1m/min,真空度:1×10~4Tor
rとした。
[Fifth Embodiment] FIG. 10 shows a fifth embodiment of the present invention. The grooved corrosion-resistant and heat-resistant alloy plate 11a and the corrosion-resistant and heat-resistant alloy plate 11b produced by the same method as in Example 1 were overlapped by the same method as in Example 1 and welded by the electron beam welding method to produce the laminated plate 11. 53 is an electron beam weld.
Welding conditions are acceleration voltage: 150V, beam current: 50m
A, welding speed: 1 m / min, vacuum degree: 1 × 10 to 4 Tor
It was r.

【0027】〔実施例6〕図11は本発明の実施例6を
示す。実施例1と同じ方法で作成した溝付き耐食耐熱合
金板11aと耐食耐熱合金板11bとを液相拡散接合し
て、積層板11を製作した。合金板11a,11bの化
学組成は重量比でC:0.1%,Si:0.5%,M
n:0.5%,Co:15%,Mo:9%,残Niで、
合金板11a,11b間に挾み込んだインサート材は耐
食耐熱合金板よりSi量がやや高めで、それに硼化物を
1〜4%添加した箔とした。その接合条件は真空中で1
200℃×1h(加圧:3 gf/mm2)加熱保持した。7
0は液相拡散接合部を示す。
[Sixth Embodiment] FIG. 11 shows a sixth embodiment of the present invention. A grooved corrosion-resistant heat-resistant alloy plate 11a and a corrosion-resistant heat-resistant alloy plate 11b produced by the same method as in Example 1 were liquid-phase diffusion-bonded to produce a laminated plate 11. The chemical composition of the alloy plates 11a and 11b is C: 0.1%, Si: 0.5%, M by weight ratio.
n: 0.5%, Co: 15%, Mo: 9%, balance Ni,
The insert material sandwiched between the alloy plates 11a and 11b had a slightly higher Si content than the corrosion-resistant heat-resistant alloy plate, and was a foil containing 1 to 4% of boride added thereto. The bonding condition is 1 in vacuum
The temperature was kept at 200 ° C. × 1 h (pressurization: 3 gf / mm 2 ). 7
0 indicates a liquid phase diffusion bonding part.

【0028】〔実施例7〕図12は本発明の実施例7を
示す。2枚の平板の耐食耐熱合金板11b間にこの平板
と同材質の波型板材13を挟んで、一方の耐食耐熱合金
板11bと波型板材13の一面側の頂部とが線状に当接
する部分、および他方の耐食耐熱合金板11bと波型板
材13の他面側の頂部とが線状に当接する部分を液相拡
散接合して、積層板11を製作した。耐食耐熱合金板1
1bの化学組成は上記の実施例8と同じであり、当接部
分に挟み込んだインサート材なる箔は、50μm厚で、
Si:4%,Co:15%,Mo:9%,B:3%,残
Niの化学組成を有するものであった。その接合条件は
真空中で1150℃に加熱し、加圧(0.5 gf/mm2
するものであった。
[Seventh Embodiment] FIG. 12 shows a seventh embodiment of the present invention. A corrugated plate material 13 made of the same material as this flat plate is sandwiched between two flat plates of the corrosion resistant heat resistant alloy plate 11b, and one of the corrosion resistant heat resistant alloy plate 11b and the top portion of the corrugated plate material 13 on one surface side linearly contact each other. A portion and a portion where the other corrosion-resistant and heat-resistant alloy plate 11b and the apex on the other surface side of the corrugated plate material 13 linearly abut were liquid-phase diffusion bonded to each other to manufacture a laminated plate 11. Corrosion-resistant heat-resistant alloy plate 1
The chemical composition of 1b is the same as in Example 8 above, and the insert material foil sandwiched between the contact portions has a thickness of 50 μm.
It had a chemical composition of Si: 4%, Co: 15%, Mo: 9%, B: 3%, and residual Ni. The joining conditions are heating to 1150 ° C in a vacuum and pressurizing (0.5 gf / mm 2 ).
It was something to do.

