Nothing Special   »   [go: up one dir, main page]

JPH07230956A - Plasma cvd device - Google Patents

Plasma cvd device

Info

Publication number
JPH07230956A
JPH07230956A JP6021256A JP2125694A JPH07230956A JP H07230956 A JPH07230956 A JP H07230956A JP 6021256 A JP6021256 A JP 6021256A JP 2125694 A JP2125694 A JP 2125694A JP H07230956 A JPH07230956 A JP H07230956A
Authority
JP
Japan
Prior art keywords
chamber
substrate
plasma
lower electrode
processing chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6021256A
Other languages
Japanese (ja)
Inventor
Tomohiko Takeda
智彦 竹田
Kiyoshi Takahashi
高橋  清
Satoshi Sato
敏 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to JP6021256A priority Critical patent/JPH07230956A/en
Publication of JPH07230956A publication Critical patent/JPH07230956A/en
Pending legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To keep the inner wall of a plasma generating chamber uniform in temperature, to improve the film quality in a CVD process, and to remarkably prolong a device in continuous operating time. CONSTITUTION:An inner chamber 56 is provided inside a processing chamber 9, and a plasma generating chamber 26 is provided inside the inner chamber 56, so that a plasma CVD device is of double structure. An empty space is provided between the inner wall of the processing chamber 9 and the outer wall of the inner chamber 56 where a heat insulating plate 12 is provided, and the inside of the plasma generating chamber 26 is covered with an insulator of quartz or the like composed of a side wall cover 23, an upper electrode cover 22, and a lower electrode cover 24.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体素子などの製造
工程において各種の薄膜を基板に形成するために使用さ
れるプラズマCVD装置に係り、特にプラズマ発生室を
均一に加熱することにより膜形成中に発生するパウダの
プラズマ発生室への付着を抑制し、それによって膜中へ
の欠陥因子の取り込みを防止し、連続運転時間の延長を
可能にする2重室構造平行平板形プラズマCVD装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma CVD apparatus used for forming various thin films on a substrate in the process of manufacturing semiconductor devices and the like, and particularly to film formation by uniformly heating a plasma generating chamber. The present invention relates to a parallel chamber plasma CVD apparatus with a double chamber structure, which suppresses the adhesion of powder generated in the plasma to the plasma generation chamber, thereby preventing the incorporation of defect factors into the film and extending the continuous operation time. .

【0002】[0002]

【従来の技術】半導体製造工程の1つにシリコン基板表
面に所用の成膜をし、或いは液晶表示装置の製造の工程
の1つにガラス基板上に成膜を行う工程がある。これ
は、気密な処理室に基板を装入し、該処理室に設けられ
た1対の電極間に高周波電力を印加すると共に前記処理
室内に反応ガスを供給してプラズマを発生させ、基板表
面に薄膜を成膜させるものである。従来のプラズマCV
D装置では気密な処理室内の1面に基板が設置される一
方の電極があり、該電極に対峙して気密な処理室内の他
方の面に他方の電極が設けられ、基板が設置される電極
をヒータで加熱し、基板を所定の温度に保持し、これら
1対の電極間にプラズマを発生させてCVD処理を行っ
ていた。
2. Description of the Related Art A semiconductor manufacturing process includes forming a desired film on a surface of a silicon substrate, or one of manufacturing processes of a liquid crystal display device includes forming a film on a glass substrate. This is because a substrate is loaded in an airtight processing chamber, high-frequency power is applied between a pair of electrodes provided in the processing chamber, and a reaction gas is supplied into the processing chamber to generate plasma, thereby generating a plasma on the substrate surface. A thin film is formed on. Conventional plasma CV
In the apparatus D, there is one electrode on which the substrate is installed on one surface in the airtight processing chamber, and the other electrode is provided on the other surface in the airtight processing chamber facing the electrode, and the electrode on which the substrate is installed. Was heated by a heater to keep the substrate at a predetermined temperature, and plasma was generated between the pair of electrodes to perform the CVD process.

【0003】前記CVD処理は、気相のガス分子を分解
し、基板上に薄膜として堆積させるものである。ところ
が、薄膜は基板上だけでなく基板に対峙する電極や処理
室内壁にも成膜する。電極や処理室内壁に堆積した成膜
は、やがて剥離しフレークとなって、処理中の基板上に
付着して基板を汚染する。基板が前記堆積物で汚染され
ると、基板の成膜に重大な欠陥を生じさせる。このた
め、従来より処理室内は定期的に清掃されていた。
The CVD process decomposes gas phase gas molecules and deposits them as a thin film on a substrate. However, the thin film is formed not only on the substrate but also on the electrode facing the substrate and the inner wall of the processing chamber. The film deposited on the electrodes and the inner wall of the processing chamber eventually peels off to form flakes, which adhere to the substrate being processed and contaminate the substrate. When the substrate is contaminated with the deposit, it causes serious defects in the film formation of the substrate. Therefore, conventionally, the processing chamber has been regularly cleaned.

