JPH07279621A - Coal burning compound power generation facility - Google Patents
Coal burning compound power generation facilityInfo
- Publication number
- JPH07279621A JPH07279621A JP7200094A JP7200094A JPH07279621A JP H07279621 A JPH07279621 A JP H07279621A JP 7200094 A JP7200094 A JP 7200094A JP 7200094 A JP7200094 A JP 7200094A JP H07279621 A JPH07279621 A JP H07279621A
- Authority
- JP
- Japan
- Prior art keywords
- steam
- coal
- air
- mill
- turbine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は石炭等の炭素含有固体燃
料(本発明ではこれらを含めて石炭と総称する)を粉砕
してガス化し、これをガスタービンで燃焼して発電する
と共に、ガスタービンの排熱回収ボイラで発生した蒸気
で蒸気タービンを駆動して発電する石炭焚複合発電設備
に関する。The present invention relates to a carbon-containing solid fuel such as coal (collectively referred to as coal in the present invention), which is pulverized into gas, which is combusted by a gas turbine to generate electric power. The present invention relates to a coal-fired combined cycle power generation facility that drives a steam turbine with steam generated in an exhaust heat recovery boiler of a turbine to generate electricity.
【0002】[0002]
【従来の技術】前記した石炭焚複合発電設備では、石炭
を粉砕すると共に乾燥するミル(粉砕機)には石炭乾燥
のため加熱空気を供給している。この加熱空気を得るた
めの熱源として、従来は蒸気タービンの中間段などから
抽気した蒸気を用いている。図5にはそのような従来の
石炭焚複合発電設備の構成を示している。2. Description of the Related Art In the above coal-fired combined cycle power generation facility, heated air is supplied to a mill (crusher) for crushing and drying coal to dry the coal. Conventionally, steam extracted from an intermediate stage of a steam turbine is used as a heat source for obtaining the heated air. FIG. 5 shows the configuration of such a conventional coal-fired combined cycle power generation facility.
【0003】まず、図5に示した石炭焚複合発電設備の
全体構成について説明すると、石炭1は、ミル(粉砕
機)2に供給され、ミル乾燥用空気27と接触されつつ
粉砕、乾燥され、微粉炭3となる。微粉炭3は、微粉炭
供給装置4に送られ、フィーダ5により定量し、供給管
6によりガス化炉7へ供給され、ガス化剤流量調節弁2
1より供給管22を経て供給されるガス化剤とともにガ
ス化する。ガス化時に発生した熱は、ガス化炉熱交換器
8にて除去し、発生した蒸気は蒸気タービン31へ送ら
れる。First, the overall structure of the coal-fired combined cycle power generation facility shown in FIG. 5 will be described. Coal 1 is supplied to a mill (crusher) 2 and is crushed and dried while being in contact with mill drying air 27. It becomes pulverized coal 3. The pulverized coal 3 is sent to the pulverized coal supply device 4, quantified by the feeder 5, and supplied to the gasification furnace 7 by the supply pipe 6, and the gasifying agent flow control valve 2
It is gasified together with the gasifying agent supplied through the supply pipe 22 from 1. The heat generated during gasification is removed by the gasification furnace heat exchanger 8, and the generated steam is sent to the steam turbine 31.
【0004】ガス化炉7にて生成したガスは、生成ガス
管9を経てガス精製装置10にて、ダスト、S(硫黄)
分を除去し、燃料調節弁12にて定量されつつ精製ガス
管11でコンバスタ13へ送られてコンバスタ13で燃
焼し燃焼ガスはガスタービン14にて膨張し、発電機1
6にて発電を行なう。燃焼ガスは排ガスダクト15を経
て、排ガスボイラ28に送られる。The gas produced in the gasification furnace 7 passes through the produced gas pipe 9 and is passed through the gas purifying device 10 to dust and S (sulfur).
The gas is removed, and is quantified by the fuel control valve 12 and is sent to the combustor 13 through the purified gas pipe 11 and burned in the combustor 13, and the combustion gas is expanded in the gas turbine 14,
Generate electricity at 6. The combustion gas is sent to the exhaust gas boiler 28 via the exhaust gas duct 15.
【0005】ガスタービン14の空気圧縮機17により
圧縮された空気の大半はコンバスタ13での燃焼に使わ
れるが、一部はガス化炉7への抽気空気18として抽気
される。抽気空気18は空気冷却器19によって所定温
度まで冷却されたのち空気昇圧機20によって昇圧され
ガス化剤流量調節弁21を経て供給管22によってガス
化炉7へガス化剤として供給される。Most of the air compressed by the air compressor 17 of the gas turbine 14 is used for combustion in the combustor 13, but part of it is extracted as extracted air 18 to the gasification furnace 7. The extracted air 18 is cooled to a predetermined temperature by an air cooler 19 and then pressure-increased by an air booster 20 and is supplied to the gasification furnace 7 as a gasifying agent through a gasifying agent flow rate control valve 21 and a supply pipe 22.