【0029】[0029]

【発明の効果】本発明によれば、ガスタービン用燃焼室
ライナーの製作方法を、溝付き耐熱耐食性金属板と平板
状耐熱耐食性金属板とを溝が内部に位置するように重ね
合わせ、あるいは溝付き耐熱耐食性金属板の2枚を溝が
内部に位置するように重ね合わせ、あるいは2枚の耐熱
耐食性金属板の間にそれらと同材質の複数の角型バー材
又は波型板を挟んで、これら積層部材をレーザ溶接法ま
たは電子ビーム溶接法で接合するものとしたので、部材
の接合部は部材と同等の高温強度が得られる。
According to the present invention, a method for manufacturing a combustion chamber liner for a gas turbine is performed by stacking a grooved heat-resistant and corrosion-resistant metal plate and a flat plate heat-resistant and corrosion-resistant metal plate so that the groove is located inside, or by using a groove. The two heat-resistant and corrosion-resistant metal plates are stacked so that the groove is located inside, or a plurality of square bar members or corrugated plates made of the same material are sandwiched between the two heat-resistant and corrosion-resistant metal plates, and these are laminated. Since the members are joined by the laser welding method or the electron beam welding method, the joining portion of the members can obtain high temperature strength equivalent to that of the members.

【0030】また、本発明の他のガスタービン用燃焼室
ライナーの製作方法を、溝付き耐熱耐食性金属板と平板
状耐熱耐食性金属板とを重ね合わせ、あるいは2枚の耐
熱耐食性金属板の間にそれらと同材質の波型板を挾んで
合わせ、かつそれら部材間に耐熱耐食性金属の化学組成
よりSiが多くかつBを添加した合金からなる箔状イン
サート材を介在させて、液相拡散接合法により接合する
ものとしたので、インサート材はSi、Bにより低融点
化して接合を容易にし、また接合部の主成分は耐熱耐食
性金属板のそれにほぼ同様であるので、接合部の高温強
度を部材と同等にすることができる。
In addition, another method for manufacturing a combustion chamber liner for a gas turbine according to the present invention may be performed by superposing a grooved heat-resistant and corrosion-resistant metal plate and a flat plate heat-resistant and corrosion-resistant metal plate, or by using them between two heat-resistant and corrosion-resistant metal plates. The corrugated plates made of the same material are sandwiched together, and a foil-like insert material made of an alloy containing more Si and B than the chemical composition of the heat-resistant and corrosion-resistant metal is interposed between these members and joined by the liquid phase diffusion joining method. Since the insert material has a low melting point of Si and B to facilitate the joining, and the main component of the joint is almost the same as that of the heat and corrosion resistant metal plate, the high temperature strength of the joint is equivalent to that of the member. Can be

【0031】これらの方法で作製した燃焼室ライナー材
から構成された燃焼器は、ライナー内部に冷却流路を有
しており、内部からも強制冷却が可能となるため、フイ
ルム冷却と合わせて、燃焼器を効果的に冷却できる。
The combustor made of the combustion chamber liner material produced by these methods has a cooling passage inside the liner, and forced cooling can be performed from the inside as well. Therefore, in combination with film cooling, The combustor can be cooled effectively.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明により製作した燃焼室ライナーを備えた
ガスタービン燃焼器の概略構成図である。
FIG. 1 is a schematic configuration diagram of a gas turbine combustor including a combustion chamber liner manufactured according to the present invention.

【図2】燃焼室ライナー構造を示す燃焼器軸方向断面図
である。
FIG. 2 is a combustor axial sectional view showing a combustion chamber liner structure.

【図3】本発明の実施例1の方法により製作された内筒
壁用積層板の斜視図である。
FIG. 3 is a perspective view of an inner cylinder wall laminated plate manufactured by the method according to the first embodiment of the present invention.

【図4】実施例1の方法により製作された積層板の溶接
部を示す断面図である。
FIG. 4 is a cross-sectional view showing a welded portion of a laminated plate manufactured by the method of Example 1.

【図5】積層板から内筒セグメントを経て製作した燃焼
器内筒を示す図である。
FIG. 5 is a view showing a combustor inner cylinder manufactured from a laminated plate through inner cylinder segments.

【図6】本発明の実施例2の方法により製作された積層
板の溶接部断面図である。
FIG. 6 is a sectional view of a welded portion of a laminated plate manufactured by the method of Example 2 of the present invention.

【図7】本発明の実施例3の方法により製作された積層
板の溶接部断面図である。
FIG. 7 is a sectional view of a welded portion of a laminated plate manufactured by the method of Example 3 of the present invention.

【図8】本発明の実施例4の方法により製作された積層
板の溶接部断面図である。
FIG. 8 is a cross-sectional view of a welded portion of a laminated plate manufactured by the method of Example 4 of the present invention.