【0004】ところが、清掃作業は処理室を分解して行
わなければならず、作業は煩雑であると共に時間がかか
っていた。従って、この清掃作業が装置の稼働率を低下
させる原因となっていた。又、プラズマは限定された空
間で発生させると、均一なプラズマが得られることが知
られており、プラズマを発生する空間は必要最小限に限
定することが要求されている。斯かる問題に対し、基板
を収納し、且つ、プラズマを限定した空間で発生させる
ため、処理室内に更にプラズマ発生室を設けて2重室と
し、前記プラズマ発生室を清掃可能とし清掃作業の容易
化を図る様にしたプラズマCVD装置が発案されてい
る。
However, the cleaning work must be performed by disassembling the processing chamber, and the work is complicated and time-consuming. Therefore, this cleaning work has been a cause of lowering the operating rate of the apparatus. Further, it is known that uniform plasma can be obtained by generating plasma in a limited space, and it is required that the space for generating plasma is limited to a necessary minimum. In order to address such a problem, in order to store the substrate and generate plasma in a limited space, a plasma generation chamber is further provided in the processing chamber to form a double chamber, and the plasma generation chamber can be cleaned to facilitate cleaning work. A plasma CVD apparatus has been proposed which is designed to achieve high efficiency.

【0005】又、従来の平行平板形プラズマCVD装置
では、1対の電極のうち基板を設置する一方の電極をヒ
ータによって加熱しているため、これと対峙する他方の
電極および処理室内壁の温度が基板に比べて低い状態に
ある。これらの部分のうち比較的温度の高い部分には、
基板に比べて固着力の弱い膜が形成され、温度の低い部
分には、パウダと呼ばれる粉状の反応生成物が付着す
る、これらの堆積物による問題は前述の通りである。斯
かる問題に対しては1対の電極を両者共ヒータによって
加熱することにより、ホットウォール構造を形成し、電
極面にCVD生成物を強固に形成し剥離による塵埃粒子
の発生を抑制し、装置の連続運転時間の延長を図る様に
したプラズマCVD装置が発案されている。この発案を
取り入れたホットウォール形2重室構造のプラズマCV
D装置としては、図2の様なものがある。
Further, in the conventional parallel plate type plasma CVD apparatus, since one electrode of the pair of electrodes on which the substrate is installed is heated by the heater, the temperature of the other electrode facing the electrode and the temperature of the inner wall of the processing chamber. Is lower than the substrate. Of these parts, the part with relatively high temperature,
As described above, the problem due to these deposits, in which a film having a weaker sticking force than that of the substrate is formed, and powdery reaction products called powder adhere to the low temperature portion. To solve such a problem, a pair of electrodes are heated by both heaters to form a hot wall structure, a CVD product is strongly formed on the electrode surface, and dust particles generated by peeling are suppressed. A plasma CVD apparatus has been devised so as to extend the continuous operation time. Plasma CV with a hot-wall double chamber structure incorporating this idea
An example of the D device is shown in FIG.

【0006】[0006]

【発明が解決しようとする課題】上記図2に示す従来装
置にあっては、処理室9内にプラズマ発生室26を設
け、上電極プレート21及び下電極プレート28を上電
極ヒータ19および下電極ヒータ29により加熱を行っ
ても、枠体43から処理室蓋1を経て水冷フランジ52
に到る熱の逃げが大きいため、側壁カバー23の部分お
よび上電極カバー22の周辺温度は低くなり、該部分に
形成された膜が剥離したり、付着したパウダが離脱する
などの現象が発生していた。
In the conventional apparatus shown in FIG. 2, the plasma generating chamber 26 is provided in the processing chamber 9, and the upper electrode plate 21 and the lower electrode plate 28 are connected to the upper electrode heater 19 and the lower electrode. Even if heating is performed by the heater 29, the water cooling flange 52 passes from the frame body 43 through the processing chamber lid 1.
Since the heat that reaches the side is large, the ambient temperature of the side wall cover 23 and the upper electrode cover 22 becomes low, and the film formed on the side cover 23 peels off or the adhered powder detaches. Was.

