Nothing Special   »   [go: up one dir, main page]

JPH07246314A - Method for removing carbon dioxide in exhaust combustion gas - Google Patents

Method for removing carbon dioxide in exhaust combustion gas

Info

Publication number
JPH07246314A
JPH07246314A JP6038265A JP3826594A JPH07246314A JP H07246314 A JPH07246314 A JP H07246314A JP 6038265 A JP6038265 A JP 6038265A JP 3826594 A JP3826594 A JP 3826594A JP H07246314 A JPH07246314 A JP H07246314A
Authority
JP
Japan
Prior art keywords
exhaust gas
amine
combustion exhaust
group
amine compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6038265A
Other languages
Japanese (ja)
Other versions
JP2871447B2 (en
Inventor
Tomio Mimura
富雄 三村
Shigeru Shimojo
繁 下條
Masaki Iijima
正樹 飯島
Shigeaki Mitsuoka
薫明 光岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP6038265A priority Critical patent/JP2871447B2/en
Application filed by Kansai Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to EP00119344A priority patent/EP1062999A3/en
Priority to EP00119343A priority patent/EP1062998B1/en
Priority to DE69428057T priority patent/DE69428057T2/en
Priority to EP98109477A priority patent/EP0875280B1/en
Priority to DE69432376T priority patent/DE69432376T2/en
Priority to EP00118995A priority patent/EP1064980B1/en
Priority to EP94115308A priority patent/EP0647462A1/en
Priority to CN94112801A priority patent/CN1057478C/en
Publication of JPH07246314A publication Critical patent/JPH07246314A/en
Priority to US08/660,837 priority patent/US5700437A/en
Application granted granted Critical
Publication of JP2871447B2 publication Critical patent/JP2871447B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Treating Waste Gases (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

PURPOSE:To efficiently remove CO2 from a waste combustion gas by using a combination of an amine compd. X and a relatively small amt. of an amine compd. Y. CONSTITUTION:An amine compd. X has an alcoholic hydroxyl in the molecule and a primary amine joined to a tertiary carbon atom having two unsubstituted alkyls. An amine compd. Y is selected from a group consisting of ethyleneamines other than ethylenediamine, iminobispropylamine, diaminotoluenes, amines expressed by R<1> (CH2NH2)2 (R<1> is a 1-5C methylene chains substitutable by lower alkyls), piperazine compds. expressed by Pip-R<2>-NH2 (R<2> is a 1-4C methylene chains substitutable by lower alkyls) and homopiperazines. The waste combustion gas under atmospheric pressure is brought into contact with an aq. mixed soln. of 100 pts.wt. of the amine compd. X and 1-25 pts.wt. of the amine compd. Y to remove CO2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は燃焼排ガス中に含まれる
CO2 (二酸化炭素)を除去する方法に関し、さらに詳
しくは、特定のアミンの混合水溶液を用いて、大気圧下
の燃焼排ガス中のCO2 を効率よく除去する方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing CO 2 (carbon dioxide) contained in flue gas, and more specifically, it uses a mixed aqueous solution of a specific amine to remove flue gas in flue gas under atmospheric pressure. The present invention relates to a method for efficiently removing CO 2 .

【0002】[0002]

【従来の技術】近年、地球の温暖化現象の原因の一つと
して、CO2 による温室効果が指摘され、地球環境を守
る上で国際的にもその対策が急務となってきた。CO2
の発生源としては化石燃料を燃焼させるあらゆる人間の
活動分野に及び、その排出抑制への要求が一層強まる傾
向にある。これに伴い大量の化石燃料を使用する火力発
電所などの動力発生設備を対象に、ボイラの燃焼排ガス
をアルカノールアミン水溶液などと接触させて燃焼排ガ
ス中のCO2 を除去し、回収する方法および回収された
CO2 を大気へ放出することなく貯蔵する方法が精力的
に研究されている。
2. Description of the Related Art In recent years, the greenhouse effect of CO 2 has been pointed out as one of the causes of the global warming phenomenon, and countermeasures against it have become urgent internationally in order to protect the global environment. CO 2
The sources of methane are all human activity fields that burn fossil fuels, and the demand for emission control tends to become stronger. Along with this, for a power generation facility such as a thermal power plant that uses a large amount of fossil fuel, a method and a method for recovering by removing CO 2 in the combustion exhaust gas by bringing the combustion exhaust gas of the boiler into contact with an alkanolamine aqueous solution, etc. The method of storing the stored CO 2 without releasing it to the atmosphere has been vigorously studied.

【0003】アルカノールアミンとしてはモノエタノー
ルアミン、ジエタノールアミン、トリエタノールアミ
ン、メチルジエタノールアミン、ジイソプロパノールア
ミン、ジグリコールアミンなどをあげることができる
が、通常モノエタノールアミン(MEA)が好んで用い
られる。
Examples of the alkanolamine include monoethanolamine, diethanolamine, triethanolamine, methyldiethanolamine, diisopropanolamine, diglycolamine and the like, but monoethanolamine (MEA) is usually preferred.

【0004】しかし、MEAに代表される上記のような
アルカノールアミン水溶液を燃焼排ガス中のCO2 を吸
収・除去する吸収剤として用いても、所定濃度のアミン
水溶液の所定量当たりのCO2 の吸収量、所定濃度のア
ミン水溶液の単位アミンモル当たりのCO2 吸収量、所
定濃度におけるCO2 の吸収速度、さらには吸収後のア
ルカノールアミン水溶液の再生に要する熱エネルギなど
に照らして、必ずしも満足のできるものではない。
However, even if the above-mentioned alkanolamine aqueous solution typified by MEA is used as an absorbent for absorbing and removing CO 2 in combustion exhaust gas, it absorbs CO 2 per a predetermined amount of an amine aqueous solution of a predetermined concentration. the amount, CO 2 absorption quantity per unit amine molar amine aqueous solution having a predetermined concentration, the absorption rate of CO 2 at a given concentration, more in light like the heat energy required for the regeneration of the alkanolamine solution after the absorption, not necessarily be satisfactory is not.