【図9】本発明の実施例5の方法により製作された積層
板の溶接部断面図である。
FIG. 9 is a cross-sectional view of a welded portion of a laminated plate manufactured by the method of Example 5 of the present invention.

【図10】実施例5の方法の変型による積層板の溶接部
断面図である。
FIG. 10 is a cross-sectional view of a welded portion of a laminated plate according to a modification of the method of Example 5.

【図11】本発明の実施例6の方法により製作された積
層板の溶接部断面図である。
FIG. 11 is a sectional view of a welded portion of a laminated plate manufactured by the method of Example 6 of the present invention.

【図12】本発明の実施例7の方法により製作された積
層板の溶接部断面図である。
FIG. 12 is a sectional view of a welded portion of a laminated plate manufactured by the method of Example 7 of the present invention.

【符号の説明】[Explanation of symbols]

1 外筒 2 内筒 11 燃焼室ライナー(積層板) 11a,11b 耐熱耐食合金板 12 爪 13 波型板材 14 角材 51 レーザ溶接ビード 52 TIG溶接ビード 53 電子ビーム溶接ビード 60 冷却流路 60a,60b 溝 61 冷却空気導入口 62 冷却空気導出口 70 液相拡散接合部 1 Outer Cylinder 2 Inner Cylinder 11 Combustion Chamber Liner (Laminate Plate) 11a, 11b Heat Resistant Corrosion Resistant Alloy Plate 12 Claw 13 Corrugated Plate Material 14 Square Bar 51 Laser Weld Bead 52 TIG Weld Bead 53 Electron Beam Weld Bead 60 Cooling Channel 60a, 60b Groove 61 Cooling Air Inlet 62 Cooling Air Outlet 70 Liquid Phase Diffusion Joint

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡村 久宣 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hisanobu Okamura 7-1-1, Omika-cho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi Research Laboratory