【0007】また、単室構造のプラズマCVD装置で
は、フレーク発生やパウダの付着、離脱が起こりやすい
低温部分である処理室9の側壁が、基板27から比較的
離れた位置にあるため、側壁からフレークやパウダが剥
離、離脱しても基板への影響は少ないと考えられる。し
かしながら、2重室構造のプラズマCVD装置では、装
置の設置面積を含むコストパフォーマンスの点から、2
重室構造にしたことによる処理室9の拡大には限界があ
り、プラズマ発生室26の側壁と基板27の距離を単室
構造のプラズマCVD装置に比べて小さくせざるを得な
い。すなわち、2重構造のプラズマCVD装置において
は、側壁におけるフレーク発生やパウダの付着、離脱
は、基板汚染の点から単室構造の装置よりも問題である
と言える。
In the plasma CVD apparatus having a single-chamber structure, the side wall of the processing chamber 9, which is a low temperature portion where flakes are easily generated and powder is attached and detached, is located relatively far from the substrate 27. Even if flakes and powder are peeled off or separated, it is considered that the influence on the substrate is small. However, in the plasma CVD apparatus having the double chamber structure, from the viewpoint of cost performance including the installation area of the apparatus,
There is a limit to the expansion of the processing chamber 9 due to the double-chamber structure, and the distance between the side wall of the plasma generation chamber 26 and the substrate 27 has to be made smaller than that of a plasma CVD apparatus having a single-chamber structure. That is, it can be said that in the plasma CVD apparatus having the double structure, the generation of flakes on the side wall and the attachment / detachment of powder are more problematic than the single chamber structure apparatus in terms of substrate contamination.

【0008】[0008]

【課題を解決するための手段】本発明は、斯かる実情に
鑑み、2重室構造のプラズマCVD装置におけるプラズ
マ発生室の側壁の温度低下を防ぎ、プラズマ発生室内壁
の温度を均一にすることによって、電極表面および側壁
におけるフレーク発生およびパウダの付着を大幅に抑制
させることができるプラズマCVD装置を提供しようと
するものである。
SUMMARY OF THE INVENTION In view of the above situation, the present invention prevents the temperature of the side wall of the plasma generation chamber in a plasma CVD apparatus having a double chamber structure from decreasing and makes the temperature of the inner wall of the plasma generation chamber uniform. Thus, it is intended to provide a plasma CVD apparatus capable of significantly suppressing flake generation and powder adhesion on the electrode surface and sidewalls.

【0009】即ち、本発明装置は、処理室9内にプラズ
マ発生室26を設けて2重室構造としたプラズマCVD
装置において、処理室9内壁と断熱板12を設けた内室
外壁の間に空間を設け、プラズマ発生室26内部を絶縁
物で覆うことにより、プラズマ発生室26の温度を均一
に保持することを特徴とするものである。
That is, according to the apparatus of the present invention, the plasma generation chamber 26 is provided in the processing chamber 9 to form a double chamber structure.
In the apparatus, a space is provided between the inner wall of the processing chamber 9 and the outer wall of the inner chamber provided with the heat insulating plate 12, and the inside of the plasma generation chamber 26 is covered with an insulating material so that the temperature of the plasma generation chamber 26 can be kept uniform. It is a feature.

【0010】[0010]

【作 用】このような構成とすることにより、プラズマ
発生室26にガス導入口11より反応ガスを供給し、1
対の電極プレート21、28の間に高周波電力を印加し
てプラズマを発生せしめると、該プラズマ発生室26の
温度を均一に保持できるとともに、前記下電極プレート
28に載置した基板27に良質な成膜を施すことにな
る。
[Operation] With such a configuration, the reaction gas is supplied to the plasma generation chamber 26 from the gas inlet 11 and
When high-frequency power is applied between the pair of electrode plates 21 and 28 to generate plasma, the temperature of the plasma generation chamber 26 can be kept uniform, and the substrate 27 mounted on the lower electrode plate 28 is of good quality. A film will be formed.

【0011】[0011]

