JPH07235407A - Magnetic particle - Google Patents
Magnetic particleInfo
- Publication number
- JPH07235407A JPH07235407A JP6023910A JP2391094A JPH07235407A JP H07235407 A JPH07235407 A JP H07235407A JP 6023910 A JP6023910 A JP 6023910A JP 2391094 A JP2391094 A JP 2391094A JP H07235407 A JPH07235407 A JP H07235407A
- Authority
- JP
- Japan
- Prior art keywords
- particles
- ferromagnetic material
- magnetic
- ferromagnetic
- fine particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C1/00—Magnetic separation
- B03C1/005—Pretreatment specially adapted for magnetic separation
- B03C1/01—Pretreatment specially adapted for magnetic separation by addition of magnetic adjuvants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/44—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Soft Magnetic Materials (AREA)
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、強磁性体を含む吸湿性
粒子、あるいは固定化酵素粒子に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to hygroscopic particles containing ferromagnet or immobilized enzyme particles.
【0002】[0002]
【従来の技術】従来の吸湿性の素材としては、生石灰や
シリカゲル等が良く知られているが、これらを用いて目
的とする試料の水分をとる場合、回収のためを考えて、
一般にこれら吸湿剤をろ紙、セロハン等の通気性の良い
袋に隔離して利用していた。2. Description of the Related Art As a conventional hygroscopic material, quicklime, silica gel and the like are well known. When using these to take the moisture of a target sample, considering recovery,
Generally, these hygroscopic agents have been isolated and used in bags with good air permeability such as filter paper and cellophane.
【0003】固定化酵素等を作るために粒子に酵素を吸
着、イオン結合あるいは共有結合させたり、酵素を高分
子ゲルの網目構造中に閉じ込めることは、水溶性の酵素
の回収、再利用のために従来より行われており、微粒子
と検体の結合手段についても数多くの手法が発明されて
いる。例えば特表平3−504276、ベイヤー イエ
ー アンド ウイルチェック エム:メソッド イン
バイオケミストリーアナリシス,26,pp.1〜45
(1980)(Bayer,E.A.&Wilche
k,M.:Meth.in Biochem. Ana
l.,26,pp.1〜45(1980))、米国特許
第4654267号参照。To make an immobilized enzyme or the like adsorb an enzyme to a particle, bind it ionicly or covalently, or confine the enzyme in a polymer gel network structure, it is necessary to collect and reuse the water-soluble enzyme. In the past, many methods have been invented as means for binding microparticles and analytes. For example, Tokuhyo Hira 3-504276, Bayer Yeah and Will Check M: Method In
Biochemistry Analysis, 26, pp. 1-45
(1980) (Bayer, EA & Wilche.
k, M. : Meth. in Biochem. Ana
l. , 26, pp. 1-45 (1980)), U.S. Pat. No. 4,654,267.
【0004】特定の検体を定量、分析、分画するために
は何かしらの手法を用いて目的とする検体とその他の物
質とを分離する必要があるが、従来の遠心法、カラム分
離法、電気泳動法等の手法では分離のみで長時間を要
し、さらに環境条件を極端に変化させるために変性等の
可能性もあった。このため、特定の微粒子を分離するた
めに、その微粒子に強磁性体を付加するというアイデア
は従来よりあったが(例えば、特開昭60−32955
「イオン交換樹脂床」、特開昭60−244251「磁
気反応性粒子およびその製造方法」)、これらの技法で
は、強磁性体自身が自己会合してしまい、反応させる時
など分散させたままで存在させていたい時に分散させる
手法がなかった。In order to quantify, analyze, and fractionate a specific sample, it is necessary to separate the target sample from other substances by some method, but the conventional centrifugation method, column separation method, electric method, etc. Methods such as electrophoresis require only a long time for separation, and there is also the possibility of denaturation or the like due to extreme changes in environmental conditions. Therefore, there has been a conventional idea of adding a ferromagnetic material to specific fine particles in order to separate the fine particles (for example, JP-A-60-32955).