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 内部に冷却用流路を形成したガスタービ
ン用燃焼室ライナーの製作方法において、前記燃焼室ラ
イナーの素材は、一つの面に複数の溝を平行に形成した
溝付き耐熱耐食性金属板と平板状耐熱耐食性金属板とを
前記溝を内部に含むように重ね合わせ、隣合う前記溝間
の凸部分に沿ってレーザ溶接法または電子ビーム溶接法
により溶接して、製作することを特徴とするガスタービ
ン用燃焼室ライナーの製作方法。
1. A method for manufacturing a combustion chamber liner for a gas turbine having a cooling flow passage formed therein, wherein the material of the combustion chamber liner is a grooved heat-resistant and corrosion-resistant metal having a plurality of grooves formed in parallel on one surface. A plate and a flat plate-shaped heat-resistant and corrosion-resistant metal plate are overlapped so as to include the groove therein, and welded by a laser welding method or an electron beam welding method along the convex portion between the adjacent grooves to manufacture. A method for manufacturing a combustion chamber liner for a gas turbine.
【請求項2】 内部に冷却用流路を形成したガスタービ
ン用燃焼室ライナーの製作方法において、前記燃焼室ラ
イナーの素材は、一つの面に複数の溝を平行に形成した
溝付き耐熱耐食性金属板の2枚を前記溝を合わせて重ね
合わせ、隣合う前記溝間の凸部分に沿ってレーザ溶接法
または電子ビーム溶接法により片面から溶接して、製作
することを特徴とするガスタービン用燃焼室ライナーの
製作方法。
2. A method of manufacturing a combustion chamber liner for a gas turbine having a cooling flow passage formed therein, wherein the material of the combustion chamber liner is a grooved heat-resistant and corrosion-resistant metal having a plurality of grooves formed in parallel on one surface. Combustion for a gas turbine, characterized in that two plates are superposed with the grooves aligned and welded from one side by a laser welding method or an electron beam welding method along a convex portion between the adjacent grooves to manufacture. Chamber liner manufacturing method.
【請求項3】 前記溝をエッチング、レーザー加工また
は放電加工により形成することを特徴とする請求項1ま
たは2に記載のガスタービン用燃焼室ライナーの製作方
法。
3. The method for producing a combustion chamber liner for a gas turbine according to claim 1, wherein the groove is formed by etching, laser machining or electric discharge machining.
【請求項4】 内部に冷却用流路を形成したガスタービ
ン用燃焼室ライナーの製作方法において、前記燃焼室ラ
イナーの素材は、2枚の耐熱耐食性金属板の間に耐熱耐
食性金属からなる複数の角型バー材を平行に配列して、
前記耐熱耐食性金属板それぞれの外面側から角型バー材
に沿ってレーザ溶接法または電子ビーム溶接法により溶
接して、製作することを特徴とするガスタービン用燃焼
室ライナーの製作方法。
4. A method of manufacturing a combustion chamber liner for a gas turbine having a cooling flow passage formed therein, wherein the material of the combustion chamber liner is a plurality of rectangular molds made of heat resistant and corrosion resistant metal between two heat resistant and corrosion resistant metal plates. Arrange the bar materials in parallel,
A method for manufacturing a combustion chamber liner for a gas turbine, characterized in that the heat resistant and corrosion resistant metal plate is welded from the outer surface side along a rectangular bar material by a laser welding method or an electron beam welding method.
【請求項5】 内部に冷却用流路を形成したガスタービ
ン用燃焼室ライナーの製作方法において、前記燃焼室ラ
イナーの素材は、2枚の耐熱耐食性金属板の間に耐熱耐
食性金属からなる波型板を挟み、前記耐熱耐食性金属板
それぞれの外面側から該耐熱耐食性金属板に当接する前
記波型板の頂部に沿ってレーザ溶接法または電子ビーム
溶接法により溶接して、製作することを特徴とするガス
タービン用燃焼室ライナーの製作方法。
5. A method of manufacturing a combustion chamber liner for a gas turbine having a cooling flow passage formed therein, wherein the material of the combustion chamber liner is a corrugated plate made of heat resistant and corrosion resistant metal between two heat resistant and corrosion resistant metal plates. A gas characterized by being produced by welding by sandwiching the heat-corrosion-resistant metal plate from the outer surface side along the top of the corrugated plate that contacts the heat-corrosion-resistant metal plate by a laser welding method or an electron beam welding method. Manufacturing method of combustion chamber liner for turbine.
【請求項6】 内部に冷却用流路を形成したガスタービ
ン用燃焼室ライナーの製作方法において、前記燃焼室ラ
イナーの素材は、一つの面に複数の溝を平行に形成した
溝付き耐熱耐食性金属板と平板状耐熱耐食性金属板と
を、前記耐熱耐食性金属の化学組成にSiを増量しかつ
Bを添加した合金からなる箔状インサート材を挟んで前
記溝を内部に含むように重ね合わせ、液相拡散接合法に
より接合して、製作することを特徴とするガスタービン
用燃焼室ライナーの製作方法。
6. A method of manufacturing a combustion chamber liner for a gas turbine having a cooling channel formed therein, wherein the material of the combustion chamber liner is a grooved heat-resistant and corrosion-resistant metal having a plurality of grooves formed in parallel on one surface. A plate and a flat plate heat-resistant and corrosion-resistant metal plate are superposed so as to include the groove inside by sandwiching a foil-shaped insert material made of an alloy in which Si is added to the heat-resistant and corrosion-resistant metal chemical composition and B is added, A method for manufacturing a combustion chamber liner for a gas turbine, which is manufactured by bonding by a phase diffusion bonding method.
【請求項7】 内部に冷却用流路を形成したガスタービ
ン用燃焼室ライナーの製作方法において、前記燃焼室ラ
イナーの素材は、2枚の耐熱耐食性金属板の間に耐熱耐
食性金属板からなる波型板を、前記各耐熱耐食性金属板
と前記波型板の頂部間に前記耐熱耐食性金属の化学組成
にSiを増量しかつBを添加した合金からなる箔状イン
サート材を介在させて挾み、液相拡散接合法により接合
して、製作することを特徴とするガスタービン用燃焼室
ライナーの製作方法。
7. A method of manufacturing a combustion chamber liner for a gas turbine having a cooling channel formed therein, wherein the material of the combustion chamber liner is a corrugated plate made of a heat and corrosion resistant metal plate between two heat and corrosion resistant metal plates. Between the heat-corrosion-resistant metal plate and the top of the corrugated plate with a foil-shaped insert material made of an alloy containing Si added to the chemical composition of the heat-resistant corrosion-resistant metal and B added, A method for manufacturing a combustion chamber liner for a gas turbine, which is manufactured by bonding by a diffusion bonding method.
JP17033593A 1993-07-09 1993-07-09 Production of combustion chamber liner for gas turbine Pending JPH0727335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17033593A JPH0727335A (en) 1993-07-09 1993-07-09 Production of combustion chamber liner for gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17033593A JPH0727335A (en) 1993-07-09 1993-07-09 Production of combustion chamber liner for gas turbine

Publications (1)