【0006】排熱回収ボイラ28及び前記したようにガ
ス化炉熱交換器8で発生した蒸気を合わせた主蒸気30
は、蒸気タービン31に送られ発電機32にて発電を行
なう。蒸気タービン31の排気は復水器33にて復水と
なり、ポンプ34にて昇圧される。A main steam 30 which is a combination of the exhaust heat recovery boiler 28 and the steam generated in the gasifier heat exchanger 8 as described above.
Is sent to the steam turbine 31 and power is generated by the generator 32. Exhaust gas from the steam turbine 31 is condensed by a condenser 33 and is boosted by a pump 34.
【0007】ミル2に供給されるミル乾燥用空気27
は、ミル乾燥空気ファン23によって昇圧した空気を蒸
気式空気加熱器25で加熱することによって得られる。
蒸気式空気加熱器25は、蒸気タービン31の中間段な
どから抽気した蒸気24を熱源としており、蒸気式空気
加熱器25で加熱された空気は流量調整ダンパ26を経
て前述のミル乾燥用空気27としてミル2に供給され石
炭1を粉砕、乾燥するのに使われる。Mill drying air 27 supplied to the mill 2.
Is obtained by heating the air pressurized by the mill dry air fan 23 with the steam air heater 25.
The steam-type air heater 25 uses the steam 24 extracted from the intermediate stage of the steam turbine 31 as a heat source, and the air heated by the steam-type air heater 25 passes through the flow rate adjusting damper 26 and the above-mentioned mill drying air 27. Is supplied to the mill 2 and used to crush and dry the coal 1.
【0008】[0008]
【発明が解決しようとする課題】石炭は銘柄により含ま
れている水分(全水分)の割合が異なるが、図4に示す
ように石炭は全水分の割合により、乾燥に必要な熱量及
び乾燥に必要な空気の温度が異なる。すなわち、図4か
らわかる通り、全水分が5%の石炭では石炭の乾燥に必
要な空気の温度は125℃であるのに対し、全水分が2
0%の石炭では300℃の温度の空気を必要となる。Although the proportion of water content (total water content) of coal varies depending on the brand, as shown in FIG. 4, the amount of heat required for drying and the amount of heat required for drying coal depend on the total water content. Required air temperature is different. That is, as can be seen from FIG. 4, in the case of coal having a total water content of 5%, the temperature of the air required for drying the coal is 125 ° C.
0% coal requires air at a temperature of 300 ° C.
【0009】従来の装置で用いられていた通常の蒸気式
空気加熱器25は、蒸気の潜熱を利用することから、加
熱できる空気の温度は最高でも、熱源である蒸気の圧力
における飽和温度以下である。例えば、石炭乾燥用の空
気27を300℃にするためには90ata 以上の高圧の
蒸気が必要であるのに対し、125℃の空気を得るには
4ata 程度の圧力の蒸気でよい。Since the ordinary steam type air heater 25 used in the conventional apparatus utilizes latent heat of steam, the temperature of air that can be heated is the highest, but at a temperature equal to or lower than the saturation temperature at the pressure of steam as a heat source. is there. For example, high-pressure steam of 90ata or more is required to bring the air 27 for drying coal to 300 ° C, whereas steam having a pressure of about 4ata is needed to obtain air of 125 ° C.
【0010】従って、従来の設備においては全水分の高
い石炭に対応して蒸気の抽気点を決定すれば、他の全水
分の低い石炭を使用する場合はプラント効率を損うこと
になる。また全水分の少い石炭に対応し蒸気の抽気点を
決定すれば全水分の高い石炭の乾燥が不可能となり運転
できないという欠点を有していた。Therefore, in the conventional equipment, if the steam extraction point is determined corresponding to coal having a high total moisture content, the plant efficiency will be impaired when another coal having a low total moisture content is used. Further, if the steam extraction point is determined corresponding to coal having a low total water content, there is a drawback that coal having a high total water content cannot be dried and cannot be operated.
【0011】また、従来の設備では、本来蒸気タービン
31において、仕事をするはずの蒸気30が、ミル2で
の乾燥用空気を得る熱源として抽気されるため、蒸気タ
ービン31の発電量が減少し、プラント効率がその分低
くなるという欠点があった。Further, in the conventional equipment, since the steam 30 which should originally work in the steam turbine 31 is extracted as a heat source for obtaining the drying air in the mill 2, the power generation amount of the steam turbine 31 is reduced. However, there is a drawback that the plant efficiency is reduced accordingly.
