JPH07252573A - Al-zn-mg-cu alloy excellent in toughness and its production - Google Patents
Al-zn-mg-cu alloy excellent in toughness and its productionInfo
- Publication number
- JPH07252573A JPH07252573A JP4725394A JP4725394A JPH07252573A JP H07252573 A JPH07252573 A JP H07252573A JP 4725394 A JP4725394 A JP 4725394A JP 4725394 A JP4725394 A JP 4725394A JP H07252573 A JPH07252573 A JP H07252573A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- hot rolling
- toughness
- less
- continuous casting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Continuous Casting (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、靭性に優れたAl−Z
n−Mg−Cu系合金及びその製造方法に関し、詳細に
は航空機,鉄道車両,スポーツ用品などにおいて高強度
が要求される構造部材用として好適な高強度Al合金で
あって、しかも靭性に優れたAl合金及びその製造方法
に関するものである。FIELD OF THE INVENTION The present invention relates to Al-Z having excellent toughness.
More specifically, the present invention relates to an n-Mg-Cu alloy and a method for producing the same, which is a high-strength Al alloy suitable for structural members that require high strength in aircraft, railway vehicles, sports equipment, etc., and has excellent toughness. The present invention relates to an Al alloy and a manufacturing method thereof.
【0002】[0002]
【従来の技術】代表的な高強度Al合金としては、Al
−Cu−Mg系合金であるジュラルミンが挙げられる
が、近年では強度を更に向上させたAl−Zn−Mg−
Cu系合金が超ジュラルミンと呼ばれ、JIS規格の7
075合金,7175合金,7475合金等が開発され
ている。尚上記Al−Cu−Mg系合金やAl−Zn−
Mg−Cu系合金等のジュラルミン系合金の高強度特性
は、時効硬化によって得られるものであり、これを製造
するにあたっては、まずインゴットを鋳造し、必要に応
じて均質化処理を行ない、高温で充分鍛造して鋳造組織
を取り除き、更に溶体化処理の後焼き入れをして時効処
理を施すという方法が一般的である。2. Description of the Related Art Al is a typical high strength Al alloy.
Duralumin, which is a -Cu-Mg-based alloy, may be mentioned.
The Cu-based alloy is called super duralumin, which is JIS standard 7
075 alloy, 7175 alloy, 7475 alloy, etc. have been developed. The above Al-Cu-Mg-based alloy and Al-Zn-
The high-strength characteristics of duralumin-based alloys such as Mg-Cu-based alloys are obtained by age-hardening, and in producing this, first, an ingot is cast, and if necessary, homogenization treatment is performed at high temperature. A general method is to forge sufficiently to remove the cast structure, and then perform quenching after solution treatment and then perform aging treatment.
【0003】しかしながら前記ジュラルミン系合金は靭
性が低く、特に熱間・冷間加工終了後の板厚方向(ST
方向)の靭性が、加工方向(L方向)や幅方向(LL方
向)に比べて、大幅に低いという問題を有している。こ
れは合金中の不溶性化合物が加工方向に伸延されて連な
り、鋭い切欠きとして働くことに起因している。尚上記
不溶性化合物とは、Al精練時に残存するFeやSiな
どの不純物を含有する化合物であって、均質化処理や溶
体化処理における処理温度を高くしても合金中に固溶せ
ず粒状に晶出する化合物である。However, the duralumin-based alloy has low toughness, and especially in the sheet thickness direction (ST
There is a problem that the toughness in the (direction) is significantly lower than that in the processing direction (L direction) and the width direction (LL direction). This is due to the fact that the insoluble compound in the alloy extends in the working direction and becomes continuous, and acts as a sharp notch. The above-mentioned insoluble compound is a compound containing impurities such as Fe and Si remaining during Al refining, and does not form a solid solution in the alloy even if the treatment temperature in the homogenization treatment or the solution treatment is increased to form particles. It is a compound that crystallizes out.
【0004】この様なジュラルミン系合金の靭性を改善
する手段としては、前記不溶性化合物の原因となるFe
やSiなどの不純物元素の含有量を極力制限する方法が
考えられる。例えばJIS規格では前記2014合金の
Fe量が0.7%以下、Si量は0.5〜1.2%に規
定されているが、特開昭55−47371号公報には不
純物であるFeを0.15%以下、Siを0.1%以下
に限定する方法が開示されている。しかしながら不可避
不純物であるFe及びSiの含有量を極力制限すること
は、即ち極めて純度の高いAl地金を必要とするもので
あり、コスト高となって実用性に乏しい。As a means for improving the toughness of such a duralumin alloy, Fe, which causes the insoluble compound, is used.
A possible method is to limit the content of impurity elements such as Si and Si as much as possible. For example, in the JIS standard, the amount of Fe in the 2014 alloy is specified to be 0.7% or less and the amount of Si is 0.5 to 1.2%. In JP-A-55-47371, Fe as an impurity is specified. A method of limiting the content to 0.15% or less and Si to 0.1% or less is disclosed. However, limiting the contents of Fe and Si, which are inevitable impurities, as much as possible requires Al ingot with extremely high purity, resulting in high cost and poor practicability.
【0005】[0005]
【発明が解決しようとする課題】本発明は上記事情に着
目してなされたものであって、不可避不純物であるFe
やSiの含有量は従来と同程度であっても、製造方法を
改善することにより圧延加工後のST方向においても靭
性に優れたAl−Zn−Mg−Cu系合金及びその製造
方法を提供しようとするものである。The present invention has been made in view of the above circumstances, and is an unavoidable impurity Fe.
Provide an Al-Zn-Mg-Cu-based alloy excellent in toughness even in the ST direction after rolling and a manufacturing method thereof by improving the manufacturing method even if the content of Al and Si is similar to the conventional one. It is what
【0006】[0006]
【課題を解決するための手段】上記課題を解決すること
のできた本発明に係るAl−Zn−Mg−Cu系合金と
は、 Zn:1〜7% Mg:0.5〜3.0% Cu:0.2〜3.0% Fe:0.8%以下(0%を含まない) Si:0.8%以下(0%を含まない) の要件を満たし、かつCr,Mn,ZrおよびTiより
なる群から選択された1種以上を夫々 Cr:0.05〜0.3% Mn:0.05〜0.4% Zr:0.05〜0.3% Ti:0.03〜0.3% の範囲内で含有し、残部がAlと不可避不純物からなる
Al合金において、連続鋳造後熱間圧延を行うか、また
は熱間圧延及び冷間圧延を行うと共に熱処理を施して、
Fe及びSiを含む不溶性化合物粒の最大長さを2μm
以下、かつ体積分率を2.0%以下に制御してなること
を要旨とするものである。The Al-Zn-Mg-Cu alloy according to the present invention, which has been able to solve the above-mentioned problems, includes: Zn: 1 to 7% Mg: 0.5 to 3.0% Cu : 0.2 to 3.0% Fe: 0.8% or less (0% is not included) Si: 0.8% or less (0% is not included), and Cr, Mn, Zr and Ti are satisfied. One or more selected from the group consisting of Cr: 0.05 to 0.3% Mn: 0.05 to 0.4% Zr: 0.05 to 0.3% Ti: 0.03 to 0. In an Al alloy containing 3% by weight and the balance being Al and inevitable impurities, hot rolling is performed after continuous casting, or hot rolling and cold rolling are performed together with heat treatment,
The maximum length of insoluble compound particles containing Fe and Si is 2 μm
The gist of the invention is to control the volume fraction to 2.0% or less.