【0005】ところで、各種混合ガスからアミン化合物
を用いて酸性ガスを分離する技術は数多く知られてい
る。
By the way, there are many known techniques for separating an acidic gas from various mixed gases using an amine compound.

【0006】特開昭53−100180号公報には、
(1)環の一部分であってかつ第二炭素原子もしくは第
三炭素原子のどちらかに結合された少なくとも1個の第
二アミノ基または第三炭素原子に結合された第一アミノ
基を含有する立体障害アミン少なくとも50モル%と第
三アミノアルコール少なくとも約10モル%とよりなる
アミン混合物および(2)酸性ガスに対する物理的吸収
剤である前記アミン混合物用の溶媒からなるアミン−溶
媒液体吸収剤に通常ガス状の混合物を接触させることか
らなる酸性ガスの除去法が記載されている。立体障害ア
ミンとしては2−ピペリジンエタノール{別名2−(2
−ヒドロキシエチル)−ピペリジン}および3−アミノ
−3−メチル−1−ブタノールなどが、また溶媒として
は25重量%までの水を含んでもよいスルホキシド化合
物などが、さらに処理ガスの例としては同公報11頁左
上欄に「高濃度の二酸化炭素及び硫化水素、例えば35
%のCO2 及び10〜12%のH2 Sを有する通常ガス
状の混合物」が例示され、また実施例にはCO2 そのも
のが使用されている。
Japanese Patent Laid-Open No. 53-100180 discloses that
(1) Containing at least one secondary amino group bound to either a secondary or tertiary carbon atom or a primary amino group bound to a tertiary carbon atom which is part of a ring An amine-solvent liquid absorbent comprising an amine mixture comprising at least 50 mol% sterically hindered amine and at least about 10 mol% tertiary amino alcohol and (2) a solvent for said amine mixture which is a physical absorbent for acid gases. A method for the removal of acid gases, which consists in contacting a normally gaseous mixture, is described. 2-Piperidine ethanol {alias 2- (2
-Hydroxyethyl) -piperidine} and 3-amino-3-methyl-1-butanol, and sulfoxide compounds which may contain up to 25% by weight of water as a solvent. In the upper left column of page 11, "high concentration carbon dioxide and hydrogen sulfide, for example 35
% CO 2 and 10-12% H 2 S in a normally gaseous mixture ”, and CO 2 itself is used in the examples.

【0007】特開昭61−71819号公報には、立体
障害アミンおよびスルホランなどの非水溶媒を含む酸性
ガススクラッピング用組成物が記載されている。立体障
害第一モノアミノアルコールとして2−アミノ−2−メ
チル−1−プロパノール(AMP)などが例示され、ま
た用いられている。実施例では、処理されるガスとして
はCO2 と窒素、CO2 とヘリウムが用いられている。
また、吸収剤としてはアミンと炭酸カリの水溶液なども
使用されている。さらに水の使用についても記載されて
いる。さらに該公報にはCO2 の吸収に対し、立体障害
アミンの有利性を反応式を用いて説明している。
JP-A-61-71819 describes a composition for acidic gas scraping containing a sterically hindered amine and a non-aqueous solvent such as sulfolane. 2-Amino-2-methyl-1-propanol (AMP) and the like are exemplified and used as the sterically hindered primary monoamino alcohol. In the embodiment, CO 2 and nitrogen, and CO 2 and helium are used as the gas to be treated.
Also, as the absorbent, an aqueous solution of amine and potassium carbonate is used. It also describes the use of water. Further, the publication describes the advantage of a sterically hindered amine for absorption of CO 2 by using a reaction formula.

【0008】ケミカルエンジニアリングサイエンス(Ch
emical Engineering Science) ,41巻,4号,997
〜1003頁には、ヒンダードアミンである2−アミノ
−2−メチル−1−プロパノール(AMP)水溶液の炭
酸ガス吸収挙動が開示されている。吸収させるガスとし
ては大気圧のCO2 およびCO2 と窒素の混合物が用い
られている。
Chemical Engineering Science (Ch
emical Engineering Science), 41, No. 4, 997
On pages 1003, carbon dioxide absorption behavior of an aqueous solution of 2-amino-2-methyl-1-propanol (AMP) which is a hindered amine is disclosed. As the gas to be absorbed, CO 2 at atmospheric pressure and a mixture of CO 2 and nitrogen are used.

【0009】ケミカルエンジニアリングサイエンス(Ch
emical Engineering Science) ,41巻,2号,405
〜408頁には、常温付近において、AMPのようなヒ
ンダードアミンとMEAのような直鎖アミンの各水溶液
のCO2 やH2 Sに対する吸収速度が報告されている。
これによると、CO2 の分圧が1atm の場合、水溶液濃
度0.1〜0.3Mで両者に大差はない。しかし、濃度
0.1Mの水溶液を用い、CO2 分圧を1、0.5、
0.05atm と低下させると、0.05atm ではAMP
はMEAよりも吸収速度が大きく低下している。
Chemical Engineering Science (Ch
emical Engineering Science), Volume 41, Issue 2, 405
On pages 408, absorption rates of CO 2 and H 2 S of aqueous solutions of hindered amines such as AMP and linear amines such as MEA are reported near room temperature.
According to this, when the partial pressure of CO 2 is 1 atm, the aqueous solution concentration is 0.1 to 0.3 M, and there is no great difference between the two. However, a CO 2 partial pressure of 1, 0.5,
If it is reduced to 0.05 atm, AMP will be
Has a much lower absorption rate than MEA.