"Ion-exchange resin bed", JP-A-60-244251 "Magnetically reactive particles and method for producing the same"), in these techniques, the ferromagnetic substance itself self-associates and exists in a dispersed state when reacting. There was no way to disperse when I wanted to.
【0005】近年、この短所を克服する手法として超常
磁性磁気ビーズを用いる手法が開発され、検体を固定す
る固相として磁気ビーズを用い、蛋白質、細胞、DNA
の分離、分析等に利用されている(例えば、特表平4−
501956、特表平4−501957、特表平4−5
01958、特表平4−501959)。In recent years, a method using superparamagnetic magnetic beads has been developed as a method for overcoming this disadvantage, and magnetic beads are used as a solid phase for immobilizing a sample, and proteins, cells, DNA are used.
Is used for the separation and analysis of
501956, Tokuyo Hyodai 4-501957, Tokuyo Hyodai 4-5
01958, Tokuyohei 4-501959).
【0006】この超常磁性磁気ビーズは、酸化鉄等の磁
性体を永久磁性を維持するのに必要な磁区の大きさより
小さい強磁性体の微粒子にしてビーズ中に分散して含ま
せたもので、外磁場がかかった時のみ強磁性を示す性質
を持っている。超常磁性磁気ビーズの利用法は、この超
常磁性の性質を利用して、磁性体を含むにもかかわらず
反応中の溶液でのビーズの凝集を防ぎ、凝集させるとき
には外磁場をかけて溶液中の磁気ビーズのみ全てを特異
的に凝集させるものである。These superparamagnetic magnetic beads are obtained by forming magnetic particles such as iron oxide into ferromagnetic fine particles having a size smaller than the size of magnetic domains required to maintain permanent magnetism and dispersing them in the beads. It has the property of exhibiting ferromagnetism only when an external magnetic field is applied. Utilizing this superparamagnetic property, the superparamagnetic magnetic beads are used to prevent the beads from aggregating in the solution during the reaction despite containing the magnetic substance. Only magnetic beads are aggregated specifically.
【0007】[0007]
【発明が解決しようとする課題】従来の吸湿剤、固定化
酵素、触媒は、試料中に混合させた場合、選択的に取り
除くことはできなかった。また、強磁性体を含んだ従来
の粒子の場合、反応等を効果的に行わせるには分散して
いる必要があるが、強磁性体の性質上、粒子自身が磁場
によって自己集合してしまい分散させておくことができ
ないという致命的な欠点があった。The conventional hygroscopic agent, immobilized enzyme, and catalyst cannot be selectively removed when mixed in a sample. In addition, in the case of conventional particles containing a ferromagnetic substance, it is necessary to disperse them in order to effectively carry out reactions etc., but due to the properties of the ferromagnetic substance, the particles themselves self-assemble due to the magnetic field. It had a fatal drawback that it could not be dispersed.
【0008】この欠点を補うため、強磁性体の代わりに
超常磁性体を用いた粒子が開発されたが、超常磁性体が
その性質を得るために磁区構造より小さな分散粒子でな
くてはならないため、外磁場によって粒子に与えられる
外力は強磁性体よりけた違いに小さく、自重を支えるた
めには、十分大きな外磁場を与えなければならなかっ
た。また、超常磁性の性質のみを用いて微粒子の凝集を
行わせる場合、外磁場に対して、選択的に応答させるこ
とはできず、外磁場に対して全ての超常磁性粒子が集合
してしまうという問題があった。To compensate for this drawback, particles using a superparamagnetic material instead of a ferromagnetic material have been developed, but the superparamagnetic material must be dispersed particles smaller than the magnetic domain structure in order to obtain its properties. , The external force exerted on the particles by the external magnetic field is infinitesimally smaller than that of the ferromagnetic material, and the external magnetic field must be sufficiently large to support its own weight. In addition, when agglomeration of fine particles is performed using only superparamagnetic properties, it is impossible to selectively respond to an external magnetic field, and all superparamagnetic particles are aggregated with respect to the external magnetic field. There was a problem.