【0007】そして上記Al−Zn−Mg−Cu系合金
を製造する為の好適手段の一つとして、本発明は凝固時
の冷却速度Rが R≧5……(1) R≧7.5([Fe]+[Si])+2……(2) 但し、R:凝固時の冷却速度(℃/sec) [Fe],[Si]:Al合金中のFe、Siの含有率
(%) を満足する条件で連続鋳造した後、該鋳片を熱間圧延温
度以上に保持された状態で直ちに、あるいは熱間圧延温
度に調整してから熱間圧延する方法を提供するものであ
る。尚上記条件式(1),(2)で示される推奨範囲は
図1に示される如く、[Fe]+[Si]の値が0.4
%以下のときは(1)式によって、また[Fe]+[S
i]の値が0.4%超のときは(2)式によって規定さ
れることを意味する。As one of the preferred means for producing the above Al-Zn-Mg-Cu alloy, the present invention has a cooling rate R during solidification R ≧ 5 (1) R ≧ 7.5 ( [Fe] + [Si]) + 2 (2) where R: cooling rate during solidification (° C./sec) [Fe], [Si]: Fe and Si content (%) in the Al alloy It is intended to provide a method of hot-rolling immediately after being continuously cast under a condition satisfying the conditions, in a state where the slab is kept at a hot-rolling temperature or higher, or after being adjusted to the hot-rolling temperature. The recommended range represented by the conditional expressions (1) and (2) is such that the value of [Fe] + [Si] is 0.4 as shown in FIG.
% Or less, according to the equation (1), [Fe] + [S
When the value of i] exceeds 0.4%, it means that it is defined by the equation (2).
【0008】[0008]
【作用】本発明者らはAl−Zn−Mg−Cu系合金の
靭性を向上させるという課題について鋭意研究を重ねた
結果、たとえFe及びSiをある程度含有したAl−Z
n−Mg−Cu系合金であっても、連続鋳造によりFe
及びSiを合金中に強制固溶させ、Fe及びSiを含む
不溶性化合物粒の最大長さを2μm以下で、しかもその
体積分率を2%以下に制御したものでは、強度を損なう
ことなく圧延加工後のST方向の靭性も向上させること
ができるとの知見を得た。さらに上記不溶性化合物粒の
最大長さ及び体積分率を制御するには、連続鋳造過程に
おける凝固時の冷却速度を一定条件内に制御してFe及
びSiを合金中に強制固溶することが最良の方法である
ことをつきとめ、本発明を完成させた。まず本発明に係
る成分組成の限定理由を以下に述べる。The present inventors have conducted extensive studies on the problem of improving the toughness of Al-Zn-Mg-Cu alloys, and as a result, Al-Z containing Fe and Si to some extent has been found.
Even if it is an n-Mg-Cu-based alloy, Fe is produced by continuous casting.
And Si are forced to form a solid solution in the alloy, the maximum length of the insoluble compound particles containing Fe and Si is 2 μm or less, and the volume fraction thereof is controlled to 2% or less. It was found that the toughness in the subsequent ST direction can also be improved. Furthermore, in order to control the maximum length and volume fraction of the insoluble compound particles, it is best to control the cooling rate during solidification in the continuous casting process within a certain condition to force Fe and Si to form a solid solution in the alloy. The present invention has been completed by identifying the above method. First, the reasons for limiting the component composition according to the present invention will be described below.
【0009】Zn:1〜7% Mg:0.5〜3.0% Cu:0.2〜3.0% Zn,Mg及びCuは、MgZn2 やAl2 CuMgと
いう1μm以下の微細な析出物を形成し、強度の向上に
大きく寄与する元素である。Zn,Mg及びCuのうち
いずれかひとつの元素でも上記成分範囲の下限値未満で
あると充分な強度が得られず、一方Zn,Mg及びCu
のうちいずれかひとつの元素でも上記成分範囲の上限値
を超えると、Fe及びSiを含有する不溶性化合物粒の
最大長さが2μmを超えて粗大な晶出物となり、靭性を
低下させる。従ってZn,Mg及びCuはいずれも上記
成分範囲を満足させることが必要である。Zn: 1 to 7% Mg: 0.5 to 3.0% Cu: 0.2 to 3.0% Zn, Mg and Cu are fine precipitates of 1 μm or less such as MgZn 2 and Al 2 CuMg. Is an element that forms a large amount and greatly contributes to the improvement of strength. Even if any one element of Zn, Mg and Cu is less than the lower limit value of the above component range, sufficient strength cannot be obtained, while Zn, Mg and Cu are not obtained.
If any one of these elements exceeds the upper limit of the above component range, the maximum length of the insoluble compound particles containing Fe and Si exceeds 2 μm to form coarse crystallized substances, which lowers the toughness. Therefore, Zn, Mg, and Cu must all satisfy the above component ranges.
【0010】尚Znの下限としては、より好ましくは2
%以上、更に好ましくは3%以上、一方上限は好ましく
は6%以下、更に好ましくは5.5%以下である。Mg
の下限としては、より好ましくは0.8%以上、更に好
ましくは1%以上、一方上限は好ましくは2.5%以
下、更に好ましくは2%以下である。またCuの下限と
しては、より好ましくは0.5%以上、更に好ましくは
1%以上、一方上限は好ましくは2.5%以下、更に好
ましくは2%以下である。The lower limit of Zn is more preferably 2
% Or more, more preferably 3% or more, while the upper limit is preferably 6% or less, more preferably 5.5% or less. Mg
The lower limit is more preferably 0.8% or more, still more preferably 1% or more, while the upper limit is preferably 2.5% or less, further preferably 2% or less. The lower limit of Cu is more preferably 0.5% or more, further preferably 1% or more, while the upper limit is preferably 2.5% or less, more preferably 2% or less.