【実施例】以下、図1を用いて本発明の1実施例を説明
する。処理室9の上面に処理室蓋1を設け、該処理室蓋
1に断熱板12が設置されている。断熱板12と処理室
蓋1の間に形成される間隙には、複数の支持ピン18が
配設されており、該支持ピン18に断熱板12を押しつ
けることで、断熱板12を所定の位置に固定する。断熱
板12の中心に前記処理室蓋1の上面を貫通するガス導
入管10を設け、該ガス導入管10の下端に上電極ヒー
タ19、上電極プレート21を設け、前記ガス導入管1
0、上電極ヒータ19、上電極プレート21は石英等の
絶縁物よりなる、絶縁板14、絶縁板15、絶縁リング
13で絶縁する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIG. A processing chamber cover 1 is provided on the upper surface of the processing chamber 9, and a heat insulating plate 12 is installed on the processing chamber cover 1. A plurality of support pins 18 are arranged in the gap formed between the heat insulating plate 12 and the processing chamber lid 1. By pressing the heat insulating plate 12 against the support pins 18, the heat insulating plate 12 is placed at a predetermined position. Fixed to. The gas introducing pipe 10 penetrating the upper surface of the processing chamber lid 1 is provided at the center of the heat insulating plate 12, and the upper electrode heater 19 and the upper electrode plate 21 are provided at the lower end of the gas introducing pipe 10, and the gas introducing pipe 1 is provided.
0, the upper electrode heater 19, and the upper electrode plate 21 are insulated by an insulating plate 14, an insulating plate 15, and an insulating ring 13 made of an insulating material such as quartz.

【0012】上電極ヒータ19と上電極プレート21と
の間には、ガス分散板20が挿設され、これらによって
形成された間隙とガス導入管10の内部とは連通してい
る。また、ガス分散板20には所要数の分散板ガス供給
孔54が穿設されている。前記ガス導入管10は、ガス
導入フランジ3を介して設けられたガス導入口11に連
通している。ガス導入フランジ3と処理室蓋1の間には
冷却水を流せる構造を具備した水冷フランジ2が設置さ
れ、また、ガス導入フランジ3の上部には水冷フランジ
4が設置され、Oリングシール部のシール材の高温によ
る劣化を防止するため冷却を行っている。
A gas dispersion plate 20 is inserted between the upper electrode heater 19 and the upper electrode plate 21, and the gap formed by these is communicated with the inside of the gas introduction pipe 10. Further, the gas distribution plate 20 is provided with a required number of distribution plate gas supply holes 54. The gas introduction pipe 10 communicates with a gas introduction port 11 provided through a gas introduction flange 3. A water cooling flange 2 having a structure that allows cooling water to flow is installed between the gas introduction flange 3 and the processing chamber lid 1, and a water cooling flange 4 is installed above the gas introduction flange 3 to protect the O-ring seal portion. Cooling is performed to prevent deterioration of the sealing material due to high temperatures.

【0013】断熱板12の下方にプラズマ発生室26を
画成する内室56は、断熱板12の下面に気密に当接し
側壁を構成する枠体43、該枠体43に気密に当接し、
上電極プレート21に対向する下電極プレート28、更
に該下電極プレート28の下面に密着する下電極ヒータ
29から主に構成され、枠体43と断熱板12は通常、
連結したまま使用するが、枠体43、下電極プレート2
8、下電極ヒータ29はそれぞれ上下方向に分離可能と
なっている。
The inner chamber 56 defining the plasma generation chamber 26 below the heat insulating plate 12 is in airtight contact with the lower surface of the heat insulating plate 12 and constitutes a side wall, and the air chamber is in contact with the frame member 43.
The lower electrode plate 28 that faces the upper electrode plate 21 and a lower electrode heater 29 that adheres to the lower surface of the lower electrode plate 28 are mainly configured.
The frame body 43 and the lower electrode plate 2 are used while being connected.
8 and the lower electrode heater 29 are separable vertically.

【0014】枠体43の内側には石英等の絶縁物よりな
る側壁カバー23を設け、該側壁カバー23の上端面に
は石英等の絶縁物からなる上電極カバー22を着脱可能
に設ける。該上電極カバー22には多数の反応ガス分散
孔51を穿設し、また、該上電極カバー22と前記上電
極プレート21との間には若干の間隙を設けてガス溜5
7を形成する。下電極プレート28の中央部は、基板2
7を載置する様になっており、基板27載置部の周囲に
は排気ダクト溝25を刻設し、該排気ダクト溝25に排
気板59を配設し、該排気板59の上面に石英よりなる
排気蓋58を載設する。
A side wall cover 23 made of an insulating material such as quartz is provided inside the frame body 43, and an upper electrode cover 22 made of an insulating material such as quartz is detachably provided on the upper end surface of the side wall cover 23. A large number of reaction gas dispersion holes 51 are formed in the upper electrode cover 22, and a slight gap is provided between the upper electrode cover 22 and the upper electrode plate 21 to form a gas reservoir 5.
Form 7. The central portion of the lower electrode plate 28 is the substrate 2
7, the exhaust duct groove 25 is engraved around the substrate 27 mounting portion, the exhaust plate 59 is disposed in the exhaust duct groove 25, and the exhaust plate 59 is provided on the upper surface of the exhaust plate 59. An exhaust cover 58 made of quartz is placed.