【0009】さらに、超常磁性粒子の性質から粒子の粒
径を十分小さくしてしまうと、磁場による力が弱まり粒
子を集めることができなくなってしまうという問題があ
った。また、超常磁性粒子は、外磁場があってはじめて
自己会合する性質を持つため、会合させたまま容器間を
移動させるには、常に外磁場を作用させる必要があっ
た。Further, if the particle size of the particles is made sufficiently small due to the nature of the superparamagnetic particles, there is a problem that the force due to the magnetic field weakens and the particles cannot be collected. Further, since superparamagnetic particles have the property of self-associating only in the presence of an external magnetic field, it was necessary to always act on the external magnetic field in order to move them between the containers while they were associated.
【0010】また、粒子中に強磁性体あるいは超常磁性
体が含まれることから、これらが反応溶液やその他微粒
子の含んでいる水分と反応し腐食してしまう問題があっ
た。Further, since the particles contain a ferromagnetic material or a superparamagnetic material, there is a problem that they react with the water contained in the reaction solution and other fine particles to cause corrosion.
【0011】本発明の目的は、試料と混合あるいは反応
させた後に、効率的にかつ選択的に試料と分離すること
ができる粒子を提供することにある。An object of the present invention is to provide particles which can be efficiently and selectively separated from a sample after being mixed with or reacted with the sample.
【0012】[0012]
【課題を解決するための手段】従来の強磁性体を含む粒
子を選択的に集合させたり、従来の超常磁性体より磁力
の強い選択的自己集合能力を持った粒子を得るには、粒
子中に含まれる磁性体に、粒子の融点、あるいは粒子の
持つ機能を破壊しない温度にキューリー点温度がある強
磁性体を用いればよい。また、複数の異なる種類の粒子
を選択的に一種類づつ自己集合させるためには、それぞ
れ異なるキューリー点温度を持つ複数の磁性体粒子を組
み合わせ、温度の変化と磁場を組み合わせることによっ
て選択的に磁気ビーズを集合させたり、拡散させたりす
ればよい。また、この磁性体粒子について、自己会合さ
せたい磁気粒子では、上記磁気粒子で永久磁性を維持す
るのに必要な磁区よりも大きな強磁性体を粒子に含ませ
れば良いし、外磁場が働いたとき以外は自己会合させた
くない磁気粒子では、永久磁性を維持するのに必要な磁
区よりも小さな強磁性体を粒子に含ませれば良い。粒子
中に含まれる強磁性体あるいは超常磁性体を腐食から防
ぐには、これら強磁性体あるいは超常磁性体表面に金メ
ッキ等の表面耐食処理を施せばよい。[Means for Solving the Problems] In order to selectively aggregate particles containing a conventional ferromagnetic material or to obtain particles having a selective self-assembly ability having a stronger magnetic force than a conventional superparamagnetic material, As the magnetic substance included in the above, a ferromagnetic substance having a Curie point temperature at which the melting point of the particles or the function of the particles is not destroyed may be used. Further, in order to selectively self-assemble a plurality of different types of particles one by one, a plurality of magnetic particles each having a different Curie point temperature are combined, and a magnetic field is selectively changed by combining a temperature change and a magnetic field. The beads may be aggregated or diffused. Regarding the magnetic particles, for the magnetic particles that are desired to self-associate, it suffices if the particles include a ferromagnetic material larger than the magnetic domain necessary to maintain permanent magnetism in the magnetic particles, and the external magnetic field works. For magnetic particles that do not want to self-associate except at times, the particles may contain a ferromagnetic material smaller than the magnetic domain necessary to maintain permanent magnetism. In order to prevent the ferromagnetic material or superparamagnetic material contained in the particles from being corroded, the surface of these ferromagnetic material or superparamagnetic material may be subjected to surface corrosion treatment such as gold plating.