【0011】Cr:0.05〜0.3% Mn:0.05〜0.4% Zr:0.05〜0.3% Ti:0.03〜0.3% 本発明のAl合金においては、上記4種の金属元素のう
ち1種以上を上記の範囲内で含有させることにより、A
l合金の結晶粒を微細化し靭性を向上させることができ
る。しかも上記4種の金属元素はAlと化合して0.1
〜0.5μm程度の微細な析出物を形成することにより
強度の向上にも寄与する。但し含有量が少な過ぎると靭
性及び強度に対する向上効果が充分でなく、含有量が多
過ぎると粗大な晶出物を形成し、靭性を低下させてしま
う。従ってCr量は0.05〜0.3%,Mn量は0.
05〜0.4%,Zr量は0.05〜0.3%,Ti量
は0.03〜0.3%の範囲内とすることが必要であ
る。Cr: 0.05-0.3% Mn: 0.05-0.4% Zr: 0.05-0.3% Ti: 0.03-0.3% In the Al alloy of the present invention, By containing at least one of the above four metal elements within the above range, A
It is possible to refine the crystal grains of the 1-alloy and improve the toughness. Moreover, the above four kinds of metal elements are combined with Al to form 0.1
The formation of fine precipitates of about 0.5 μm also contributes to the improvement of strength. However, if the content is too small, the effect of improving toughness and strength is not sufficient, and if the content is too large, coarse crystallized substances are formed and the toughness is reduced. Therefore, the Cr content is 0.05 to 0.3% and the Mn content is 0.1%.
05-0.4%, Zr amount is 0.05-0.3%, and Ti amount is 0.03-0.3%.
【0012】尚Crの下限としては、より好ましくは
0.08%以上、更に好ましくは0.1%以上、一方上
限は好ましくは0.25%以下、更に好ましくは0.2
%以下である。Mnの下限としては、より好ましくは
0.1%以上、更に好ましくは0.2%以上、一方上限
は好ましくは0.35%以下、更に好ましくは0.3%
以下である。The lower limit of Cr is more preferably 0.08% or more, further preferably 0.1% or more, while the upper limit is preferably 0.25% or less, more preferably 0.2.
% Or less. The lower limit of Mn is more preferably 0.1% or more, still more preferably 0.2% or more, while the upper limit is preferably 0.35% or less, further preferably 0.3%.
It is the following.
【0013】Zrの下限としては、より好ましくは0.
08%以上、更に好ましくは0.1%以上、一方上限は
好ましくは0.25%以下、更に好ましくは0.2%以
下である。またTiの下限としては、より好ましくは
0.05%以上、更に好ましくは0.07%以上、一方
上限は好ましくは0.2%以下、更に好ましくは0.1
5%以下である。The lower limit of Zr is more preferably 0.
08% or more, more preferably 0.1% or more, while the upper limit is preferably 0.25% or less, more preferably 0.2% or less. Further, the lower limit of Ti is more preferably 0.05% or more, still more preferably 0.07% or more, while the upper limit is preferably 0.2% or less, further preferably 0.1%.
It is 5% or less.
【0014】Fe:0.8%以下(0%を含まない) Si:0.8%以下(0%を含まない) Fe及びSiはAl精練時に残存する不可避不純物であ
り、不溶性化合物を形成することから、一般的に言って
Al合金にとって望ましくない元素であり、通常は極力
制限される。本発明ではFe量及びSi量ともに0.8
%まで許容できるものの、0.8%を超えると不溶性化
合物が粗大かつ多量に形成され、靭性が著しく低下す
る。Fe: 0.8% or less (not including 0%) Si: 0.8% or less (not including 0%) Fe and Si are inevitable impurities remaining during Al refining and form an insoluble compound. Therefore, it is generally an undesirable element for Al alloys and is usually limited as much as possible. In the present invention, both the amount of Fe and the amount of Si are 0.8
%, But if it exceeds 0.8%, coarse and large amounts of insoluble compounds are formed, and the toughness is significantly reduced.
【0015】本発明に係るAl−Zn−Mg−Cu系合
金においては、Fe及びSiを含む不溶性化合物粒の最
大長さ及びその体積分率を制御することが高い靭性を得
る上で非常に重要である。上記不溶性化合物粒の最大長
さが2μm以下、かつその体積分率が2.0%以下であ
る場合には、圧延加工後のST方向にも優れた靭性を発
揮する。上記不溶性化合物粒の最大長さは、高靭性を得
る上で1.5μm以下が望ましく、1μm以下がより好
ましい。一方不溶性化合物の体積分率は1.5%以下が
好ましく、1.0%以下であればより望ましい。In the Al-Zn-Mg-Cu alloy according to the present invention, it is very important to control the maximum length of insoluble compound grains containing Fe and Si and the volume fraction thereof to obtain high toughness. Is. When the maximum length of the insoluble compound particles is 2 μm or less and the volume fraction thereof is 2.0% or less, excellent toughness is exhibited also in the ST direction after rolling. The maximum length of the insoluble compound particles is preferably 1.5 μm or less in order to obtain high toughness, and more preferably 1 μm or less. On the other hand, the volume fraction of the insoluble compound is preferably 1.5% or less, more preferably 1.0% or less.
【0016】上記不溶性化合物粒の最大長さとは、例え
ば球状や円盤状の結晶であれば最大直径を与える様な切
断面を形成した時の最大直径であり、また略立方体や略
直方体の結晶であれば最も長い対角線の長さを指し、不
特定な形状の結晶であれば最も離れた表面上の2点間の
長さを言う。尚上記不溶性化合物粒の最大長さを測定す
るにあたっては、電子顕微鏡を用い顕微鏡視野で算出す
ればよい。The maximum length of the insoluble compound grains is, for example, a maximum diameter when a cut surface is formed so as to give a maximum diameter in the case of spherical or disc-shaped crystals, and is a substantially cubic or rectangular parallelepiped crystal. If there is a crystal with an unspecified shape, it means the length of the longest diagonal, if any, and the length between two points on the most distant surface. When measuring the maximum length of the insoluble compound particles, it may be calculated from the microscope field using an electron microscope.
【0017】上記不溶性化合物粒の最大長さ及び体積分
率を制御するには、上記成分組成の要件を満足するAl
合金を用いると共に、凝固時の冷却速度Rが下記
(1),(2)式 R≧5……(1)で且つ R≧7.5([Fe]+[Si])+2……(2) 但し、R:凝固時の冷却速度(℃/sec) [Fe],[Si]:Al合金中のFe、Siの含有率
(%) を満足する条件で連続鋳造を行なうことが重要である。In order to control the maximum length and volume fraction of the above-mentioned insoluble compound particles, Al which satisfies the above-mentioned component composition requirements.