【0012】ミル2での乾燥に必要な熱量は、石炭中の
水分によるが石炭中の全水分が10〜20%に対し、プ
ラント投入熱量の1.2〜2.5%を必要とする。従っ
て、この石炭乾燥系の改善は、プラント効率の向上に寄
与することになる。The amount of heat required for drying in the mill 2 depends on the water content in the coal, but the total water content in the coal is 10 to 20%, but 1.2 to 2.5% of the heat input to the plant is required. Therefore, the improvement of the coal drying system will contribute to the improvement of plant efficiency.
【0013】本発明は、以上説明した従来の石炭焚複合
発電設備に見られた欠点を除き、使用する石炭に含まれ
る水分を乾燥させるのにその含有水分に見合った圧力
(温度)の蒸気を使い、幅広い性状の石炭に対し効率良
い運転が可能な石炭焚複合発電設備を提供することを課
題としている。The present invention eliminates the drawbacks found in the conventional coal-fired combined cycle power generation facility described above, and in order to dry the water contained in the coal to be used, steam of a pressure (temperature) commensurate with the water content is used. It is an object to provide a coal-fired combined cycle power generation facility that can be used and operate efficiently with a wide range of coal properties.
【0014】更にまた、本発明は従来の石炭焚複合発電
設備に見られた欠点を除いて、従来の設備では発電に寄
与していなかった熱源をミル乾燥用空気の熱源として有
効に活用することによって蒸気タービンからの蒸気の抽
気量を減らし、蒸気タービンの出力を増し、プラント効
率を高めることができる石炭焚複合発電設備を提供する
ことを課題としている。Furthermore, the present invention effectively utilizes a heat source that has not contributed to power generation in the conventional equipment as a heat source for the mill drying air, except for the drawbacks found in the conventional coal-fired combined cycle power generation equipment. It is an object of the present invention to provide a coal-fired combined cycle power generation facility that can reduce the amount of steam extracted from the steam turbine, increase the output of the steam turbine, and improve plant efficiency.
【0015】[0015]
【課題を解決するための手段と作用】本発明は、石炭を
ミルで粉砕・乾燥し微粉燃料としてガス化炉に供給して
酸素含有ガスでガス化し、生成したCO,H2 含有ガス
をガスタービンに供給し発電を行ない、同ガスタービン
の排ガスを排熱回収ボイラに導入して蒸気を発生し、前
記ガス化炉での発生蒸気と共に蒸気タービンに導いて発
電を行なう石炭焚複合発電設備において、石炭の含有水
分に見合った圧力の蒸気を効率的に使うという課題を解
決するため、ミルでの石炭に含まれる水分を乾燥する熱
源として蒸気タービンの蒸気系の複数個所から抽出した
蒸気を切替えることにより選択して導くようにした構成
を採用する。According to the present invention, coal is pulverized and dried in a mill and supplied as a fine powder fuel to a gasification furnace for gasification with an oxygen-containing gas, and the generated CO, H 2 -containing gas is gasified. In a coal-fired combined cycle power generation facility that supplies power to a turbine to generate power, introduces the exhaust gas of the gas turbine into an exhaust heat recovery boiler to generate steam, and guides the steam to the steam turbine together with the steam generated in the gasification furnace to generate power. In order to solve the problem of efficiently using steam with a pressure commensurate with the water content of the coal, the steam extracted from multiple points in the steam system of the steam turbine is switched as a heat source for drying the water contained in the coal in the mill. By adopting such a configuration, it is possible to select and guide.
【0016】このように蒸気タービンの蒸気系の複数個
所から異なった状態の蒸気を切り換えて使用できるよう
に構成することによって全水分の高い石炭に対してはよ
り高圧の蒸気を抽気し、全水分の少い石炭に対してはよ
り低圧の蒸気を抽出することができる。従って、幅の広
い石炭性状に対し、適正な乾燥熱源を得るとともに、プ
ラント効率の向上が図れる設備となる。As described above, by constructing the steam turbine so that steam in different states can be switched from a plurality of steam systems to be used, higher pressure steam is extracted from coal having a high total water content to obtain a total water content. It is possible to extract lower pressure steam for coal with a small amount. Therefore, it is possible to obtain an appropriate dry heat source for a wide range of coal properties and to improve plant efficiency.