【0010】米国特許3,622,267号明細書に
は、メチルジエタノールアミン及びモノエチルモノエタ
ノールアミンを含有する水性混合物を用い、原油などの
部分酸化ガスなどの合成ガスに含まれる高分圧のC
2 、例えば40気圧の30%CO 2 含有合成ガスを精
製する技術が開示されている。
US Pat. No. 3,622,267
Is methyldiethanolamine and monoethylmonoethane
Using an aqueous mixture containing a nolamine, such as crude oil
High partial pressure C contained in synthesis gas such as partial oxidation gas
O2, 30% CO at 40 bar, for example 2Contained syngas
A manufacturing technique is disclosed.

【0011】ドイツ公開特許1,542,415号公報
には、CO2 、H2 S、COSの吸収速度の向上のため
モノアルキルアルカノールアミンなどを物理または化学
吸収剤に添加する技術が開示されている。同様にドイツ
公開特許1,904,428号公報には、モノメチルエ
タノールアミンがメチルジエタノールアミンの吸収速度
を向上させる目的で添加される技術が開示されている。
German Laid-Open Patent 1,542,415 discloses a technique for adding a monoalkylalkanolamine or the like to a physical or chemical absorbent in order to improve the absorption rate of CO 2 , H 2 S and COS. There is. Similarly, DE-A-1,904,428 discloses a technique in which monomethylethanolamine is added for the purpose of improving the absorption rate of methyldiethanolamine.

【0012】米国特許4,336,233号明細書に
は、天然ガス、合成ガス、ガス化石炭ガスの精製にピペ
ラジンの0.81〜1.3モル/リットル水溶液が洗浄
液として、またピペラジンがメチルジエタノールアミ
ン、トリエタノールアミン、ジエタノールアミン、モノ
メチルエタノールアミンなどの溶媒と共に水溶液で洗浄
液として使用される技術が開示されている。
In US Pat. No. 4,336,233, 0.81 to 1.3 mol / liter aqueous solution of piperazine is used as a cleaning liquid for the purification of natural gas, syngas and gasified coal gas, and piperazine is methyl. A technique is disclosed in which an aqueous solution is used as a cleaning liquid together with a solvent such as diethanolamine, triethanolamine, diethanolamine, and monomethylethanolamine.

【0013】同様に特開昭52−63171号公報に
は、第三級アルカノールアミン、モノアルキルアルカノ
ールアミンなどにピペラジンまたはヒドロキシエチルピ
ペラジンなどのピペラジン誘導体を促進剤として加えた
CO2 吸収剤が開示されている。
Similarly, JP-A-52-63171 discloses a CO 2 absorbent obtained by adding a piperazine or a piperazine derivative such as hydroxyethylpiperazine as a promoter to a tertiary alkanolamine, monoalkylalkanolamine, or the like. ing.

【0014】[0014]

【発明が解決しようとする課題】前述のように、燃焼排
ガスからCO2 を効率よく除去する方法が望まれてい
る。特に、一定濃度のCO2 吸収剤(アミン化合物)を
含む水溶液で燃焼排ガスを処理する場合、吸収剤単位モ
ル当たりのCO2 吸収量、水溶液の単位体積当たりのC
2 の吸収量および吸収速度の大きい吸収剤を選択する
ことが当面の大きな課題である。さらにはCO2 の吸収
後、CO2 を分離し、吸収液を再生させる際に必要な熱
エネルギの少ない吸収剤が望まれる。とりわけCO2
吸収能力は大きいにも拘らず、吸収速度の小さい吸収剤
の吸収速度を改善することが望まれる。
As described above, there is a demand for a method of efficiently removing CO 2 from combustion exhaust gas. In particular, when treating a combustion exhaust gas with an aqueous solution containing a constant concentration of CO 2 absorbent (amine compound), the amount of CO 2 absorbed per unit mole of the absorbent, the C per unit volume of the aqueous solution
A major problem for the time being is to select an absorbent having a large absorption amount and absorption rate of O 2 . Further, after absorbing CO 2, an absorbent that separates CO 2 and regenerates the absorbing liquid requires less heat energy is desired. Above all, it is desired to improve the absorption rate of an absorbent having a low absorption rate, although the absorption capacity of CO 2 is large.

【0015】[0015]

【課題を解決するための手段】本発明者らは前記課題に
鑑み、燃焼排ガス中のCO2 を除去する際に用いられる
吸収剤について鋭意検討した結果、特定のアミン化合物
(X)に比較的少量の特定のアミン化合物(Y)を混合
して用いることが、特定アミン化合物(X)の吸収速度
を改善する上で有効であるとの知見を得て、本発明を完
成させることができた。
In view of the above-mentioned problems, the inventors of the present invention have made earnest studies on an absorbent used for removing CO 2 in combustion exhaust gas, and as a result, have found that the specific amine compound (X) is relatively The present invention has been completed by finding that it is effective to mix a small amount of a specific amine compound (Y) to improve the absorption rate of the specific amine compound (X). .