The alloy is used, and the cooling rate R during solidification is the following equations (1) and (2) R ≧ 5 ... (1) and R ≧ 7.5 ([Fe] + [Si]) + 2. However, R: cooling rate during solidification (° C./sec) [Fe], [Si]: It is important to carry out continuous casting under conditions satisfying Fe and Si contents (%) in the Al alloy. .
【0018】即ち本発明のAl合金では、連続鋳造法に
より凝固時に速やかに冷却してFeやSiなどの不可避
不純物元素を強制固溶させ、靭性に悪影響を及ぼす不溶
性化合物の大きさ及び量を制限しようというものであ
り、上記条件を満足すればFe及びSiを含有する不溶
性化合物粒の最大長さ2μm以下、体積分率を2%以下
に制御できる。一方凝固時の冷却速度が前記条件を満足
しない場合には、FeやSiという不純物元素を十分に
強制固溶させることができずに、Fe及びSiを含む不
溶性化合物粒の最大長さ及びその体積分率を本発明範囲
内に制御できず、十分な靭性を得ることはできない。That is, in the Al alloy of the present invention, the size and amount of the insoluble compound which adversely affects the toughness are limited by rapidly cooling during solidification by the continuous casting method to forcibly dissolve inevitable impurity elements such as Fe and Si. If the above conditions are satisfied, the maximum length of insoluble compound particles containing Fe and Si can be controlled to 2 μm or less and the volume fraction can be controlled to 2% or less. On the other hand, when the cooling rate at the time of solidification does not satisfy the above conditions, the impurity elements such as Fe and Si cannot be sufficiently forced to form a solid solution, and the maximum length and volume of the insoluble compound particles containing Fe and Si are The fraction cannot be controlled within the range of the present invention, and sufficient toughness cannot be obtained.
【0019】前述の通り上記条件式(1),(2)で示
される推奨範囲は、[Fe]+[Si]の値が0.4%
以下のときは(1)式によって、また[Fe]+[S
i]の値が0.4%超のときは(2)式によって規定さ
れることを意味する。この様に本発明に係るAl合金を
製造するにあたりFeやSiなどの不可避不純物元素の
含有量が多い場合には、その含有量に応じて連続鋳造過
程における凝固時の冷却速度を増加させ、不溶性化合物
粒の最大長さ及び体積分率を制御することが望ましい。As described above, the recommended range represented by the conditional expressions (1) and (2) is such that the value of [Fe] + [Si] is 0.4%.
In the following cases, according to equation (1), [Fe] + [S
When the value of i] exceeds 0.4%, it means that it is defined by the equation (2). Thus, when the content of unavoidable impurity elements such as Fe and Si in producing the Al alloy according to the present invention is high, the cooling rate during solidification in the continuous casting process is increased according to the content, and It is desirable to control the maximum length and volume fraction of the compound grains.
【0020】尚本発明のAl合金は、前記成分組成成の
Al合金を用いて特定条件による冷却速度で連続鋳造を
行い、Fe及びSiを含有する不溶性化合物粒の最大長
さ及び体積分率を制御することにより優れた靭性を得ら
れるものであり、その他の製造条件については特に制限
されるものではないが、以下の製造方法が例示できる。The Al alloy of the present invention is continuously cast at a cooling rate under a specific condition using the Al alloy having the above-mentioned composition, and the maximum length and volume fraction of insoluble compound particles containing Fe and Si are determined. Excellent toughness can be obtained by controlling, and other production conditions are not particularly limited, but the following production methods can be exemplified.
【0021】まず本発明に係る合金組成を有するAl合
金を溶融体とし、この溶融体を連続鋳造する。連続鋳造
法としては、水冷式連続鋳造法、双ロール式連続鋳造
法、ベルト式連続鋳造法、ブロック式連続鋳造法などを
採用することができるが、連続鋳造から熱間圧延工程へ
の移行時期は、鋳片内部が固相線温度以下にまで低下し
て完全に凝固した後にタイミングを合わせるのが好まし
い。First, an Al alloy having the alloy composition according to the present invention is used as a melt, and this melt is continuously cast. As the continuous casting method, a water-cooled continuous casting method, a twin roll type continuous casting method, a belt type continuous casting method, a block type continuous casting method, etc. can be adopted, but the transition time from the continuous casting to the hot rolling step It is preferable to adjust the timing after the inside of the slab has fallen below the solidus temperature and has completely solidified.
【0022】本発明は、連続鋳造して得られる移動帯板
の温度を熱間圧延温度以上に保持して直ちに熱間圧延
し、引き続いて、若しくは一旦巻き取ってから冷間圧延
工程へ送る所謂連鋳・直送圧延方法に有利に適用される
が、この他連続鋳造の後、一旦保持し、鋳片温度が実質
的に降下しないうちに熱間圧延へ送り、更に冷間圧延を
行なう方法にも適用することができる。In the present invention, the temperature of the moving strip obtained by continuous casting is maintained at the hot rolling temperature or higher and hot rolling is immediately performed, and subsequently or once wound, it is sent to the cold rolling process. It is advantageously applied to continuous casting and direct-feed rolling, but in addition to this method, after continuous casting, it is temporarily held and sent to hot rolling before the slab temperature drops substantially, and further cold rolling is performed. Can also be applied.
【0023】尚熱間圧延を施す場合、開始温度は450
〜500℃の範囲が好ましく、300〜350℃の仕上
げ温度で終了することが望ましい。連続鋳造法では通常
4〜30mm程度の肉厚の移動帯板が連続的に製造さ
れ、これを熱間圧延し、更に必要に応じて冷間圧延を行
うことによって、0.7〜20mm程度の肉厚のAl合
金板に圧延される。圧下率としては30%以上が好まし
い。When hot rolling is performed, the starting temperature is 450.
It is preferable to finish at a finishing temperature of 300 to 350 ° C. In the continuous casting method, a moving strip having a wall thickness of about 4 to 30 mm is usually continuously manufactured, and hot rolling is performed, and if necessary, cold rolling is performed to obtain a thickness of about 0.7 to 20 mm. It is rolled into a thick Al alloy plate. The rolling reduction is preferably 30% or more.