【0013】[0013]
【作用】強磁性体は、キューリー点温度Tcを境に、T
cより低い温度では強磁性体となり自発磁化を持ち、T
cより高い温度では自発磁化を持たない常磁性体とな
る。従って、粒子の機能を損なわない程度の低い温度に
Tcをもつ強磁性体を含む粒子については、最初に粒子
をTcより高い温度にして磁区構造を壊し、消磁する。
消磁された粒子は、溶液温度Tcより低い温度でも外磁
場を加えるまでは自発磁化をもたず、分散したままであ
る。磁区内の磁場の向きをそろえて会合させ始めるとき
に、粒子に外磁場を一時的にかけると、粒子は自発磁化
を持つようになり自己会合する。その後、磁場の有無に
関係なく粒子は集合体のままで安定である。[Function] Ferromagnetic material has a T
At temperatures lower than c, it becomes a ferromagnetic material and has spontaneous magnetization,
At a temperature higher than c, the paramagnetic material does not have spontaneous magnetization. Therefore, for a particle containing a ferromagnetic material having Tc at a temperature low enough not to impair the function of the particle, the particle is first heated to a temperature higher than Tc to destroy the magnetic domain structure and demagnetize.
The demagnetized particles do not have spontaneous magnetization and remain dispersed even at a temperature lower than the solution temperature Tc until an external magnetic field is applied. When an external magnetic field is temporarily applied to the particles when the magnetic fields in the magnetic domains are aligned and start to associate with each other, the particles become spontaneously magnetized and self-associate. After that, the particles remain stable as aggregates regardless of the presence or absence of a magnetic field.
【0014】超常磁性体を含む粒子は、永久磁性を維持
するのに必要な磁区よりも小さな強磁性体粒子が分散し
て粒子中に配置されていることから、外磁場が働いてい
る時にのみ粒子は会合する。このため、従来の手法と同
様にすればよい。このようにすれば、磁気粒子はそのキ
ューリー点温度が溶液等の環境温度よりも高く、かつ外
磁場が加えられた時にのみ凝集する。Particles containing a superparamagnetic material have ferromagnetic particles smaller than the magnetic domains required to maintain permanent magnetism dispersed therein and are arranged in the particles. Therefore, only when an external magnetic field is working. The particles associate. Therefore, the same method as the conventional method may be used. In this way, the magnetic particles aggregate only when their Curie point temperature is higher than the environmental temperature of the solution or the like and an external magnetic field is applied.
【0015】それぞれ異なったキューリー点温度T1、
T2、T3、…(T1>T2>T3>…)を持つ強磁性
体あるいは超強磁性体を含む異なった種類の粒子は、環
境温度がT1より高いときには、すべての種類の粒子は
自発磁化を持たず反応溶液中で拡散している。次に、環
境温度をT1、T2、T3…と順次下げてゆき、その都
度外磁場を加えることにより、その環境温度より高いキ
ューリー点温度をもつ磁気粒子を一種類づつ捕獲分離し
てゆくことができる。Curie point temperatures T1, which are different from each other,
Different types of particles including a ferromagnetic material or a superferromagnetic material having T2, T3, ... (T1>T2>T3> ...), all kinds of particles have spontaneous magnetization when the environmental temperature is higher than T1. It does not have and diffuses in the reaction solution. Next, the environmental temperature is sequentially lowered to T1, T2, T3, ... By applying an external magnetic field each time, magnetic particles having a Curie point temperature higher than the environmental temperature can be captured and separated one by one. it can.