【0016】すなわち、本発明は分子内にアルコール性
の水酸基を有し、二個の非置換アルキル基を有する第三
級炭素原子に結合した第一アミノ基を有するアミン化合
物(X)100重量部と、(A)エチレンアミン類(但
し、エチレンジアミンを除く。)、(B)イミノビスプ
ロピルアミン(IBPA)、(C)ジアミノトルエン
類、(D)一般式R1 (CH2 NH2 2 (R1 は低級
アルキル基で置換されていてもよい炭素数1〜5のメチ
レン鎖を示す。)で表されるアミン類、(E)Pip−
2 −NH2 (Pipはピペラジニル基を示し、R2
低級アルキル基で置換されていてもよい炭素数1〜4メ
チレン鎖を示す。)で表されるピペラジン化合物および
(F)ホモピペラジン(HP)の群から選ばれるアミン
化合物(Y)1〜25重量部の混合水溶液と大気圧下の
燃焼排ガスとを接触させて、前記燃焼排ガス中のCO2
を除去する方法である。
That is, the present invention has 100 parts by weight of an amine compound (X) having an alcoholic hydroxyl group in the molecule and a primary amino group bonded to a tertiary carbon atom having two unsubstituted alkyl groups. And (A) ethyleneamines (excluding ethylenediamine), (B) iminobispropylamine (IBPA), (C) diaminotoluenes, (D) general formula R 1 (CH 2 NH 2 ) 2 ( R 1 represents a methylene chain having 1 to 5 carbon atoms which may be substituted with a lower alkyl group.), (E) Pip-
A piperazine compound represented by R 2 —NH 2 (Pip represents a piperazinyl group, and R 2 represents a methylene chain having 1 to 4 carbon atoms which may be substituted with a lower alkyl group) and (F) homopiperazine ( amine compound selected from the group consisting of HP) (Y) by contacting the mixed aqueous solution of 1 to 25 parts by weight and the combustion exhaust gas under atmospheric pressure, CO 2 of the combustion exhaust gas
Is a method of removing.

【0017】[0017]

【作用】本発明によりアミン化合物(X)に比較的少量
のアミン化合物(Y)を組み合わせて用いることによ
り、アミン化合物(X)のCO2 吸収速度が促進される
という効果がある。アミン化合物(Y)は各々単独で用
いられるほか、二種以上を組み合わせてアミン化合物
(X)に混合して用いることも可能である。
According to the present invention, the use of the amine compound (X) in combination with a relatively small amount of the amine compound (Y) has the effect of accelerating the CO 2 absorption rate of the amine compound (X). The amine compound (Y) may be used alone, or two or more kinds may be combined and used by mixing with the amine compound (X).

【0018】本発明で用いる分子内にアルコール性の水
酸基を有し、二個の非置換アルキル基を有する第三級炭
素原子に結合した第一アミノ基を有する化合物(X)に
おいて、非置換のアルキル基としては互いに同一または
異なっていてもよく、それぞれメチル基またはエチル
基、プロピル基などが例示されるが、双方ともメチル基
であることが好ましい。この(X)に属する化合物とし
ては、2−アミノ−2−メチル−1−プロパノール(A
MP)、3−アミノ−3−メチル−2−ペンタノール、
2,3−ジメチル−3−アミノ−1−ブタノール、2−
アミノ−2−エチル−1−ブタノール、2−アミノ−2
−メチル−3−ペンタノール、2−アミノ−2−メチル
−1−ブタノール、3−アミノ−3−メチル−1−ブタ
ノール、3−アミノ−3−メチル−2−ブタノール、2
−アミノ−2,3−ジメチル−3−ブタノール、2−ア
ミノ−2,3−ジメチル−1−ブタノール、2−アミノ
−2−メチル−1−ペンタノールなどが例示され、好ま
しくはAMPである。
In the compound (X) having an alcoholic hydroxyl group in the molecule and a primary amino group bonded to a tertiary carbon atom having two unsubstituted alkyl groups, which is used in the present invention, The alkyl groups may be the same as or different from each other, and examples thereof include a methyl group, an ethyl group, a propyl group and the like, but both are preferably a methyl group. Examples of the compound belonging to (X) include 2-amino-2-methyl-1-propanol (A
MP), 3-amino-3-methyl-2-pentanol,
2,3-dimethyl-3-amino-1-butanol, 2-
Amino-2-ethyl-1-butanol, 2-amino-2
-Methyl-3-pentanol, 2-amino-2-methyl-1-butanol, 3-amino-3-methyl-1-butanol, 3-amino-3-methyl-2-butanol, 2
-Amino-2,3-dimethyl-3-butanol, 2-amino-2,3-dimethyl-1-butanol, 2-amino-2-methyl-1-pentanol and the like are exemplified, and AMP is preferable.

【0019】本発明で用いるアミン化合物(Y)のう
ち、(A)エチレンアミン類としてはジエチレントリア
ミン、トリエチレンテトラミン(TETA)、テトラエ
チレンペンタミン(TEPA)などを例示することがで
きる。
Among the amine compounds (Y) used in the present invention, examples of (A) ethyleneamines include diethylenetriamine, triethylenetetramine (TETA) and tetraethylenepentamine (TEPA).

【0020】本発明で用いる(C)ジアミノトルエン
(DAT)類としては、2,3−DAT、2,4−DA
T、2,5−DAT、2,6−DAT、3,4−DA
T、3,5−DATを例示することができる。
The (C) diaminotoluene (DAT) used in the present invention includes 2,3-DAT and 2,4-DA.
T, 2,5-DAT, 2,6-DAT, 3,4-DA
T, 3,5-DAT can be illustrated.

【0021】本発明で用いる(D)一般式R1 (CH2
NH2 2 で表されるアミン類において、R1 は低級ア
ルキル基で置換されていてもよい炭素数1〜5のメチレ
ン鎖を示す。前記低級アルキル基としては、好ましくは
炭素数1〜3のメチル基、エチル基、プロピル基などを
例示することができる。好ましい化合物としては2,2
−ジメチル−1,3−ジアミノプロパン(DMDA
P)、ヘキサメチレンジアミン(HMDA)をあげるこ
とができる。
The general formula (D) used in the present invention is R 1 (CH 2
In the amines represented by NH 2 ) 2 , R 1 represents a methylene chain having 1 to 5 carbon atoms which may be substituted with a lower alkyl group. Preferred examples of the lower alkyl group include a methyl group having 1 to 3 carbon atoms, an ethyl group and a propyl group. 2,2 as a preferred compound
-Dimethyl-1,3-diaminopropane (DMDA
P) and hexamethylenediamine (HMDA) can be mentioned.