【0024】熱間圧延または熱間圧延及び冷間圧延を施
したAl合金板は、溶体化処理の後水焼き入れし、さら
に時効処理を施す。上記溶体化処理の条件としては処理
温度が450〜500℃、処理時間は1〜8時間が望ま
しい。時効処理の条件としては100〜150℃の時効
温度で8〜24時間が好ましい。The hot-rolled or hot-rolled and cold-rolled Al alloy sheet is subjected to solution treatment, water-quenched, and then subjected to an aging treatment. As the conditions of the solution treatment, the treatment temperature is preferably 450 to 500 ° C., and the treatment time is preferably 1 to 8 hours. As the condition of the aging treatment, an aging temperature of 100 to 150 ° C. and 8 to 24 hours are preferable.
【0025】[0025]
実施例1〜15 表1に示す組成のAl合金を溶融体とし、連続鋳造法に
より肉厚20mmの移動帯板を作製し、直ちに熱間圧延
を施し肉厚5mmの板材とした。尚連続鋳造時の冷却速
度は12℃/secであり、上記熱間圧延の圧延開始温
度は450℃、終了温度は350℃であった。上記板材
に480℃で4時間の溶体化処理を施して水焼き入れを
行ない、120℃で24時間の時効処理を行なった。Examples 1 to 15 Using an Al alloy having the composition shown in Table 1 as a melt, a moving strip having a thickness of 20 mm was prepared by a continuous casting method, and immediately hot-rolled to obtain a plate having a thickness of 5 mm. The cooling rate during continuous casting was 12 ° C./sec, the rolling start temperature of the hot rolling was 450 ° C., and the finishing temperature was 350 ° C. The plate material was subjected to solution treatment at 480 ° C. for 4 hours, water quenching, and aging treatment at 120 ° C. for 24 hours.
【0026】この様にして得たAl合金板について、走
査型電子顕微鏡観察と画像解析を行なうことによって不
溶性化合物粒の最大長さ及び体積分率を求めると共に、
ST方向の破壊靭性試験を行なった。さらに引張試験で
耐力を測定して強度の評価を行なった。結果は表1に併
記する。With respect to the Al alloy plate thus obtained, the maximum length and volume fraction of the insoluble compound particles are obtained by observing with a scanning electron microscope and performing image analysis.
A fracture toughness test in the ST direction was performed. Further, the yield strength was measured by a tensile test to evaluate the strength. The results are also shown in Table 1.
【0027】比較例1〜15 表2に示す組成のAl合金溶湯を用いて、後述の条件以
外は実施例と同様にしてAl合金板を得た。走査型電子
顕微鏡観察と画像解析を行なうことによって不溶性化合
物粒の最大長さ及び体積分率を求めると共に、ST方向
の破壊靭性試験を行なった。さらに引張試験で耐力を測
定して強度の評価を行なった。結果は表2に併記する。Comparative Examples 1 to 15 Using Al alloy melts having the compositions shown in Table 2, Al alloy plates were obtained in the same manner as in Examples except for the conditions described below. The maximum length and volume fraction of the insoluble compound grains were determined by observing with a scanning electron microscope and image analysis, and a fracture toughness test in the ST direction was performed. Further, the yield strength was measured by a tensile test to evaluate the strength. The results are also shown in Table 2.
【0028】尚比較例1,2のAl合金板は、連続鋳造
時の冷却速度を3℃/secとした以外は実施例と同様
にして得たものであり、比較例3〜15のAl合金板
は、本発明に係る合金組成のうち少なくとも1種の元素
において条件を満足していないものである。The Al alloy plates of Comparative Examples 1 and 2 were obtained in the same manner as in the Example except that the cooling rate during continuous casting was 3 ° C./sec. The plate does not satisfy the conditions for at least one element of the alloy composition according to the present invention.
【0029】これら比較用のAl合金板について、走査
型電子顕微鏡観察と画像解析を行なうことによって不溶
性化合物粒の最大長さ及び体積分率を求めると共に、S
T方向の破壊靭性試験を行なった。さらに引張試験で耐
力を測定して強度の評価を行なった。結果は表2に併記
する。With respect to these Al alloy plates for comparison, the maximum length and volume fraction of the insoluble compound particles were obtained by observing with a scanning electron microscope and image analysis.
A fracture toughness test in the T direction was performed. Further, the yield strength was measured by a tensile test to evaluate the strength. The results are also shown in Table 2.
【0030】[0030]
【表1】 [Table 1]
【0031】[0031]
【表2】 [Table 2]
【0032】表1から明らかな様に本発明に係るAl合
金は、不溶性化合物粒の最大長さが2μm以下で、しか
も体積分率が2%以下であることから圧延加工後のST
方向の靭性も高く、かつ高強度であることが分かる。ま
た表2から明らかな通り、本発明に係る条件のいずれか
を満たさない比較例は、靭性または強度において充分で
はない。As is clear from Table 1, in the Al alloy according to the present invention, the maximum length of the insoluble compound grains is 2 μm or less and the volume fraction is 2% or less.
It can be seen that the toughness in the direction is also high and the strength is high. Further, as is clear from Table 2, the comparative examples that do not satisfy any of the conditions according to the present invention are not sufficient in toughness or strength.
【0033】比較例においてNo.1,2は連続鋳造条件
が異なるもので、No.1は不溶性化合物粒の最大長さが
2μmを超え、No.2は不溶性化合物の体積分率が2%
を超えることから、夫々破壊靭性が低い。No.3はZn
量が少な過ぎる場合の比較例、No.5はMg量が少な過
ぎる場合の比較例、No.7はCu量が少な過ぎる場合の
比較例であり、いずれも強度が著しく低い。No.4はZ
n量が多過ぎる場合の比較例、No.6はMg量が多過ぎ
る場合の比較例、No.8はCu量が多過ぎる場合の比較
例であり、不溶性化合物粒の最大長さが2μmを超えて
粗大であり、靭性が著しく低い。No.9はCr,Mn,
Zr及びTiの量がいずれも少な過ぎる場合の比較例で
あり、靭性に劣る。No.10〜13はCr,Mn,Zr
及びTiのうち、いずれかの量が多過ぎる場合の比較例
であり、不溶性化合物粒の最大長さが2μmを超えると
共に体積分率も2%を超えており、靭性が著しく低い。
No.14,15は不可避不純物であるFeまたはSiの
量が多過ぎる場合の比較例であり、靭性に乏しい。In the comparative example, No. 1 and No. 2 are different in continuous casting conditions, No. 1 has a maximum length of insoluble compound particles exceeding 2 μm, and No. 2 has a volume fraction of insoluble compound of 2%.