【0017】また、他の本発明では、前記したように、
石炭をミルで粉砕・乾燥し微粉燃料としてガス化炉に供
給して酸素含有ガスでガス化し、生成したCO,H2 含
有ガスをガスタービンに供給し発電を行ない、同ガスタ
ービンの排ガスを排熱回収ボイラに導入して蒸気を発生
し、前記ガス化炉での発生蒸気と共に蒸気タービンに導
いて発電を行なう石炭焚複合発電設備において、従来発
電に寄与していなかった設備内での発生熱をミル乾燥用
空気の熱源として有効に利用することにより、蒸気ター
ビンの蒸気系からの抽気蒸気量を減らしプラント効率を
高めるという課題を解決するため、前記したミル内での
石炭乾燥用の熱源として、ガスタービンが駆動する空気
圧縮機からガス化炉に導かれる抽気空気を利用するよう
にした構成を採用する。According to another aspect of the present invention, as described above,
Coal is pulverized and dried in a mill, and it is supplied as fine powder fuel to a gasifier and gasified with an oxygen-containing gas. The generated CO and H 2 -containing gas is supplied to a gas turbine to generate electricity, and exhaust gas from the gas turbine is discharged. In a coal-fired combined cycle power generation facility that introduces steam into a heat recovery boiler and guides it to a steam turbine together with the steam generated in the gasification furnace to generate power, heat generated in the facility that has not conventionally contributed to power generation. By effectively utilizing as a heat source for mill drying air, in order to solve the problem of increasing the plant efficiency by reducing the amount of steam extracted from the steam system of the steam turbine, as a heat source for drying coal in the mill described above. A configuration is adopted in which the extracted air guided from the air compressor driven by the gas turbine to the gasification furnace is used.
【0018】ガスタービン空気圧縮機からガス化炉への
抽気空気は350〜400℃あるが、従来はこれを空気
昇圧機の入口温度(100℃以下)まで空気冷却器にて
冷却しており、ここでの冷却吸熱量は発電に寄与しな
い。前記した構成の他の本発明ではこの熱量をミル乾燥
用熱源として利用するので、ミル乾燥用蒸気として蒸気
タービンの蒸気系からの抽気量は低減され(通常運転中
は0)、蒸気タービンの出力が増加し、プラント効率が
向上する。The extracted air from the gas turbine air compressor to the gasification furnace has a temperature of 350 to 400 ° C., but conventionally, this is cooled by the air cooler to the inlet temperature of the air booster (100 ° C. or less), The cooling endotherm here does not contribute to power generation. In the other aspect of the present invention having the above-described configuration, since this heat amount is used as a heat source for mill drying, the extraction amount from the steam system of the steam turbine as mill drying steam is reduced (0 during normal operation), and the output of the steam turbine is reduced. And the plant efficiency is improved.
【0019】[0019]
【実施例】以下、本発明による石炭焚複合発電設備を図
示した実施例に基づいて具体的に説明する。なお、以下
の実施例において、図5に示した従来の石炭焚複合発電
設備と同じ構成部分には同一の符号を付してあり、それ
らについての重複する説明は省略する。EXAMPLE A coal-fired combined cycle power generation system according to the present invention will be specifically described below with reference to the illustrated examples. In the following examples, the same components as those of the conventional coal-fired combined cycle power generation facility shown in FIG. 5 are designated by the same reference numerals, and duplicated description thereof will be omitted.
【0020】(第1実施例)まず図1に示す第1実施例
について説明する。図1に示す実施例において、図5に
示した従来の石炭焚複合発電設備の構成と異なるところ
は、ミル乾燥用空気27の加熱構成である。すなわち、
図1の構成においては、蒸気式空気加熱器25に対する
加熱用の蒸気源として、例えばAの高圧蒸気、Bの中圧
蒸気、Cの低圧蒸気等複数個所設け、石炭の銘柄(全水
分)により切り換えて使用できるようになっている。こ
れらの切替えによって選択された蒸気は制御弁24によ
って流量を制御されて蒸気式空気加熱器25へ導入され
る。その他の構成は、図5に示した従来の設備と同じで
ある。(First Embodiment) First, the first embodiment shown in FIG. 1 will be described. In the embodiment shown in FIG. 1, the difference from the configuration of the conventional coal-fired combined cycle power generation facility shown in FIG. 5 is the heating configuration of the mill drying air 27. That is,
In the configuration of FIG. 1, as a steam source for heating the steam type air heater 25, for example, a plurality of places such as high-pressure steam of A, medium-pressure steam of B, low-pressure steam of C are provided, and depending on the brand of coal (total moisture). It can be switched and used. The flow rate of the steam selected by these switching is controlled by the control valve 24 and introduced into the steam air heater 25. Other configurations are the same as those of the conventional equipment shown in FIG.
【0021】従って、この第1実施例の設備では、使用
する石炭の全水分に応じた圧力(温度)の蒸気がA〜C
のいづれかから切り換えて空気加熱器25へ導かれるの
で、幅広い石炭性状に対し効果的に抽気蒸気の熱が使用
され、プラント効率を高めることができる。Therefore, in the equipment of this first embodiment, the steam having a pressure (temperature) corresponding to the total water content of the coal to be used is AC.