【0022】本発明で用いる(E)Pip−R2 −NH
2 で表されるピペラジン化合物において、炭素数1〜4
のメチレン鎖としては、好ましくは炭素数1〜2のメチ
レン鎖であり、置換されていてもよい好ましい低級アル
キル基としてはR2 で例示したものを例示できる。好ま
しくはピペラジン化合物としてはN−(2−アミノエチ
ル)ピペラジン(AEP)を例示することができる。
(E) Pip-R 2 -NH used in the present invention
1 to 4 carbon atoms in the piperazine compound represented by 2
The methylene chain is preferably a methylene chain having 1 to 2 carbon atoms, and examples of the optionally substituted lower alkyl group include those exemplified for R 2 . Preferred examples of the piperazine compound include N- (2-aminoethyl) piperazine (AEP).

【0023】アミン化合物(X)と(Y)の混合割合
は、アミン化合物(X)100重量部に対し、アミン化
合物(Y)が1〜25重量部の範囲、好ましくは1〜1
0重量部の範囲、さらに好ましくは1〜6重量部の範囲
である。
The mixing ratio of the amine compounds (X) and (Y) is in the range of 1 to 25 parts by weight, preferably 1 to 1 part by weight, with respect to 100 parts by weight of the amine compound (X).
It is in the range of 0 parts by weight, and more preferably in the range of 1 to 6 parts by weight.

【0024】混合水溶液(以下、「吸収液」とも称
す。)中のアミン化合物(X)の濃度は通常15〜65
重量%である。燃焼排ガスとの接触時の混合水溶液の温
度は通常30〜70℃の範囲である。また、本発明で用
いる混合水溶液には、必要に応じて腐蝕防止剤、劣化防
止剤などが加えられる。さらに、本発明における大気圧
下とは燃焼排ガスを供給するためブロアなどを作用させ
る程度の大気圧近傍の圧力範囲は含まれるものである。
The concentration of the amine compound (X) in the mixed aqueous solution (hereinafter, also referred to as "absorption liquid") is usually 15 to 65.
% By weight. The temperature of the mixed aqueous solution at the time of contact with the combustion exhaust gas is usually in the range of 30 to 70 ° C. In addition, a corrosion inhibitor, a deterioration inhibitor, etc. may be added to the mixed aqueous solution used in the present invention, if necessary. Furthermore, the term "under atmospheric pressure" in the present invention includes a pressure range in the vicinity of atmospheric pressure to the extent that a blower or the like acts to supply combustion exhaust gas.

【0025】本発明の燃焼排ガス中のCO2 を除去する
方法で採用できるプロセスは特に限定されないが、その
一例について図1によって説明する。図1では主要設備
のみ示し、付属設備は省略した。
The process that can be used in the method for removing CO 2 in the combustion exhaust gas of the present invention is not particularly limited, but an example thereof will be described with reference to FIG. In FIG. 1, only the main equipment is shown and the auxiliary equipment is omitted.

【0026】図1において、1は脱CO2 塔、2は下部
充填部、3は上部充填部またはトレイ、4は脱CO2
燃焼排ガス供給口、5は脱CO2 燃焼排ガス排出口、6
は吸収液供給口、7はノズル、8は必要に応じて設けら
れる燃焼排ガス冷却器、9はノズル、10は充填部、1
1は加湿冷却水循環ポンプ、12は補給水供給ライン、
13はCO2 を吸収した吸収液排出ポンプ、14は熱交
換器、15は吸収液再生(以下、「再生」とも略称)
塔、16はノズル、17は下部充填部、18は再生加熱
器(リボイラー)、19は上部充填部、20は還流水ポ
ンプ、21はCO 2 分離器、22は回収CO2 排出ライ
ン、23は再生塔還流冷却器、24はノズル、25は再
生塔還流水供給ライン、26は燃焼排ガス供給ブロア、
27は冷却器、28は再生塔還流水供給口である。
In FIG. 1, 1 is CO-free2Tower 2 is lower
Filling unit, 3 is an upper filling unit or tray, and 4 is CO-free2Tower
Combustion exhaust gas supply port, 5 de-CO2Combustion exhaust gas outlet, 6
Is an absorption liquid supply port, 7 is a nozzle, and 8 is provided as needed.
Combustion exhaust gas cooler, 9 is a nozzle, 10 is a filling part, 1
1 is a humidification cooling water circulation pump, 12 is a makeup water supply line,
13 is CO2Absorbing liquid discharge pump that absorbed
Exchanger, 15 is absorption liquid regeneration (hereinafter also referred to as "regeneration")
Tower, 16 nozzle, 17 lower filling part, 18 regenerative heating
Vessel (reboiler), 19 is the upper filling part, 20 is the reflux water port
Pump, 21 is CO 2Separator, 22 is recovery CO2Emission lie
, 23 is a regenerator reflux condenser, 24 is a nozzle, and 25 is a re-cooler.
Raw tower reflux water supply line, 26 is a combustion exhaust gas supply blower,
Reference numeral 27 is a cooler, and 28 is a regeneration tower reflux water supply port.