【0016】[0016]
【実施例】図1(a)に、強磁性体を含む粒子の構造を
表わした断面図を示す。この粒子は、表面にシリカゲル
1を持ち、中心部に耐食コート2を施した強磁性体3を
含んでいる。製法は、アルカリ性のケイ酸ナトリウム
(水ガラス)の3N水溶液を氷冷しておき、これに氷冷
した3N塩酸をかき混ぜながら加え、pHを約1にして
ゾルを作る。一夜放置した後、ろ過した液を60℃に加
熱してゲル化させる。このとき、金メッキ等の耐食コー
トをした強磁性体粒子を混在させておき、強磁性体を含
む形で適当の大きさに切って水洗し、少し乾燥して弾性
ゲルとなったとき更に流水でよく洗って可溶性塩を除い
た後、110℃で乾燥すればガラス状のゲルとして得ら
れる。EXAMPLE FIG. 1 (a) is a sectional view showing the structure of a particle containing a ferromagnetic material. The particles have a ferromagnetic material 3 having silica gel 1 on the surface and a corrosion resistant coating 2 at the center. In the manufacturing method, a 3N aqueous solution of alkaline sodium silicate (water glass) is ice-cooled, and ice-cooled 3N hydrochloric acid is added to this while stirring to adjust the pH to about 1 to form a sol. After standing overnight, the filtered solution is heated to 60 ° C. to gel. At this time, the ferromagnetic particles coated with a corrosion-resistant coating such as gold plating are mixed, cut into an appropriate size containing the ferromagnetic material, washed with water, and dried a little to become an elastic gel. After thoroughly washing to remove soluble salts, it is dried at 110 ° C. to obtain a glassy gel.
【0017】ここで、本発明を実施するための強磁性体
材料としては、たとえば、下記の表1の材料が使用でき
る。Here, as a ferromagnetic material for carrying out the present invention, for example, the materials shown in Table 1 below can be used.
【0018】[0018]
【表1】 [Table 1]
【0019】図1(b)から(d)に、上記のような手
順で作った磁気粒子を用いた実施例の流れ図を示す。FIGS. 1 (b) to 1 (d) show a flow chart of an embodiment using magnetic particles produced by the above procedure.
【0020】(b)において、熱源5が接触している容
器4中に上記(a)で示した磁気粒子を入れ、熱源5か
ら与えられた熱によって磁気粒子をその中の強磁性体の
キューリー点温度Tc以上まで加熱し磁気粒子を消磁す
る。次に、(c)において、消磁された磁気粒子と試料
を混合する。さらに、(d)において、試料中から磁気
粒子を選択的に取り除く。このとき、磁気粒子の温度は
Tcより低くしておき、電磁石7をオンにして、磁気粒
子を電磁石に引き付ける。取り出された磁気粒子は、再
び過程(b)に戻して、吸湿した磁気粒子を加熱し、粒
子の乾燥および消磁を同時に行い、磁気粒子を再利用す
ることができる。In (b), the magnetic particles shown in (a) above are placed in the container 4 in contact with the heat source 5, and the heat given from the heat source 5 causes the magnetic particles to curly the ferromagnetic material therein. The magnetic particles are demagnetized by heating to the point temperature Tc or higher. Next, in (c), the demagnetized magnetic particles and the sample are mixed. Further, in (d), magnetic particles are selectively removed from the sample. At this time, the temperature of the magnetic particles is kept lower than Tc, and the electromagnet 7 is turned on to attract the magnetic particles to the electromagnet. The magnetic particles taken out can be returned to the step (b) again to heat the moisture-absorbed magnetic particles to simultaneously dry and demagnetize the particles so that the magnetic particles can be reused.
【0021】この磁気粒子について、本実施例ではシリ
カゲルを用いたが、強磁性体をポリスチレン等のポリマ
ーで包み、その表面を米国特許第4654267号で示
されたような手法で修飾し、酵素等を固定することもで
きるし、白金で強磁性体表面をコートし触媒として用い
たり、強磁性体の表面にイオン交換樹脂をコートしたり
してもよい。For this magnetic particle, silica gel was used in the present embodiment, but a ferromagnetic material was wrapped with a polymer such as polystyrene, and the surface was modified by the method as shown in US Pat. No. 4,654,267 to obtain an enzyme or the like. May be fixed, or the surface of the ferromagnetic material may be coated with platinum to be used as a catalyst, or the surface of the ferromagnetic material may be coated with an ion exchange resin.