【0015】更に、該排気蓋58の上面に石英等の絶縁
物よりなる下電極カバー24を載設する。また、該排気
板59は、プラズマ発生室26に排気蓋58および下電
極カバー24を介して連通すると共に処理室9内にも連
通する。而して該プラズマ発生室26の内面は全て石英
等の絶縁物よりなる側壁カバー23、上電極カバー2
2、下電極カバー24で覆われることになる。
Further, the lower electrode cover 24 made of an insulating material such as quartz is mounted on the upper surface of the exhaust cover 58. Further, the exhaust plate 59 communicates with the plasma generation chamber 26 via the exhaust lid 58 and the lower electrode cover 24, and also communicates with the inside of the processing chamber 9. The inner surface of the plasma generating chamber 26 is entirely made of an insulating material such as quartz, and the side wall cover 23 and the upper electrode cover 2 are provided.
2. It will be covered with the lower electrode cover 24.

【0016】前記下電極ヒータ29の下方には押圧板3
2を配設し、該下電極ヒータ29は、押圧板32に支柱
35を介して設けられており、位置決めをガイドピン3
0によって行っている。該下電極ヒータ29の下方には
熱反射板31が、反射板止め具41によって押圧板32
に固定されて多重に設けられ、該下電極ヒータ29の下
方側に対して熱絶縁をしている。押圧板32には昇降用
のガイドシャフト34が連設されており、該ガイドシャ
フト34は処理室9の底部を気密に貫通して図示しない
昇降ユニットに連設されている。
A pressing plate 3 is provided below the lower electrode heater 29.
2 is provided, and the lower electrode heater 29 is provided on the pressing plate 32 via the support column 35, and the positioning is performed by the guide pin 3
It is done by 0. A heat reflection plate 31 is provided below the lower electrode heater 29, and a pressing plate 32 is provided by a reflection plate stopper 41.
Is fixed to the lower electrode heater 29 and is heat-insulated with respect to the lower side of the lower electrode heater 29. An elevating guide shaft 34 is connected to the pressing plate 32, and the guide shaft 34 penetrates the bottom of the processing chamber 9 in an airtight manner and is connected to an elevating unit (not shown).

【0017】また、前記下電極プレート28、下電極ヒ
ータ29を貫通する基板支持ピン33が少なくとも3本
配設され、該基板支持ピン33は、処理室9の底部を気
密に貫通して、図示しない昇降ユニットに連設されてい
る。上電極ヒータ19からは、上電極ヒータ用シース線
37および上電極熱電対38が、ガス導入管10上面お
よび該ガス導入管10に設置されたスリーブ固定フラン
ジ8を気密に貫通し上電極加熱用電力の供給および上電
極ヒータ19の温度測定を可能にしている。
Further, at least three substrate support pins 33 penetrating the lower electrode plate 28 and the lower electrode heater 29 are provided. The substrate support pins 33 penetrate the bottom of the processing chamber 9 in an airtight manner and are shown in the drawing. Not connected to the lifting unit. From the upper electrode heater 19, the upper electrode heater sheath wire 37 and the upper electrode thermocouple 38 airtightly penetrate the upper surface of the gas introducing pipe 10 and the sleeve fixing flange 8 installed in the gas introducing pipe 10 for heating the upper electrode. It is possible to supply electric power and measure the temperature of the upper electrode heater 19.

【0018】また、前記下電極ヒータ29からは下電極
ヒータ用シース線39および下電極熱電対40がガイド
シャフト34の内部を連通し、ガイドシャフト34を気
密に貫通して、下電極加熱用電力の供給および下電極ヒ
ータ29の温度測定を可能にしている。
Further, from the lower electrode heater 29, a lower electrode heater sheath wire 39 and a lower electrode thermocouple 40 communicate with the inside of the guide shaft 34, and penetrate the guide shaft 34 in an airtight manner to generate a lower electrode heating power. And the temperature of the lower electrode heater 29 can be measured.

【0019】上記の構成において本実施例の動作を説明
する。処理室9内を図示しない排気系によって排気口4
4から排気し真空にする。上電極ヒータ用シース線37
には図示しない上電極ヒータ電源より電力を供給し、ま
た、図示しない下電極ヒータ電源より下電極ヒータシー
ス線39に電力を供給し、前記下電極カバー24、前記
基板27側壁カバー23及び上電極カバー22が均一な
温度分布となるように各々、上電極ヒータ19および下
電極ヒータ29の温度を一定にたもつ。
The operation of this embodiment having the above configuration will be described. The inside of the processing chamber 9 is exhausted by an exhaust system (not shown).
Evacuate from 4 to vacuum. Upper electrode heater sheath wire 37
Power is supplied from an upper electrode heater power supply (not shown) to the lower electrode heater sheath wire 39 (not shown), and the lower electrode cover 24, the substrate 27 side wall cover 23 and the upper electrode cover are supplied. The temperatures of the upper electrode heater 19 and the lower electrode heater 29 are kept constant so that 22 has a uniform temperature distribution.