【0027】図1において、燃焼排ガスは燃焼排ガス供
給ブロア26により燃焼排ガス冷却器8に押込められ、
ノズル9からの加湿冷却水と充填部10で接触し、加湿
冷却され、脱CO2 塔燃焼排ガス供給口4を通って脱C
2 塔1へ導かれる。燃焼排ガスと接触した加湿冷却水
は燃焼排ガス冷却器8の下部に溜り、ポンプ1によりノ
ズル9へ循環使用される。加湿冷却水は燃焼排ガスを加
湿冷却することにより徐々に失われるので、補給水供給
ライン12により補充される。
In FIG. 1, the combustion exhaust gas is pushed into the combustion exhaust gas cooler 8 by the combustion exhaust gas supply blower 26,
The humidified cooling water from the nozzle 9 comes into contact with the filling section 10, is humidified and cooled, and is decarbonized through the CO 2 tower combustion exhaust gas supply port 4.
It is led to the O 2 tower 1. The humidified cooling water that has come into contact with the combustion exhaust gas collects in the lower portion of the combustion exhaust gas cooler 8 and is circulated to the nozzle 9 by the pump 1. Since the humidified cooling water is gradually lost by humidifying and cooling the combustion exhaust gas, it is replenished by the makeup water supply line 12.

【0028】脱CO2 塔1に押込められた燃焼排ガスは
ノズル7から供給される一定濃度の吸収液と下部充填部
2で向流接触させられ、燃焼排ガス中のCO2 は吸収液
により吸収除去され、脱CO2 燃焼排ガスは上部充填部
3へと向う。脱CO2 塔1に供給される吸収液はCO2
を吸収し、その吸収による反応熱のため、通常供給口6
における温度よりも高温となり、CO2 を吸収した吸収
液排出ポンプ13により熱交換器14に送られ、加熱さ
れ、再生塔5へ導かれる。再生された吸収液の温度調節
は熱交換器14あるいは必要に応じて熱交換器14と吸
収液供給口6の間に設けられる冷却器27により行うこ
とができる。
The combustion exhaust gas pushed into the CO 2 removal tower 1 is brought into countercurrent contact with the absorbing liquid having a constant concentration supplied from the nozzle 7 in the lower filling section 2, so that CO 2 in the combustion exhaust gas is absorbed by the absorbing liquid. The removed CO 2 -exhausted exhaust gas flows to the upper filling section 3. The absorption liquid supplied to the CO 2 removal tower 1 is CO 2
Is normally absorbed by the reaction heat due to the absorption of
The temperature becomes higher than the temperature in the above, and is sent to the heat exchanger 14 by the absorption liquid discharge pump 13 that has absorbed CO 2 , is heated, and is guided to the regeneration tower 5. The temperature of the regenerated absorption liquid can be adjusted by the heat exchanger 14 or, if necessary, the cooler 27 provided between the heat exchanger 14 and the absorption liquid supply port 6.

【0029】吸収液再生塔15では、再生加熱器18に
よる加熱により下部充填部17で吸収液が再生され、熱
交換器14により冷却され脱CO2 塔1へ戻される。吸
収液再生塔15の上部において、吸収液から分離された
CO2 はノズル24より供給される還流水と上部充填部
19で接触し、再生塔還流冷却器23により冷却され、
CO2 分離器21にてCO2 に同伴した水蒸気が凝縮し
た還流水と分離され、回収CO2 排出ライン、22より
CO2 回収工程へ導かれる。還流水の一部は還流水ポン
プ20で、大部分は再生塔15へ還流され、一部は再生
塔還流水供給ライン25を経て脱CO2 塔1の再生塔還
流水供給口28に供給される。この再生塔還流水には微
量の吸収液が含まれているので、脱CO2 塔1の上部充
填部3で排ガスと接触し、排ガスに含まれる微量のCO
2 の除去に貢献する。
In the absorption liquid regenerator 15, the absorption liquid is regenerated in the lower filling section 17 by heating by the regeneration heater 18, cooled by the heat exchanger 14 and returned to the CO 2 removal column 1. In the upper part of the absorption liquid regenerator 15, the CO 2 separated from the absorption liquid comes into contact with the reflux water supplied from the nozzle 24 in the upper filling part 19, and is cooled by the regenerator reflux condenser 23.
In the CO 2 separator 21, the water vapor entrained in CO 2 is separated from the condensed reflux water, and is guided to the CO 2 recovery process from the recovered CO 2 discharge line 22. A part of the reflux water is recycled to the regeneration tower 15 by the reflux water pump 20, and a part of the reflux water is supplied to the regeneration tower reflux water supply port 28 of the CO 2 removal tower 1 through the regeneration tower reflux water supply line 25. It Since the recirculation tower reflux water contains a small amount of the absorbing liquid, it comes into contact with the exhaust gas in the upper filling portion 3 of the CO 2 removal tower 1 and a small amount of the CO contained in the exhaust gas.
Contribute to the removal of 2 .

【0030】[0030]

【実施例】以下、実施例により本発明を具体的に説明す
る。 (実施例1〜9、比較例1)恒温槽内に設置したガラス
製反応容器にAMPの30重量%水溶液50mlを入れ、
さらに表1に記載のアミン化合物(Y)を前記AMP水
溶液に対して1.5重量%の割合で混合した。温度40
℃で攪拌しながら、試験ガスを大気圧下1リットル/分
の流速で吸収液に通した。試験ガスとしてはCO2 10
モル%、O23モル%、N2 87モル%の組成を有する
40℃のモデル燃焼排ガスを用いた。試験ガスを通し続
け、出入りガスのCO2 濃度が等しくなった時点におけ
る吸収液に含まれるCO2 をCO2 分析計(全有機炭素
計)を用いて測定し、CO2飽和吸収量を求めた。また
吸収試験の初期における反応容器出口のガス中のCO 2
濃度(出口CO2 初期濃度)を求めた。この出口CO2
初期濃度が小さいほど吸収液のCO2 吸収速度が大きい
といえる。
EXAMPLES The present invention will be specifically described below with reference to examples.
It (Examples 1 to 9 and Comparative Example 1) Glass installed in a constant temperature bath
Put 50 ml of 30% by weight aqueous solution of AMP into the reaction vessel,
Furthermore, the amine compound (Y) shown in Table 1 was added to the AMP water.
The solution was mixed at a ratio of 1.5% by weight. Temperature 40
Test gas at 1 liter / min under atmospheric pressure while stirring at ℃
Through the absorbent at a flow rate of. CO as test gas210
Mol%, O23 mol%, N2It has a composition of 87 mol%.
A model combustion exhaust gas at 40 ° C. was used. Pass test gas
Ke, CO in and out gas2Only when the concentrations are equal
CO contained in the absorption liquid2CO2Analyzer (total organic carbon
CO) to measure CO2The saturated absorption amount was calculated. Also
CO in the gas at the outlet of the reaction vessel at the initial stage of the absorption test 2
Concentration (exit CO2The initial concentration) was determined. This exit CO2
The smaller the initial concentration, the more CO2Absorption rate is high
Can be said.