Publication Number Publication Date
JPH0727335A true JPH0727335A (en) 1995-01-27

Family

ID=15903035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17033593A Pending JPH0727335A (en) 1993-07-09 1993-07-09 Production of combustion chamber liner for gas turbine

Country Status (1)

Country Link
JP (1) JPH0727335A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998036220A1 (en) * 1997-02-12 1998-08-20 Tohoku Electric Power Co., Inc. Steam cooling type gas turbine combustor
EP1106927A1 (en) * 1999-12-09 2001-06-13 Rolls-Royce Deutschland Ltd & Co KG Method of manufacturing a gas turbine engine combustion chamber
WO2003016695A1 (en) * 2001-08-09 2003-02-27 Mitsubishi Heavy Industries, Ltd. Plate-like body joining method, joined body, gas turbine burner tail pipe, and gas turbine burner
WO2010125711A1 (en) * 2009-04-30 2010-11-04 三菱重工業株式会社 Plate-shaped bodies, manufacturing method therefor, gas turbine combustor, and gas turbine
JP2012184763A (en) * 2011-03-07 2012-09-27 General Electric Co <Ge> Method for manufacturing hot gas path component and hot gas path turbine component

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998036220A1 (en) * 1997-02-12 1998-08-20 Tohoku Electric Power Co., Inc. Steam cooling type gas turbine combustor
EP1106927A1 (en) * 1999-12-09 2001-06-13 Rolls-Royce Deutschland Ltd & Co KG Method of manufacturing a gas turbine engine combustion chamber
WO2003016695A1 (en) * 2001-08-09 2003-02-27 Mitsubishi Heavy Industries, Ltd. Plate-like body joining method, joined body, gas turbine burner tail pipe, and gas turbine burner
US6966188B2 (en) 2001-08-09 2005-11-22 Mitsubishi Heavy Industries, Ltd. Plate-like body connecting method, connected body, tail pipe for gas turbine combustor, and gas turbine combustor
WO2010125711A1 (en) * 2009-04-30 2010-11-04 三菱重工業株式会社 Plate-shaped bodies, manufacturing method therefor, gas turbine combustor, and gas turbine
JP2010261318A (en) * 2009-04-30 2010-11-18 Mitsubishi Heavy Ind Ltd Method of manufacturing plate-shaped body, plate-shaped body, gas turbine combustor, and gas turbine
US8661827B2 (en) 2009-04-30 2014-03-04 Mitsubishi Heavy Industries, Ltd. Plates having cooling channels, and method for welding the plates and increasing a dimension of the cooling channels adjacent the welded section
JP2012184763A (en) * 2011-03-07 2012-09-27 General Electric Co <Ge> Method for manufacturing hot gas path component and hot gas path turbine component

Similar Documents

Publication Publication Date Title
US5268241A (en) Multiple manifold fuel cell
US7009136B2 (en) Method of fabricating a bipolar plate assembly
US5378247A (en) Separators and method of manufacturing the same
US7600316B2 (en) Heat exchanger and a method of manufacturing a heat exchanger
US20230280101A1 (en) Plate fin heat exchanger flexible manifold
TWI787474B (en) Honeycomb panel, manufacturing method thereof, and shell
JP6658710B2 (en) Stacked heat exchanger
JP2009193868A (en) Separator welding method, separator welding device, and separator
JPH0727335A (en) Production of combustion chamber liner for gas turbine
US6852428B2 (en) Layered heat-resistant alloy plate and method of producing the same
US8347503B2 (en) Methods of manufacturing brazed aluminum heat exchangers
EP4227629A1 (en) Conformal heat exchanger
JP2006172964A (en) Stack structure of solid electrolyte fuel cell
US20200111725A1 (en) Stacked heat exchanger and method for producing stacked heat exchanger
US12098691B2 (en) Combustor for rocket engine and method for manufacturing it
JPS60206050A (en) Component part having internal cooling water path
EP3633307B1 (en) Plate fin heat exchanger flexible manifold
WO2023119602A1 (en) Solid oxide fuel cell
JP4708895B2 (en) Brazing member and manufacturing method thereof
JP2005083673A (en) Multilayer heat exchanger
JPH04347496A (en) Plate type heat exchanger
EP4446044A1 (en) A method for producing a plate heat exchanger
JP2018536262A (en) Method for manufacturing a bipolar plate
JPS60256792A (en) Lamination type heat exchanger
US20220316808A1 (en) Plate heat exchanger, process engineering plant and method