【0020】基板27を搬入する場合は、前記ガイドシ
ャフト34、下電極ヒータ29を介して、下電極プレー
ト28を降下させる。この時、基板支持ピン33も降下
する。図示しないゲートバルブを開き、基板搬送口42
を解放して、基板27を乗置する図示しないロボットア
ームを処理室9内に挿入して、前記下電極プレート28
上方に基板27を保持させる。
When the substrate 27 is carried in, the lower electrode plate 28 is lowered via the guide shaft 34 and the lower electrode heater 29. At this time, the substrate support pin 33 also descends. Open a gate valve (not shown) to open the substrate transfer port 42.
And the robot arm (not shown) on which the substrate 27 is placed is inserted into the processing chamber 9, and the lower electrode plate 28
The substrate 27 is held above.

【0021】前記基板支持ピン33を上昇させ、前記下
電極プレート28より上方へ突出させる。該基板支持ピ
ン33の突出により該基板支持ピン33が基板27を支
持する。図示しないロボットアームを後退させ、図示し
ないゲートバルブで前記基板搬送口42を閉塞し、基板
支持ピン33を降下させて前記基板27を前記下電極プ
レート28上に載置する。前記ガイドシャフト34を上
昇させ、前記下電極ヒータ29を介して前記下電極プレ
ート28を前記枠体43に押圧する。
The substrate support pin 33 is raised so as to project upward from the lower electrode plate 28. The protrusion of the substrate support pin 33 supports the substrate 27 by the substrate support pin 33. A robot arm (not shown) is retracted, the substrate transfer port 42 is closed by a gate valve (not shown), and the substrate support pin 33 is lowered to place the substrate 27 on the lower electrode plate 28. The guide shaft 34 is raised, and the lower electrode plate 28 is pressed against the frame body 43 via the lower electrode heater 29.

【0022】前記ガス導入口11より供給された反応ガ
スは、前記ガス導入管10を経て、ガス分散板20、前
記上電極プレート21の反応ガス分散孔55および上電
極カバー22の反応ガス分散孔51で均一に分散されて
前記プラズマ発生室26内に導入される。前記プラズマ
発生室26内に導入された反応ガスは、前記排気ダクト
溝25を経て処理室9内に流出し、更に、前記排気口よ
り排気される。
The reaction gas supplied from the gas introduction port 11 passes through the gas introduction pipe 10 and the gas dispersion plate 20, the reaction gas dispersion hole 55 of the upper electrode plate 21 and the reaction gas dispersion hole of the upper electrode cover 22. It is uniformly dispersed at 51 and introduced into the plasma generation chamber 26. The reaction gas introduced into the plasma generation chamber 26 flows into the processing chamber 9 through the exhaust duct groove 25, and is further exhausted from the exhaust port.

【0023】反応ガスを導入、排気した状態で前記上電
極プレート21、前記下電極プレート28間に高周波電
力を印加し、プラズマ発生室26内にプラズマを発生さ
せ、前記基板27の表面に気相堆積(CVD処理)を行
う。基板27のCVD処理が完了すると、該基板27の
搬入動作の逆を行って基板27の搬出動作を行う。
High-frequency power is applied between the upper electrode plate 21 and the lower electrode plate 28 while the reaction gas is introduced and exhausted, plasma is generated in the plasma generation chamber 26, and a gas phase is formed on the surface of the substrate 27. Deposition (CVD process) is performed. When the CVD process of the substrate 27 is completed, the carrying-in operation of the substrate 27 is reversed to carry out the carrying-out operation of the substrate 27.