【0031】比較例1として、AMP単独の吸収液によ
る吸収試験を行った。得られたCO 2 飽和吸収量および
出口CO2 初期濃度の結果を表1に示した。
As Comparative Example 1, an absorption liquid containing only AMP was used.
Absorption test. CO obtained 2Saturated absorption and
Exit CO2The results of the initial concentration are shown in Table 1.

【0032】表1から、本発明の吸収液を用いると出口
CO2 初期濃度が比較例1の場合に比べ改善されている
ことが分かる。
It can be seen from Table 1 that the use of the absorbing solution of the present invention improves the initial concentration of CO 2 at the outlet as compared with the case of Comparative Example 1.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【発明の効果】以上詳細に述べたごとく、本発明の方法
により大気圧下の燃焼排ガスに特定のアミン化合物
(X)と特定のアミン化合物(Y)の混合水溶液を吸収
液として用いることにより、アミン化合物(X)を単独
で用いる場合よりも、CO2 の吸収速度の向上が達成さ
れる。
As described above in detail, by using the mixed aqueous solution of the specific amine compound (X) and the specific amine compound (Y) as the absorbing liquid in the combustion exhaust gas under the atmospheric pressure by the method of the present invention, The CO 2 absorption rate is improved as compared with the case where the amine compound (X) is used alone.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で採用できる燃焼排ガス中のCO2 除去
するプロセスの一例の説明図
FIG. 1 is an explanatory view of an example of a process for removing CO 2 in combustion exhaust gas that can be adopted in the present invention.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C01B 31/20 B (72)発明者 飯島 正樹 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社本社内 (72)発明者 光岡 薫明 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI Technical indication location C01B 31/20 B (72) Inventor Masaki Iijima 2-5-1, Marunouchi, Chiyoda-ku, Tokyo Sanryo Heavy Industries Co., Ltd. In-house (72) Inventor Kaoru Mitsuoka 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture Mitsubishi Heavy Industries Ltd. Hiroshima Research Laboratory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 分子内にアルコール性の水酸基を有し、
二個の非置換アルキル基を有する第三級炭素原子に結合
した第一アミノ基を有するアミン化合物(X)100重
量部と、(A)エチレンアミン類(但し、エチレンジア
ミンを除く。)、(B)イミノビスプロピルアミン、
(C)ジアミノトルエン類、(D)一般式R1 (CH2
NH2 2 (R1 は低級アルキル基で置換されていても
よい炭素数1〜5のメチレン鎖を示す。)で表されるア
ミン類、(E)Pip−R2 −NH2 (Pipはピペラ
ジニル基を示し、R2 は低級アルキル基で置換されてい
てもよい炭素数1〜4メチレン鎖を示す。)で表される
ピペラジン化合物および(F)ホモピペラジンの群から
選ばれるアミン化合物(Y)1〜25重量部の混合水溶
液と大気圧下の燃焼排ガスとを接触させて、前記燃焼排
ガス中のCO2 を除去する方法。
1. Having an alcoholic hydroxyl group in the molecule,
100 parts by weight of an amine compound (X) having a primary amino group bonded to a tertiary carbon atom having two unsubstituted alkyl groups, (A) ethylene amines (excluding ethylene diamine), (B). ) Iminobispropylamine,
(C) diaminotoluenes, (D) general formula R 1 (CH 2
NH 2 ) 2 (R 1 represents a methylene chain having 1 to 5 carbon atoms which may be substituted with a lower alkyl group), (E) Pip-R 2 —NH 2 (Pip is An amine compound selected from the group consisting of a piperazinyl group, R 2 is a methylene chain having 1 to 4 carbon atoms which may be substituted with a lower alkyl group, and (F) a homopiperazine (Y ) A method of removing 1 to 25 parts by weight of the mixed aqueous solution and the combustion exhaust gas under atmospheric pressure to remove CO 2 from the combustion exhaust gas.
JP6038265A 1993-10-06 1994-03-09 Method for removing carbon dioxide in flue gas Expired - Lifetime JP2871447B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP6038265A JP2871447B2 (en) 1994-03-09 1994-03-09 Method for removing carbon dioxide in flue gas
EP94115308A EP0647462A1 (en) 1993-10-06 1994-09-28 Method for removing carbon dioxide from combustion exhaust gas
DE69428057T DE69428057T2 (en) 1993-10-06 1994-09-28 Process for the separation of carbon dioxide from combustion gases
EP98109477A EP0875280B1 (en) 1993-10-06 1994-09-28 Method for removing carbon dioxide from combustion exhaust gas
DE69432376T DE69432376T2 (en) 1994-03-09 1994-09-28 Process for the separation of carbon dioxide from combustion gases
EP00118995A EP1064980B1 (en) 1993-10-06 1994-09-28 Method for removing carbon dioxide from combustion exhaust gas
EP00119344A EP1062999A3 (en) 1993-10-06 1994-09-28 Method for removing carbon dioxide from combustion exhaust gas
EP00119343A EP1062998B1 (en) 1993-10-06 1994-09-28 Method for removing carbon dioxide from combustion exhaust gas
CN94112801A CN1057478C (en) 1993-10-06 1994-10-06 Method for removing carbon dioxide from combustion exhaust gas
US08/660,837 US5700437A (en) 1993-10-06 1996-06-10 Method for removing carbon dioxide from combustion exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6038265A JP2871447B2 (en) 1994-03-09 1994-03-09 Method for removing carbon dioxide in flue gas