Therefore, the fracture toughness is low. No.3 is Zn
No. 5 is a comparative example when the amount of Mg is too small, No. 5 is a comparative example when the amount of Mg is too small, and No. 7 is a comparative example when the amount of Cu is too small. No.4 is Z
No. 6 is a comparative example when the amount of n is too large, No. 6 is a comparative example when the amount of Mg is too large, and No. 8 is a comparative example when the amount of Cu is too large, and the maximum length of the insoluble compound particles is 2 μm. Beyond that, the toughness is extremely low. No. 9 is Cr, Mn,
This is a comparative example when the amounts of Zr and Ti are both too small, and the toughness is poor. No. 10 to 13 are Cr, Mn, Zr
It is a comparative example when either of Ti and Ti is too large, and the maximum length of the insoluble compound particles exceeds 2 μm and the volume fraction exceeds 2%, and the toughness is extremely low.
Nos. 14 and 15 are comparative examples when the amount of inevitable impurities Fe or Si is too large, and the toughness is poor.
【0034】[0034]
【発明の効果】本発明は以上の様に構成されており、連
続鋳造法によりAl−Zn−Mg−Cu系合金中におけ
る不溶性化合物粒の最大長さを2μm以下とし、しかも
その体積分率を2%以下に制御しているので、Al−Z
n−Mg−Cu系合金の高強度という特性に加えて、そ
の靭性も向上させることができ、靭性に優れたAl−Z
n−Mg−Cu系合金及びその製造方法が提供できるこ
ととなった。The present invention is constituted as described above, and the maximum length of the insoluble compound particles in the Al-Zn-Mg-Cu alloy is set to 2 µm or less by the continuous casting method, and the volume fraction thereof is Since it is controlled to 2% or less, Al-Z
In addition to the high strength characteristic of the n-Mg-Cu alloy, its toughness can be improved, and Al-Z excellent in toughness.
It has become possible to provide an n-Mg-Cu based alloy and a manufacturing method thereof.
【図1】本発明の製造方法において用いられる連続鋳造
時の好ましい冷却速度条件を示すグラフである。FIG. 1 is a graph showing a preferable cooling rate condition during continuous casting used in the manufacturing method of the present invention.
Claims (4)
しない限り以下同じ) Mg:0.5〜3.0% Cu:0.2〜3.0% Fe:0.8%以下(0%を含まない) Si:0.8%以下(0%を含まない) の要件を満たし、かつCr,Mn,ZrおよびTiより
なる群から選択された1種以上を夫々 Cr:0.05〜0.3% Mn:0.05〜0.4% Zr:0.05〜0.3% Ti:0.03〜0.3% の範囲内で含有し、残部がAlと不可避不純物からなる
Al合金において、連続鋳造後熱間圧延を行うか、また
は熱間圧延及び冷間圧延を行うと共に熱処理を施して、
Fe及びSiを含む不溶性化合物粒の最大長さを2μm
以下、かつ体積分率を2.0%以下に制御してなること
を特徴とする靭性に優れたAl−Zn−Mg−Cu系合
金。1. Zn: 1 to 7% (meaning% by weight, the same hereinafter unless otherwise specified) Mg: 0.5 to 3.0% Cu: 0.2 to 3.0% Fe: 0.8% The following (not including 0%) Si: 0.8% or less (not including 0%), and one or more selected from the group consisting of Cr, Mn, Zr and Ti, respectively, Cr: 0 0.05 to 0.3% Mn: 0.05 to 0.4% Zr: 0.05 to 0.3% Ti: 0.03 to 0.3%, with the balance being Al and unavoidable impurities In an Al alloy consisting of, hot rolling after continuous casting, or hot rolling and cold rolling and heat treatment,
The maximum length of insoluble compound particles containing Fe and Si is 2 μm
An Al-Zn-Mg-Cu-based alloy excellent in toughness, characterized in that the volume fraction is controlled to 2.0% or less.
系合金を製造するにあたり、凝固時の冷却速度Rが R≧5で且つ R≧7.5([Fe]+[Si])+2 但し、R:凝固時の冷却速度(℃/sec) [Fe],[Si]:Al合金中のFe、Siの含有率
(%) を満足する条件で連続鋳造した後、該鋳片温度を熱間圧
延温度以上に保持して熱間圧延することを特徴とする靭
性に優れたAl−Zn−Mg−Cu系合金の製造方法。2. The Al-Zn-Mg-Cu according to claim 1.
In producing a system alloy, the cooling rate R during solidification is R ≧ 5 and R ≧ 7.5 ([Fe] + [Si]) + 2 where R: cooling rate during solidification (° C./sec) [Fe ], [Si]: Fe and Si in the Al alloy are continuously cast under the conditions satisfying the content ratio (%), and then the slab temperature is maintained at the hot rolling temperature or higher and hot rolling is performed. And a method for producing an Al-Zn-Mg-Cu alloy having excellent toughness.
延工程へ送る請求項2記載の製造方法。3. The method according to claim 2, wherein the continuously cast moving strip is immediately sent to the hot rolling step.