Since any one of them is guided to the air heater 25, the heat of the extracted steam is effectively used for a wide range of coal properties, and the plant efficiency can be improved.
【0022】(第2実施例)次に、本発明の第2実施例
を図2によって説明する。図2に示した実施例におい
て、図5に示した従来の石炭焚発電設備の構成と異なる
ところは、ミル乾燥用空気27に対する加熱構成であ
る。(Second Embodiment) Next, a second embodiment of the present invention will be described with reference to FIG. In the embodiment shown in FIG. 2, the difference from the configuration of the conventional coal-fired power generation facility shown in FIG. 5 is the heating configuration for the mill drying air 27.
【0023】すなわち、図2の設備においては、ガスタ
ービン空気圧縮機17を出たガス化炉7への抽気空気1
8は、空気加熱器35に送られ、ミル乾燥空気ファン2
3にて昇圧された空気をミルでの石炭乾燥に必要な温度
迄加熱する。空気加熱器35において加熱された空気は
蒸気式空気予熱器25(起動時以外は不要)を経て流量
調節ダンパ26により定量されミル乾燥用空気27とし
てミル2に供給される。That is, in the equipment of FIG. 2, extracted air 1 from the gas turbine air compressor 17 to the gasification furnace 7 is extracted.
8 is sent to the air heater 35, and the mill dry air fan 2
The air pressurized at 3 is heated to the temperature required for coal drying in the mill. The air heated in the air heater 35 is supplied to the mill 2 as mill drying air 27 after being quantified by the flow rate adjusting damper 26 through the steam type air preheater 25 (not required except at the time of start-up).
【0024】このようにしてガスタービン空気圧縮機1
7出口からガス化炉7へ導かれる抽気空気が保有してい
る熱をミル乾燥用に有効に利用することによって蒸気タ
ービンの蒸気系からの抽気量を減らせるので蒸気タービ
ン出力が増加する。図2に示された設備のその他の構成
は図5に示した従来の設備と同じであり、それらについ
ての説明は省略する。In this way, the gas turbine air compressor 1
The amount of extracted air from the steam system of the steam turbine can be reduced by effectively utilizing the heat held by the extracted air introduced from the 7 outlet to the gasification furnace 7 for mill drying, so that the steam turbine output increases. Other configurations of the equipment shown in FIG. 2 are the same as those of the conventional equipment shown in FIG. 5, and description thereof will be omitted.
【0025】(第3実施例)次に、本発明の第3実施例
を図3によって説明する。図3に示す実施例において
は、ガスタービン空気圧縮機17出口からガス化炉7へ
の抽気空気18が空気−空気熱交換器36にて冷却され
た後、空気加熱器35に送られミル2への乾燥空気を加
熱している。空気加熱器35を出た抽気空気18は空気
冷却器19に送られ、空気昇圧機20にて昇圧された
後、空気−空気熱交換器36にて昇温されガス化炉7へ
送られる。(Third Embodiment) Next, a third embodiment of the present invention will be described with reference to FIG. In the embodiment shown in FIG. 3, the extracted air 18 from the outlet of the gas turbine air compressor 17 to the gasification furnace 7 is cooled by the air-air heat exchanger 36 and then sent to the air heater 35 to be supplied to the mill 2 Heating dry air to. The extracted air 18 that has exited the air heater 35 is sent to the air cooler 19, is pressurized by the air booster 20, is heated by the air-air heat exchanger 36, and is sent to the gasification furnace 7.
【0026】本実施例では、ガス化炉7へのガス化剤の
供給温度が高くとれ、ガス化効率を向上するメリットが
あるが、空気加熱器35での交換熱量が低下するため、
石炭によっては乾燥に必要な熱量が確保出来なくなるた
め、その場合には、蒸気式空気加熱器25にミル乾燥用
蒸気24を導入し、不足分を加熱する。本第3実施例に
おけるその他の構成は図2に示した設備と同じでありそ
の説明を省略する。In the present embodiment, the temperature for supplying the gasifying agent to the gasification furnace 7 can be kept high, which has the advantage of improving gasification efficiency, but the amount of heat exchanged in the air heater 35 decreases, so that
Since the amount of heat required for drying cannot be secured depending on the coal, in that case, the steam for mill drying 24 is introduced into the steam type air heater 25 to heat the shortage. The rest of the configuration of the third embodiment is the same as the equipment shown in FIG. 2, and the description thereof is omitted.