【0022】さらに、本実施例では、機能を持った粒子
の内部に強磁性体を含ませたが、機能を持った粒子表面
に強磁性体を接着してもよい。また、複数の種類の微粒
子を選択的に捕獲したい場合は、異なるキューリー点温
度(T1,(>)T2、T3、…)を持つ強磁性体を用
いて、温度をT>T1から、順次T1>T>T2に下ろ
したとき、キューリー点温度T1の粒子が強磁性体とな
り外磁場によって選択的に捕獲され、次に、T2>T>
T3となったとき、キューリー点温度T2の粒子が強磁
性体となり外磁場によって選択的に捕獲され、同様にキ
ューリー点温度T3以下の温度の粒子を捕獲することが
できる。Further, in this embodiment, the ferromagnetic material is contained in the particles having the function, but the ferromagnetic material may be adhered to the surface of the particle having the function. Further, when it is desired to selectively capture a plurality of types of fine particles, a ferromagnetic material having different Curie point temperatures (T1, (>) T2, T3, ...) Is used and the temperature is sequentially increased from T> T1 to T1. When>T> T2, the particles having the Curie point temperature T1 become a ferromagnetic material and are selectively captured by the external magnetic field, and then T2>T>
When the temperature reaches T3, the particles having the Curie point temperature T2 become a ferromagnetic body and are selectively captured by the external magnetic field, and similarly, the particles having the Curie point temperature T3 or lower can be captured.
【0023】以上の例においては、強磁性体粒子を用い
たが、すべてを超常磁性体粒子に置き換えて同様に利用
することもできる。In the above examples, the ferromagnetic particles were used, but it is also possible to replace them entirely with superparamagnetic particles and use them in the same manner.
【0024】[0024]
【発明の効果】本発明は、以上説明したように構成され
ているので、効率的にかつ選択的に機能を持った粒子を
試料と混合あるいは反応させた後に分離することができ
るという効果を奏する。EFFECTS OF THE INVENTION Since the present invention is configured as described above, it has an effect that particles having a function can be efficiently and selectively mixed with or reacted with a sample and then separated. .
【図1】(a)は強磁性体を含む粒子の断面を示した模
式図、(b)〜(d)は本発明の実施例の手順を示す流
れ図。FIG. 1A is a schematic view showing a cross section of particles containing a ferromagnetic material, and FIGS. 1B to 1D are flow charts showing a procedure of an embodiment of the present invention.
1…シリカゲル、2…耐食コート、3…強磁性体、4…
容器、5…熱源、6…試料、7…電磁石。1 ... Silica gel, 2 ... Corrosion resistant coating, 3 ... Ferromagnetic material, 4 ...
Container, 5 ... Heat source, 6 ... Sample, 7 ... Electromagnet.
Claims (7)
融点より低い温度にキューリー点温度をもつ強磁性体を
含むことを特徴とする粒子。1. A particle containing a ferromagnetic material, which contains a ferromagnetic material having a Curie point temperature lower than a melting point of the particle.
とした請求項1記載の微粒子。2. The fine particles according to claim 1, wherein the ferromagnetic material has a superparamagnetic structure.
求項1あるいは2のいずれかに記載の微粒子。3. The fine particles according to claim 1, which have a hygroscopic material.
とを特徴とする請求項3記載の微粒子。4. The fine particles according to claim 3, wherein silica gel is used as the hygroscopic material.
を施したことを特徴とする請求項1あるいは2記載の微
粒子。5. The fine particles according to claim 1, wherein the surface of the magnetic material or the superparamagnetic material is subjected to anticorrosion treatment.
特徴とする請求項1あるいは2記載の微粒子。6. The fine particles according to claim 1 or 2, wherein the fine particles have an immobilized enzyme.