調整して熱間圧延工程へ送る請求項2に記載の製造方
法。4. The manufacturing method according to claim 2, wherein the continuously cast slab is adjusted to a hot rolling temperature and sent to a hot rolling step.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4725394A JPH07252573A (en) | 1994-03-17 | 1994-03-17 | Al-zn-mg-cu alloy excellent in toughness and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4725394A JPH07252573A (en) | 1994-03-17 | 1994-03-17 | Al-zn-mg-cu alloy excellent in toughness and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07252573A true JPH07252573A (en) | 1995-10-03 |
Family
ID=12770112
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4725394A Withdrawn JPH07252573A (en) | 1994-03-17 | 1994-03-17 | Al-zn-mg-cu alloy excellent in toughness and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07252573A (en) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002173729A (en) * | 2000-12-04 | 2002-06-21 | Nippon Steel Corp | Aluminum alloy sheet having excellent coating/baking hardenability and press formability and its production method |
EP1441041A1 (en) * | 2003-01-16 | 2004-07-28 | Alcan Technology & Management Ltd. | Aluminium alloy with high strength and low quenching sensitivity |
JP2009144190A (en) * | 2007-12-12 | 2009-07-02 | Kobe Steel Ltd | High-strength and high-ductility aluminum alloy sheet and manufacturing method therefor |
CN103614675A (en) * | 2013-12-20 | 2014-03-05 | 西南铝业(集团)有限责任公司 | Hot rolling process of aluminum alloy cast ingot for rail-vehicle undercarriage plate |
CN103834837A (en) * | 2005-02-10 | 2014-06-04 | 肯联铝业轧制品-雷文斯伍德有限公司 | Al- Zn-Cu-Mg aluminum base alloys and methods of manufacture and use |
WO2014130088A1 (en) * | 2013-02-19 | 2014-08-28 | Alcoa Inc. | Heat treatable aluminum alloys having magnesium and zinc and methods for producing the same |
JP2014198899A (en) * | 2013-03-14 | 2014-10-23 | 株式会社神戸製鋼所 | Aluminum alloy plate for structural material |
CN104178711A (en) * | 2014-08-21 | 2014-12-03 | 东北轻合金有限责任公司 | Manufacturing method for aerospace aluminum alloy board |
JP2015071823A (en) * | 2013-09-04 | 2015-04-16 | 株式会社神戸製鋼所 | Aluminum alloy sheet |
JP2016500580A (en) * | 2013-10-24 | 2016-01-14 | コリア インスティテュート オブ マシーナリー アンド マテリアルズ | Method for producing aluminum-zinc-magnesium-copper alloy sheet with refined crystal grains |
JP2016013576A (en) * | 2010-06-11 | 2016-01-28 | 昭和電工株式会社 | MANUFACTURING METHOD OF Al ALLOY CAST MEMBER |
US9353430B2 (en) | 2005-10-28 | 2016-05-31 | Shipston Aluminum Technologies (Michigan), Inc. | Lightweight, crash-sensitive automotive component |
WO2018080708A1 (en) * | 2016-10-27 | 2018-05-03 | Novelis Inc. | High strength 7xxx series aluminum alloys and methods of making the same |
KR20190073470A (en) * | 2016-10-27 | 2019-06-26 | 노벨리스 인크. | Systems and methods for making thick gauge aluminum alloy articles |
CN111593239A (en) * | 2020-05-27 | 2020-08-28 | 北京科技大学 | Low-cost high-formability aluminum alloy plate for vehicle body structure and preparation method thereof |
JP2020158789A (en) * | 2019-03-25 | 2020-10-01 | 本田技研工業株式会社 | Aluminum alloy for vehicle and parts for vehicle |
CN111996402A (en) * | 2020-08-27 | 2020-11-27 | 广州致远新材料科技有限公司 | Preparation method of superhard aluminum alloy material |
JP2020535307A (en) * | 2017-09-26 | 2020-12-03 | コンステリウム イソワールConstellium Issoire | Al-Zn-Cu-Mg alloy with high strength and manufacturing method |
WO2021121343A1 (en) * | 2019-12-17 | 2021-06-24 | 中铝材料应用研究院有限公司 | 7xxx series aluminum alloy or plate, manufacturing method therefor, processing method therefor, and application thereof |
JP2022513377A (en) * | 2018-10-23 | 2022-02-07 | ノベリス・インコーポレイテッド | Formability High-strength aluminum alloy product and its manufacturing method |
CN115094256A (en) * | 2022-06-23 | 2022-09-23 | 南京启智浦交科技开发有限公司 | Gradient structure regulation and control method for improving room temperature forming performance of aluminum alloy plate of vehicle body structure |
CN115976379A (en) * | 2022-12-08 | 2023-04-18 | 江苏中天科技股份有限公司 | High-strength aluminum alloy wire and preparation method and application thereof |
US11821065B2 (en) | 2016-10-27 | 2023-11-21 | Novelis Inc. | High strength 6XXX series aluminum alloys and methods of making the same |
-
1994
- 1994-03-17 JP JP4725394A patent/JPH07252573A/en not_active Withdrawn
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002173729A (en) * | 2000-12-04 | 2002-06-21 | Nippon Steel Corp | Aluminum alloy sheet having excellent coating/baking hardenability and press formability and its production method |
EP1441041A1 (en) * | 2003-01-16 | 2004-07-28 | Alcan Technology & Management Ltd. | Aluminium alloy with high strength and low quenching sensitivity |
WO2004063407A1 (en) * | 2003-01-16 | 2004-07-29 | Alcan Technology & Management Ltd. | Aluminium alloy with increased resistance and low quench sensitivity |
HRP20050704B1 (en) * | 2003-01-16 | 2008-06-30 | Alcan Technology & Management Ltd | Aluminium alloy with increased resistance and low quench sensitivity |
US7901522B2 (en) | 2003-01-16 | 2011-03-08 | Alcan Technology & Management Ltd. | Aluminum alloy with increased resistance and low quench sensitivity |
NO340750B1 (en) * | 2003-01-16 | 2017-06-12 | Constellium Switzerland Ag Ltd Sa | Aluminum alloy with high strength and low quench sensitivity, and applications thereof for the manufacture of plates. |
CN103834837A (en) * | 2005-02-10 | 2014-06-04 | 肯联铝业轧制品-雷文斯伍德有限公司 | Al- Zn-Cu-Mg aluminum base alloys and methods of manufacture and use |
CN103834837B (en) * | 2005-02-10 | 2016-11-09 | 肯联铝业轧制品-雷文斯伍德有限公司 | Al-Zn-Cu-Mg acieral and manufacture method thereof and purposes |
US9353430B2 (en) | 2005-10-28 | 2016-05-31 | Shipston Aluminum Technologies (Michigan), Inc. | Lightweight, crash-sensitive automotive component |
JP2009144190A (en) * | 2007-12-12 | 2009-07-02 | Kobe Steel Ltd | High-strength and high-ductility aluminum alloy sheet and manufacturing method therefor |
JP2016013576A (en) * | 2010-06-11 | 2016-01-28 | 昭和電工株式会社 | MANUFACTURING METHOD OF Al ALLOY CAST MEMBER |
WO2014130088A1 (en) * | 2013-02-19 | 2014-08-28 | Alcoa Inc. | Heat treatable aluminum alloys having magnesium and zinc and methods for producing the same |
US9587298B2 (en) | 2013-02-19 | 2017-03-07 | Arconic Inc. | Heat treatable aluminum alloys having magnesium and zinc and methods for producing the same |
JP2014198899A (en) * | 2013-03-14 | 2014-10-23 | 株式会社神戸製鋼所 | Aluminum alloy plate for structural material |