【0027】以上、本発明を図示した実施例に基づいて
具体的に説明したが、本発明がこれらの実施例に限定さ
れず特許請求の範囲に示す本発明の範囲内で、その具体
的構成に種々の変更を加えてよいことはいうまでもな
い。例えば、上記実施例ではガス化炉に対しガス化剤と
して空気を導入しているが空気に代え酸素又は酸素富化
の空気を導入するガス化炉であってもよい。なお、その
場合には空気冷却器19の後流に空気分離装置と酸素圧
縮機が設置される。The present invention has been specifically described above based on the illustrated embodiments, but the present invention is not limited to these embodiments, and its specific constitution is within the scope of the present invention shown in the claims. It goes without saying that various changes may be added to the. For example, in the above embodiment, air is introduced as the gasifying agent into the gasification furnace, but it may be a gasification furnace in which oxygen or oxygen-enriched air is introduced instead of air. In that case, an air separator and an oxygen compressor are installed downstream of the air cooler 19.
【0028】[0028]
【発明の効果】以上、具体的に説明したように、本発明
の石炭焚複合発電設備においては、ミルでの乾燥用空気
を加熱する熱源として、石炭の全水分に応じ蒸気タービ
ンの蒸気系から抽気点を切り換えて所望の圧力・温度の
蒸気を導くことにより、幅の広い石炭性状の変化に対
し、プラント効率の高い運転が可能となる。As described above in detail, in the coal-fired combined cycle power generation facility of the present invention, as a heat source for heating the drying air in the mill, the steam system of the steam turbine is used depending on the total water content of the coal. By switching the extraction points to introduce steam of desired pressure and temperature, it is possible to operate with high plant efficiency against a wide range of changes in coal properties.
【0029】また、本発明の石炭焚複合発電設備におい
て、ミルでの石炭乾燥用の熱源として、蒸気タービンの
蒸気系からの抽気蒸気ではなく、ガスタービン空気圧縮
機出口からガス化炉への抽気空気が保有する熱(元々は
冷却水系へ捨てていた熱量)を利用する構成としたもの
では、蒸気タービンの蒸気系からの抽気蒸気の量が低下
(通常運転では0)するので、蒸気タービンの出力が増
加し、プラント効率が上昇する。Further, in the coal-fired combined cycle power generation facility of the present invention, as the heat source for drying coal in the mill, not the extracted steam from the steam system of the steam turbine but the extracted gas from the gas turbine air compressor outlet to the gasification furnace. With a configuration that utilizes the heat that the air has (the amount of heat that was originally discarded to the cooling water system), the amount of extracted steam from the steam system of the steam turbine decreases (0 in normal operation), so The output is increased and the plant efficiency is increased.
【図1】本発明の第1実施例による石炭焚複合発電設備
の構成を示す系統図。FIG. 1 is a system diagram showing a configuration of a coal-fired combined cycle power generation facility according to a first embodiment of the present invention.
【図2】本発明の第2実施例による石炭焚複合発電設備
の構成を示す系統図。FIG. 2 is a system diagram showing a configuration of a coal-fired combined cycle power generation facility according to a second embodiment of the present invention.
【図3】本発明の第3実施例による石炭焚複合発電設備
の構成を示す系統図。FIG. 3 is a system diagram showing a configuration of a coal-fired combined cycle power generation facility according to a third embodiment of the present invention.
【図4】石炭における全水分とその乾燥に必要な空気温
度との関係を示すグラフ。FIG. 4 is a graph showing the relationship between the total water content of coal and the air temperature required for its drying.
【図5】従来の石炭焚複合発電設備の構成を示す系統
図。FIG. 5 is a system diagram showing a configuration of a conventional coal-fired combined cycle power generation facility.
1 石炭 2 ミル(粉砕機) 7 ガス化炉 8 ガス化炉熱交換器 10 ガス精製装置 13 コンバスタ 14 ガスタービン 17 ガスタービン空気圧縮機 18 ガス化炉への抽気空気 23 ミル乾燥空気ファン 24 ミル乾燥用蒸気 25 蒸気式空気加熱器 27 ミル乾燥用空気 28 排熱回収ボイラ 30 主蒸気 31 蒸気タービン 35 空気加熱器 36 空気−空気熱交換器 37 高圧抽気蒸気 38 中圧抽気蒸気 39 低圧抽気蒸気 1 Coal 2 Mill (Grinding Machine) 7 Gasifier 8 Gasifier Heat Exchanger 10 Gas Purifier 13 Combustor 14 Gas Turbine 17 Gas Turbine Air Compressor 18 Extraction Air to Gasifier 23 Mill Dry Air Fan 24 Mill Dry Steam 25 Steam-type air heater 27 Mill drying air 28 Exhaust heat recovery boiler 30 Main steam 31 Steam turbine 35 Air heater 36 Air-air heat exchanger 37 High pressure extraction steam 38 Medium pressure extraction steam 39 Low pressure extraction steam
Claims (2)
てガス化炉に供給して酸素含有ガスでガス化し、生成し
たCO,H2 含有ガスをガスタービンに供給し発電を行
ない、同ガスタービンの排ガスを排熱回収ボイラに導入
して蒸気を発生し、前記ガス化炉での発生蒸気と共に蒸
気タービンに導いて発電を行なう石炭焚複合発電設備に
おいて、前記ミルでの石炭に含まれる水分を乾燥する熱
源として、前記蒸気タービンの蒸気系の複数個所から抽
出した蒸気を切替えることにより選択して導く構成を備
えたことを特徴とする石炭焚複合発電設備。1. Coal is pulverized and dried by a mill, and is supplied as fine powder fuel to a gasification furnace to be gasified with an oxygen-containing gas, and the generated CO and H 2 containing gas is supplied to a gas turbine to generate electricity. In the coal-fired combined cycle power generation facility, which introduces the exhaust gas of the turbine into the exhaust heat recovery boiler to generate steam, and guides to the steam turbine together with the steam generated in the gasification furnace to generate power, the water content in the coal in the mill A coal-fired combined cycle power generation facility having a configuration in which steam extracted from a plurality of locations in the steam system of the steam turbine is selected and guided as a heat source for drying the steam.