する請求項1あるいは2記載の微粒子。7. The fine particles according to claim 1 or 2, wherein the fine particles have a catalyst.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6023910A JPH07235407A (en) | 1994-02-22 | 1994-02-22 | Magnetic particle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6023910A JPH07235407A (en) | 1994-02-22 | 1994-02-22 | Magnetic particle |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07235407A true JPH07235407A (en) | 1995-09-05 |
Family
ID=12123643
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6023910A Pending JPH07235407A (en) | 1994-02-22 | 1994-02-22 | Magnetic particle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07235407A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6296937B2 (en) | 1997-01-21 | 2001-10-02 | W. R. Grace & Co.-Conn. | Silica adsorbent on magnetic substrate |
KR100406851B1 (en) * | 2001-08-21 | 2003-11-21 | 이종협 | Production Method of Mesoporous Silica comprising Magnetite used for Heavy Metal Ion Adsorbents |
JP2012106241A (en) * | 2000-03-24 | 2012-06-07 | Qiagen Gmbh | Porous ferromagnetic or ferrimagnetic glass particle for isolating molecule |
CN115925426A (en) * | 2022-09-30 | 2023-04-07 | 成都飞机工业(集团)有限责任公司 | Aerogel composite material and preparation method thereof |
-
1994
- 1994-02-22 JP JP6023910A patent/JPH07235407A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6296937B2 (en) | 1997-01-21 | 2001-10-02 | W. R. Grace & Co.-Conn. | Silica adsorbent on magnetic substrate |
US6447911B1 (en) | 1997-01-21 | 2002-09-10 | W. R. Grace & Co.-Conn. | Silica adsorbent on magnetic substrate |
JP2012106241A (en) * | 2000-03-24 | 2012-06-07 | Qiagen Gmbh | Porous ferromagnetic or ferrimagnetic glass particle for isolating molecule |
KR100406851B1 (en) * | 2001-08-21 | 2003-11-21 | 이종협 | Production Method of Mesoporous Silica comprising Magnetite used for Heavy Metal Ion Adsorbents |
CN115925426A (en) * | 2022-09-30 | 2023-04-07 | 成都飞机工业(集团)有限责任公司 | Aerogel composite material and preparation method thereof |
CN115925426B (en) * | 2022-09-30 | 2023-11-10 | 成都飞机工业(集团)有限责任公司 | Aerogel composite material and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4324101B2 (en) | Binding of target substance | |
US6562573B2 (en) | Materials and methods for the purification of polyelectrolytes, particularly nucleic acids | |
JP2757964B2 (en) | Magnetic attractive particles and method for producing the same | |
Li et al. | Functionalized magnetic nanoparticles for sample preparation in proteomics and peptidomics analysis | |
JP4744778B2 (en) | Method for analyzing multiple analyte molecules using a specific random particle array | |
JP2554250B2 (en) | Magnetically responsive particles and method for producing the same | |
ES2226869T3 (en) | COMPOSITION BASED ON MAGNETIC PARTICLES. | |
CN106457196B (en) | The operating method and magnetisable material particle manipulation device of magnetisable material particle | |
JPH03504303A (en) | encapsulated superparamagnetic particles | |
JPH0919292A (en) | Magnetic carrier for binding nucleic acid and nucleic acid isolation using the same | |
JPH05502944A (en) | Organometallic coated particles for use in separations | |
CN101535501A (en) | Methods of extracting nucleic acids | |
JP2003104996A (en) | Magnetic carrier for bonding nucleic acid and method for manufacturing the same | |
Kumar et al. | Enzyme immobilization over polystyrene surface using cysteine functionalized copper nanoparticle as a linker molecule | |
JPH07235407A (en) | Magnetic particle | |
JP2006242597A (en) | Flocculation/dispersion control method of magnetic nanoparticles, collection method of magnetic nanoparticles and treatment method of magnetic nanoparticle-containing solution | |
JP2005069955A (en) | Magnetic carrier for combining biological matter | |
US7381467B2 (en) | Composite particles comprising ferromagnetic particle, fluorescent pigment and a silica coating | |
JP4422982B2 (en) | Magnetic carrier for binding biological materials | |
WO2003033159A1 (en) | Magnetic particles | |
JP4435755B2 (en) | PH-dependent ion-exchange substance having a selectively high binding force to nucleic acid compared to protein, solid substrate on which it is immobilized, and method for separating nucleic acid using said substance and solid substrate | |
Tippkötter et al. | Functionalized magnetizable particles for downstream processing in single‐use systems | |
JP2004317363A (en) | Nucleic acid analyzer, and analytical method for nucleic acid using it | |
JP2005516077A (en) | Preparation of polymer particles | |
CN101400689A (en) | Methods of extracting RNA |