JP2015071823A (en) * | 2013-09-04 | 2015-04-16 | 株式会社神戸製鋼所 | Aluminum alloy sheet |
JP2016500580A (en) * | 2013-10-24 | 2016-01-14 | コリア インスティテュート オブ マシーナリー アンド マテリアルズ | Method for producing aluminum-zinc-magnesium-copper alloy sheet with refined crystal grains |
CN103614675A (en) * | 2013-12-20 | 2014-03-05 | 西南铝业(集团)有限责任公司 | Hot rolling process of aluminum alloy cast ingot for rail-vehicle undercarriage plate |
CN104178711A (en) * | 2014-08-21 | 2014-12-03 | 东北轻合金有限责任公司 | Manufacturing method for aerospace aluminum alloy board |
KR20190073470A (en) * | 2016-10-27 | 2019-06-26 | 노벨리스 인크. | Systems and methods for making thick gauge aluminum alloy articles |
US11806779B2 (en) | 2016-10-27 | 2023-11-07 | Novelis Inc. | Systems and methods for making thick gauge aluminum alloy articles |
WO2018080708A1 (en) * | 2016-10-27 | 2018-05-03 | Novelis Inc. | High strength 7xxx series aluminum alloys and methods of making the same |
KR20190077016A (en) * | 2016-10-27 | 2019-07-02 | 노벨리스 인크. | High strength 7XXX series aluminum alloy and its manufacturing method |
JP2019534947A (en) * | 2016-10-27 | 2019-12-05 | ノベリス・インコーポレイテッドNovelis Inc. | High strength 7xxx series aluminum alloy and method for producing the same |
AU2017350513B2 (en) * | 2016-10-27 | 2020-03-05 | Novelis Inc. | High strength 7xxx series aluminum alloys and methods of making the same |
CN109890536A (en) * | 2016-10-27 | 2019-06-14 | 诺维尔里斯公司 | High-intensitive 7XXX series alloys and its manufacturing method |
US11692255B2 (en) | 2016-10-27 | 2023-07-04 | Novelis Inc. | High strength 7XXX series aluminum alloys and methods of making the same |
US11821065B2 (en) | 2016-10-27 | 2023-11-21 | Novelis Inc. | High strength 6XXX series aluminum alloys and methods of making the same |
US11590565B2 (en) | 2016-10-27 | 2023-02-28 | Novelis Inc. | Metal casting and rolling line |
US10913107B2 (en) | 2016-10-27 | 2021-02-09 | Novelis Inc. | Metal casting and rolling line |
JP2020535307A (en) * | 2017-09-26 | 2020-12-03 | コンステリウム イソワールConstellium Issoire | Al-Zn-Cu-Mg alloy with high strength and manufacturing method |
JP2022513377A (en) * | 2018-10-23 | 2022-02-07 | ノベリス・インコーポレイテッド | Formability High-strength aluminum alloy product and its manufacturing method |
US11466352B2 (en) | 2018-10-23 | 2022-10-11 | Novelis Inc. | Formable, high strength aluminum alloy products and methods of making the same |
JP2020158789A (en) * | 2019-03-25 | 2020-10-01 | 本田技研工業株式会社 | Aluminum alloy for vehicle and parts for vehicle |
WO2021121343A1 (en) * | 2019-12-17 | 2021-06-24 | 中铝材料应用研究院有限公司 | 7xxx series aluminum alloy or plate, manufacturing method therefor, processing method therefor, and application thereof |
CN114929913A (en) * | 2019-12-17 | 2022-08-19 | 中铝材料应用研究院有限公司 | 7xxx series aluminum alloy or plate, manufacturing method thereof, processing method thereof and application thereof |
CN111593239A (en) * | 2020-05-27 | 2020-08-28 | 北京科技大学 | Low-cost high-formability aluminum alloy plate for vehicle body structure and preparation method thereof |
CN111996402B (en) * | 2020-08-27 | 2021-05-11 | 广州致远新材料科技有限公司 | Preparation method of superhard aluminum alloy material |
CN111996402A (en) * | 2020-08-27 | 2020-11-27 | 广州致远新材料科技有限公司 | Preparation method of superhard aluminum alloy material |
CN115094256B (en) * | 2022-06-23 | 2023-03-14 | 南京启智浦交科技开发有限公司 | Gradient structure regulation and control method for improving room-temperature forming performance of aluminum alloy plate of vehicle body structure |
CN115094256A (en) * | 2022-06-23 | 2022-09-23 | 南京启智浦交科技开发有限公司 | Gradient structure regulation and control method for improving room temperature forming performance of aluminum alloy plate of vehicle body structure |
CN115976379A (en) * | 2022-12-08 | 2023-04-18 | 江苏中天科技股份有限公司 | High-strength aluminum alloy wire and preparation method and application thereof |
CN115976379B (en) * | 2022-12-08 | 2024-05-31 | 江苏中天科技股份有限公司 | High-strength aluminum alloy wire and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH07252573A (en) | Al-zn-mg-cu alloy excellent in toughness and its production | |
JP3194742B2 (en) | Improved lithium aluminum alloy system | |
EP0949344A1 (en) | Aluminium alloys and process for making aluminium alloy sheet | |
JP6176393B2 (en) | High-strength aluminum alloy plate with excellent bending workability and shape freezing property | |
JPH07252574A (en) | Al-cu-mg alloy excellent in toughness and its production | |
US5021106A (en) | Brazeable aluminum alloy sheet and process of making same | |
JPH07109536A (en) | Aluminum alloy for forging and heat treatment therefor | |
US4483719A (en) | Process for preparing fine-grained rolled aluminum products | |
JP7318274B2 (en) | Al-Mg-Si-based aluminum alloy cold-rolled sheet and its manufacturing method, and Al-Mg-Si-based aluminum alloy cold-rolled sheet for forming and its manufacturing method | |
US5318642A (en) | High-strength rolled sheet of aluminum alloy and process for producing the same | |
JPH07252571A (en) | Automobile aluminum alloy sheet and its production | |
EP0846781B1 (en) | Process of forming an aluminium sheet with excellent high speed superplastic formability | |
WO2008078399A1 (en) | Method of producing aluminum alloy sheet | |
JP3161141B2 (en) | Manufacturing method of aluminum alloy sheet | |
JP6857535B2 (en) | High-strength aluminum alloy plate with excellent formability, bendability and dent resistance and its manufacturing method | |
JP2000160272A (en) | Al ALLOY SHEET EXCELLENT IN PRESS FORMABILITY | |
JPH07278716A (en) | Aluminum alloy sheet for forming excellent in mechanical property and its production | |
JP3286119B2 (en) | Aluminum alloy foil and method for producing the same | |
JPH0820833A (en) | Aluminum-magnesium alloy for liquid hydrogen storage, excellent in toughness, and its production | |
CN110129633A (en) | Furniture Aluminum alloy rivet line and preparation method thereof | |
JPH05345963A (en) | Manufacture of high formability aluminum alloy sheet | |
JP2001040461A (en) | Production of aluminum alloy sheet for can barrel | |
JPH04160131A (en) | Al-mg-si alloy plate excellent in strength and formability, and its manufacture | |
JPH0585630B2 (en) | ||
JP7318275B2 (en) | Al-Mg-Si-based aluminum alloy cold-rolled sheet and its manufacturing method, and Al-Mg-Si-based aluminum alloy cold-rolled sheet for forming and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20010605 |