【0024】基板27をCVD処理するにあたり、内室
56には、断熱板12が設けられ、処理室9の処理室蓋
1と内室56に設けられた断熱板12の間は、支持ピン
18により、空間が生じるようになっている。このた
め、内室56への熱の伝導が極めて小さく押さえられ、
水冷フランジ2などによる影響は極めて少なく、プラズ
マ発生室26は均一な温度分布が保たれる。更に、プラ
ズマ発生室26は、全て石英等の絶縁物で覆われている
ため、露出金属部への局部的なプラズマの集中を防止
し、プラズマの安定と温度分布の均一化に寄与してい
る。
In performing the CVD process on the substrate 27, the heat insulating plate 12 is provided in the inner chamber 56, and the support pin 18 is provided between the process chamber lid 1 of the process chamber 9 and the heat insulating plate 12 provided in the inner chamber 56. This creates a space. Therefore, the conduction of heat to the inner chamber 56 is suppressed to be extremely small,
The influence of the water cooling flange 2 and the like is extremely small, and the plasma generation chamber 26 maintains a uniform temperature distribution. Further, since the plasma generation chamber 26 is entirely covered with an insulator such as quartz, local concentration of plasma on the exposed metal portion is prevented, which contributes to plasma stability and uniform temperature distribution. .

【0025】[0025]

【発明の効果】以上述べた如く本発明によれば、プラズ
マ発生室の内壁の温度を均一に保持し、プラズマ発生室
が完全にホットウォール化されるため、内壁へのパウダ
付着を抑制し、かつ、内壁への膜形成を強固に行って膜
の剥離を回避してフレークの発生を抑制することがで
き、これによってCVD処理中の基板汚染を防止し、膜
質の向上と装置の連続運転時間を大幅に延長することが
できる。
As described above, according to the present invention, the temperature of the inner wall of the plasma generation chamber is kept uniform, and the plasma generation chamber is completely made into a hot wall, so that powder adhesion to the inner wall is suppressed. Moreover, it is possible to firmly form the film on the inner wall and avoid the peeling of the film to suppress the generation of flakes, thereby preventing substrate contamination during the CVD process, improving the film quality, and continuously operating the apparatus. Can be significantly extended.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明装置の1実施例の構成を示す断面図であ
る。
FIG. 1 is a sectional view showing the configuration of an embodiment of the device of the present invention.

【図2】従来装置の1例の構成を示す断面図である。FIG. 2 is a sectional view showing a configuration of an example of a conventional device.

【符号の説明】[Explanation of symbols]

1 処理室蓋 9 処理室 12 断熱板 13 絶縁リング 14 絶縁板 15 絶縁板 18 支持ピン 19 上電極ヒータ 21 上電極プレート 22 上電極カバー 23 側壁カバー 24 下電極カバー 26 プラズマ発生室 27 基板 28 下電極プレート 56 内室 1 Processing Chamber Lid 9 Processing Chamber 12 Insulating Plate 13 Insulating Ring 14 Insulating Plate 15 Insulating Plate 18 Support Pin 19 Upper Electrode Heater 21 Upper Electrode Plate 22 Upper Electrode Cover 23 Sidewall Cover 24 Lower Electrode Cover 26 Plasma Generation Chamber 27 Substrate 28 Lower Electrode Plate 56 Interior

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 処理室内に内室を設け、該内室にプラズ
マ発生室を設けて2重構造としたプラズマCVD装置に
おいて、処理室内部と断熱板を設けた該内室の間に空間
を設け、プラズマ発生室内部を絶縁物で覆うことを特徴
とするプラズマCVD装置。
1. In a plasma CVD apparatus having a double structure in which an inner chamber is provided in the processing chamber and a plasma generating chamber is provided in the inner chamber, a space is provided between the inside of the processing chamber and the inner chamber provided with a heat insulating plate. A plasma CVD apparatus, which is provided and covers the inside of the plasma generation chamber with an insulator.
JP6021256A 1994-02-18 1994-02-18 Plasma cvd device Pending JPH07230956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6021256A JPH07230956A (en) 1994-02-18 1994-02-18 Plasma cvd device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6021256A JPH07230956A (en) 1994-02-18 1994-02-18 Plasma cvd device

Publications (1)

Publication Number Publication Date
JPH07230956A true JPH07230956A (en) 1995-08-29

Family

ID=12050013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6021256A Pending JPH07230956A (en) 1994-02-18 1994-02-18 Plasma cvd device

Country Status (1)