てガス化炉に供給して酸素含有ガスでガス化し、生成し
たCO,H2 含有ガスをガスタービンに供給し発電を行
ない、同ガスタービンの排ガスを排熱回収ボイラに導入
して蒸気を発生し、前記ガス化炉での発生蒸気と共に蒸
気タービンに導いて発電を行なう石炭焚複合発電設備に
おいて、前記ミルでの石炭に含まれる水分を乾燥する熱
源として、前記ガスタービンが駆動する空気圧縮機から
前記ガス化炉に導かれる抽気空気を用いる構成を備えた
ことを特徴とする石炭焚複合発電設備。2. Coal is pulverized and dried by a mill and is supplied as fine powder fuel to a gasification furnace to be gasified with an oxygen-containing gas, and the generated CO and H 2 containing gas is supplied to a gas turbine to generate electricity. In the coal-fired combined cycle power generation facility, which introduces the exhaust gas of the turbine into the exhaust heat recovery boiler to generate steam, and guides to the steam turbine together with the steam generated in the gasification furnace to generate power, the water content in the coal in the mill A combined coal-fired combined cycle power generation facility having a configuration in which extracted air introduced from an air compressor driven by the gas turbine to the gasification furnace is used as a heat source for drying.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7200094A JPH07279621A (en) | 1994-04-11 | 1994-04-11 | Coal burning compound power generation facility |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7200094A JPH07279621A (en) | 1994-04-11 | 1994-04-11 | Coal burning compound power generation facility |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07279621A true JPH07279621A (en) | 1995-10-27 |
Family
ID=13476721
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7200094A Pending JPH07279621A (en) | 1994-04-11 | 1994-04-11 | Coal burning compound power generation facility |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07279621A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1311194C (en) * | 2003-11-10 | 2007-04-18 | 华北电力科学研究院有限责任公司 | Cold state powder making method and cold state powder coal making device for coal burning powder station boiler |
WO2009069443A1 (en) * | 2007-11-30 | 2009-06-04 | Mitsubishi Heavy Industries, Ltd. | Composite-type coal gasification power plant facility |
CN102192639A (en) * | 2010-03-09 | 2011-09-21 | 天华化工机械及自动化研究设计院 | Method for reducing coal consumption of coal-fired power plant by adding fluidized bed drying system |
JP2012017371A (en) * | 2010-07-06 | 2012-01-26 | Central Res Inst Of Electric Power Ind | Gasification furnace fuel supply method |
JP2012237547A (en) * | 2011-04-28 | 2012-12-06 | Mitsubishi Heavy Ind Ltd | Fluidized bed drying facility and gasification combined power generating system using coal |
WO2014042013A1 (en) * | 2012-09-13 | 2014-03-20 | 三菱重工業株式会社 | Coal-fired boiler facilities and coal drying method in coal-fired boiler facilities |
CN109722312A (en) * | 2019-02-27 | 2019-05-07 | 中煤陕西榆林能源化工有限公司 | A kind of method of low energy consumption coal water slurry gasification system and heating water-coal-slurry |
-
1994
- 1994-04-11 JP JP7200094A patent/JPH07279621A/en active Pending
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1311194C (en) * | 2003-11-10 | 2007-04-18 | 华北电力科学研究院有限责任公司 | Cold state powder making method and cold state powder coal making device for coal burning powder station boiler |
AU2008330842B8 (en) * | 2007-11-30 | 2013-03-14 | Mitsubishi Power, Ltd. | Integrated coal gasification combined cycle facility |
WO2009069443A1 (en) * | 2007-11-30 | 2009-06-04 | Mitsubishi Heavy Industries, Ltd. | Composite-type coal gasification power plant facility |
JP2009133268A (en) * | 2007-11-30 | 2009-06-18 | Mitsubishi Heavy Ind Ltd | Composite-type coal gasification power plant facility |
EP2213848A1 (en) * | 2007-11-30 | 2010-08-04 | Mitsubishi Heavy Industries, Ltd. | Integrated coal gasification combined cycle facility |
EP2213848A4 (en) * | 2007-11-30 | 2014-06-18 | Mitsubishi Heavy Ind Ltd | Integrated coal gasification combined cycle facility |
US8615981B2 (en) | 2007-11-30 | 2013-12-31 | Mitsubishi Heavy Industries, Ltd. | Integrated coal gasification combined cycle facility |