Publications (2)

Publication Number Publication Date
JPH07246314A true JPH07246314A (en) 1995-09-26
JP2871447B2 JP2871447B2 (en) 1999-03-17

Family

ID=12520497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6038265A Expired - Lifetime JP2871447B2 (en) 1993-10-06 1994-03-09 Method for removing carbon dioxide in flue gas

Country Status (2)

Country Link
JP (1) JP2871447B2 (en)
DE (1) DE69432376T2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006167520A (en) * 2004-12-13 2006-06-29 Mitsubishi Heavy Ind Ltd Absorbing liquid and apparatus and method for removing carbon dioxide or hydrogen sulfide in gas by using absorbing liquid
WO2007141884A1 (en) * 2006-06-06 2007-12-13 Mitsubishi Heavy Industries, Ltd. Absorbent liquid, and apparatus and method for removing co2 or h2s from gas with use of absorbent liquid
JP2011152542A (en) * 2011-04-18 2011-08-11 Mitsubishi Heavy Ind Ltd Absorbing liquid, and apparatus and method of removing co2 or h2s from gas using the same
JP2011525422A (en) * 2008-06-23 2011-09-22 ビーエーエスエフ ソシエタス・ヨーロピア Method for removal of acid gases from absorbent and fluid streams, in particular exhaust gas

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007062413B3 (en) * 2007-12-20 2009-09-10 Conera Process Solutions Gmbh Process and apparatus for reprocessing CO2-containing exhaust gases

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006167520A (en) * 2004-12-13 2006-06-29 Mitsubishi Heavy Ind Ltd Absorbing liquid and apparatus and method for removing carbon dioxide or hydrogen sulfide in gas by using absorbing liquid
WO2007141884A1 (en) * 2006-06-06 2007-12-13 Mitsubishi Heavy Industries, Ltd. Absorbent liquid, and apparatus and method for removing co2 or h2s from gas with use of absorbent liquid
US8231719B2 (en) 2006-06-06 2012-07-31 Mitsubishi Heavy Industries, Ltd. Absorbent liquid, and apparatus and method for removing CO2 or H2S from gas with use of absorbent liquid
US8506683B2 (en) 2006-06-06 2013-08-13 Mitsubishi Heavy Industries, Ltd. Absorbent liquid, and apparatus and method for removing CO2 or H2S from gas with use of absorbent liquid
JP2011525422A (en) * 2008-06-23 2011-09-22 ビーエーエスエフ ソシエタス・ヨーロピア Method for removal of acid gases from absorbent and fluid streams, in particular exhaust gas
JP2011152542A (en) * 2011-04-18 2011-08-11 Mitsubishi Heavy Ind Ltd Absorbing liquid, and apparatus and method of removing co2 or h2s from gas using the same

Also Published As

Publication number Publication date
DE69432376T2 (en) 2003-10-23
DE69432376D1 (en) 2003-04-30
JP2871447B2 (en) 1999-03-17

Similar Documents

Publication Publication Date Title
US5700437A (en) Method for removing carbon dioxide from combustion exhaust gas
KR0123107B1 (en) Method for removing carbon dioxide from combustion exhaust gas
JP2871334B2 (en) Method of removing carbon dioxide from flue gas
JP5230080B2 (en) Absorption liquid, CO2 removal apparatus and method
JP5215595B2 (en) Absorbing liquid, CO2 or H2S removing apparatus and method using absorbing liquid
US5618506A (en) Process for removing carbon dioxide from gases
JP4634384B2 (en) Absorption liquid, CO2 and / or H2S removal method and apparatus
JP2895325B2 (en) Method for removing carbon dioxide in flue gas
JP3761960B2 (en) Method for removing carbon dioxide in gas
JP2871335B2 (en) Method for removing carbon dioxide in flue gas
JP3197183B2 (en) Method for removing carbon dioxide in flue gas
JP5030371B2 (en) Absorbing liquid, apparatus and method for removing CO2 and / or H2S using absorbing liquid
JP2871422B2 (en) Method for removing carbon dioxide in flue gas
JP3197173B2 (en) Method of removing carbon dioxide from flue gas
JP2006150298A (en) Absorption liquid, and co2 or h2s removal apparatus and method employing it
JPH08257355A (en) Process for removing carbon dioxide in gas
JPH07246314A (en) Method for removing carbon dioxide in exhaust combustion gas
JP5039276B2 (en) Absorbing liquid, apparatus and method for removing CO2 or H2S in gas using absorbing liquid
JPH08257353A (en) Process for removing carbon dioxide in combustion exhaust gas
JP3233809B2 (en) Method for removing carbon dioxide in flue gas
JPH05237341A (en) Method for removing carbon dioxide in waste combustion gas
JP3426685B2 (en) Method for removing carbon dioxide in flue gas
JPH07313840A (en) Method for removing carbon dioxide in waste combustion gas
JP2007000702A (en) Liquid absorbent, and device and method for removing co2 or h2s, or both
JP2011152542A (en) Absorbing liquid, and apparatus and method of removing co2 or h2s from gas using the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080108

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090108

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100108

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110108

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110108

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120108

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term