Country Link
JP (1) JPH07230956A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10310870A (en) * 1997-05-09 1998-11-24 Semiconductor Energy Lab Co Ltd Plasma cvd device
JP2001516960A (en) * 1997-09-11 2001-10-02 アプライド マテリアルズ インコーポレイテッド Vaporization / deposition apparatus and method
JP2002146537A (en) * 2001-09-18 2002-05-22 Semiconductor Energy Lab Co Ltd Cleaning method
JP2003517198A (en) * 1999-12-14 2003-05-20 アプライド マテリアルズ インコーポレイテッド Cooling ceiling for plasma reactor with small gas distribution plate array to be insulated and plasma heated
JP2003158120A (en) * 2001-09-10 2003-05-30 Anelva Corp Surface treatment device
US6727654B2 (en) 2000-01-11 2004-04-27 Hitachi Kokusai Electric Inc. Plasma processing apparatus
JP2004183071A (en) * 2002-12-05 2004-07-02 Tokyo Electron Ltd Plasma film deposition method, and plasma film deposition system
JP2008192642A (en) * 2007-01-31 2008-08-21 Tokyo Electron Ltd Substrate processing apparatus
JP2008214763A (en) * 2001-02-09 2008-09-18 Tokyo Electron Ltd Film-forming apparatus
JP2009120859A (en) * 2004-12-28 2009-06-04 Asm Genitech Inc Atomic layer deposition apparatus
JP2013004907A (en) * 2011-06-21 2013-01-07 Tokyo Electron Ltd Semiconductor manufacturing apparatus
US8895116B2 (en) 2010-11-04 2014-11-25 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of crystalline semiconductor film and manufacturing method of semiconductor device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10310870A (en) * 1997-05-09 1998-11-24 Semiconductor Energy Lab Co Ltd Plasma cvd device
US8278195B2 (en) 1997-05-09 2012-10-02 Semiconductor Energy Laboratory Co., Ltd. Plasma CVD apparatus
US8053338B2 (en) 1997-05-09 2011-11-08 Semiconductor Energy Laboratory Co., Ltd. Plasma CVD apparatus
US7723218B2 (en) 1997-05-09 2010-05-25 Semiconductor Energy Laboratory Co., Ltd. Plasma CVD apparatus
JP2001516960A (en) * 1997-09-11 2001-10-02 アプライド マテリアルズ インコーポレイテッド Vaporization / deposition apparatus and method
JP2013118402A (en) * 1997-09-11 2013-06-13 Applied Materials Inc Vaporization and deposition apparatus and method
JP2003517198A (en) * 1999-12-14 2003-05-20 アプライド マテリアルズ インコーポレイテッド Cooling ceiling for plasma reactor with small gas distribution plate array to be insulated and plasma heated
US6727654B2 (en) 2000-01-11 2004-04-27 Hitachi Kokusai Electric Inc. Plasma processing apparatus
JP2008214763A (en) * 2001-02-09 2008-09-18 Tokyo Electron Ltd Film-forming apparatus
JP2003158120A (en) * 2001-09-10 2003-05-30 Anelva Corp Surface treatment device
JP2002146537A (en) * 2001-09-18 2002-05-22 Semiconductor Energy Lab Co Ltd Cleaning method
JP2004183071A (en) * 2002-12-05 2004-07-02 Tokyo Electron Ltd Plasma film deposition method, and plasma film deposition system
JP2009120859A (en) * 2004-12-28 2009-06-04 Asm Genitech Inc Atomic layer deposition apparatus
JP2008192642A (en) * 2007-01-31 2008-08-21 Tokyo Electron Ltd Substrate processing apparatus
US8895116B2 (en) 2010-11-04 2014-11-25 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of crystalline semiconductor film and manufacturing method of semiconductor device
JP2013004907A (en) * 2011-06-21 2013-01-07 Tokyo Electron Ltd Semiconductor manufacturing apparatus

Similar Documents

Publication Publication Date Title
JP2654996B2 (en) Vertical heat treatment equipment
KR101145538B1 (en) Plasma processing apparatus of batch type
EP1046729B1 (en) CVD processing chamber
JP4889683B2 (en) Deposition equipment
JP3178824B2 (en) High productivity multi-station type processing equipment for compound single wafer.
JPH11204442A (en) Single wafer heat treatment device
KR20010030159A (en) Plasma processing apparatus
JPH07230956A (en) Plasma cvd device
JP4260404B2 (en) Deposition equipment
KR20050105249A (en) Vacuum processing apparatus
JP3035735B2 (en) Substrate processing apparatus and substrate processing method
JP2670515B2 (en) Vertical heat treatment equipment
EP0841838A1 (en) Plasma treatment apparatus and plasma treatment method
JPH08260158A (en) Substrate treating device
JPH11204443A (en) Single wafer heat treatment device
JP2990551B2 (en) Film processing equipment
JP3738494B2 (en) Single wafer heat treatment equipment
JP4782761B2 (en) Deposition equipment
KR20030074418A (en) Substrate processing method and apparatus
JP2006274316A (en) Substrate treatment apparatus
JP4951279B2 (en) Plasma processing equipment
JPH05160031A (en) Cvd device
JPS6112035A (en) Semiconductor manufacturing device
JPH06338458A (en) Plasma cvd device
JP3075130B2 (en) Microwave plasma processing equipment