AU2008330842A8 (en) * | 2007-11-30 | 2013-03-14 | Mitsubishi Power, Ltd. | Integrated coal gasification combined cycle facility |
CN102192639A (en) * | 2010-03-09 | 2011-09-21 | 天华化工机械及自动化研究设计院 | Method for reducing coal consumption of coal-fired power plant by adding fluidized bed drying system |
JP2012017371A (en) * | 2010-07-06 | 2012-01-26 | Central Res Inst Of Electric Power Ind | Gasification furnace fuel supply method |
JP2012237547A (en) * | 2011-04-28 | 2012-12-06 | Mitsubishi Heavy Ind Ltd | Fluidized bed drying facility and gasification combined power generating system using coal |
WO2014042013A1 (en) * | 2012-09-13 | 2014-03-20 | 三菱重工業株式会社 | Coal-fired boiler facilities and coal drying method in coal-fired boiler facilities |
CN104508376A (en) * | 2012-09-13 | 2015-04-08 | 三菱重工业株式会社 | Coal-fired boiler facilities and coal drying method in coal-fired boiler facilities |
JP5852252B2 (en) * | 2012-09-13 | 2016-02-03 | 三菱重工業株式会社 | Coal-fired boiler equipment, coal drying method in coal-fired boiler equipment |
US9360211B2 (en) | 2012-09-13 | 2016-06-07 | Mitsubishi Heavy Industries, Ltd. | Coal fired boiler plant and coal drying method for coal fired boiler plant |
CN104508376B (en) * | 2012-09-13 | 2016-11-02 | 三菱重工业株式会社 | The drying means of the coal in coal-burning boiler equipment, coal-burning boiler equipment |
CN109722312A (en) * | 2019-02-27 | 2019-05-07 | 中煤陕西榆林能源化工有限公司 | A kind of method of low energy consumption coal water slurry gasification system and heating water-coal-slurry |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8490407B2 (en) | System and method for generation of high pressure air in an integrated gasification combined cycle system | |
US7191587B2 (en) | Hybrid oxygen-fired power generation system | |
US4608818A (en) | Medium-load power-generating plant with integrated coal gasification plant | |
KR101009852B1 (en) | Waste heat steam generator | |
US8833080B2 (en) | Arrangement with a steam turbine and a condenser | |
JP2008545945A (en) | Steam generating facility, method of operating steam generating facility, and additional equipment | |
JPS61283728A (en) | Method of generating electric energy and steam | |
JPS5968504A (en) | Heat recovery system of gas turbine cooling medium | |
JP3138474B2 (en) | Low calorific value gas combustion apparatus and combustion method | |
JPS61155493A (en) | Synthetic composite cycle system | |
JP2870232B2 (en) | Coal gasification power plant | |
US20120285176A1 (en) | Integration of coal fired steam plants with integrated gasification combined cycle power plants | |
JPH07279621A (en) | Coal burning compound power generation facility | |
US6314715B1 (en) | Modified fuel gas turbo-expander for oxygen blown gasifiers and related method | |
JP2009504967A (en) | Gas turbine operating method and gas turbine according to this operating method | |
Lozza et al. | Combined-cycle power stations using “Clean-coal technologies”: Thermodynamic analysis of full gasification versus fluidized bed combustion with partial gasification | |
JP3787820B2 (en) | Gasification combined power generation facility | |
CN112384679B (en) | Hybrid power generation facility and control method for hybrid power generation facility | |
JPH10231736A (en) | Gasification composite power plant | |
Vlaswinkel | Energetic analysis and optimisation of an integrated coal gasification-combined cycle power plant | |
JP3046854B2 (en) | Coal-fired combined cycle power plant | |
JP2001221058A (en) | Gasification combined power generation plant | |
JP3652743B2 (en) | Gasification combined power plant | |
JPH0814062A (en) | Composite generating plant | |
JPH08246813A (en) | Operation method and device for coal gasification compound generation plant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041227 |
|
A131 | Notification of reasons for refusal |
Effective date: 20050111 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Effective date: 20050510 Free format text: JAPANESE INTERMEDIATE CODE: A02 |