JPH07227926A - Sound absorbing and heat insulating board, heat insulating panel using the same and manufacture thereof - Google Patents
Sound absorbing and heat insulating board, heat insulating panel using the same and manufacture thereofInfo
- Publication number
- JPH07227926A JPH07227926A JP6045132A JP4513294A JPH07227926A JP H07227926 A JPH07227926 A JP H07227926A JP 6045132 A JP6045132 A JP 6045132A JP 4513294 A JP4513294 A JP 4513294A JP H07227926 A JPH07227926 A JP H07227926A
- Authority
- JP
- Japan
- Prior art keywords
- reinforcing material
- heat insulating
- foamed resin
- plate
- sound absorbing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 239000012779 reinforcing material Substances 0.000 claims abstract description 91
- 229920005989 resin Polymers 0.000 claims abstract description 78
- 239000011347 resin Substances 0.000 claims abstract description 78
- 239000000463 material Substances 0.000 claims abstract description 57
- 239000000758 substrate Substances 0.000 claims description 27
- 239000000835 fiber Substances 0.000 claims description 26
- 239000002243 precursor Substances 0.000 claims description 18
- 239000012784 inorganic fiber Substances 0.000 claims description 16
- 238000009413 insulation Methods 0.000 claims description 10
- 230000003014 reinforcing effect Effects 0.000 abstract description 8
- 239000011162 core material Substances 0.000 description 22
- 239000011491 glass wool Substances 0.000 description 21
- 229910000831 Steel Inorganic materials 0.000 description 20
- 239000010959 steel Substances 0.000 description 20
- 238000000034 method Methods 0.000 description 16
- 239000005011 phenolic resin Substances 0.000 description 13
- 239000011230 binding agent Substances 0.000 description 11
- 238000005452 bending Methods 0.000 description 10
- 239000006260 foam Substances 0.000 description 9
- 239000003365 glass fiber Substances 0.000 description 9
- 229920001568 phenolic resin Polymers 0.000 description 8
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 239000011490 mineral wool Substances 0.000 description 7
- 238000000465 moulding Methods 0.000 description 7
- 238000010521 absorption reaction Methods 0.000 description 6
- 230000006835 compression Effects 0.000 description 6
- 238000007906 compression Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 238000005187 foaming Methods 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 5
- -1 polyethylene Polymers 0.000 description 5
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 4
- 239000011810 insulating material Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 3
- 229920001807 Urea-formaldehyde Polymers 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 239000004088 foaming agent Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000002787 reinforcement Effects 0.000 description 3
- 239000011134 resol-type phenolic resin Substances 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229920006332 epoxy adhesive Polymers 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 239000011495 polyisocyanurate Substances 0.000 description 2
- 229920000582 polyisocyanurate Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000005033 polyvinylidene chloride Substances 0.000 description 2
- 238000000638 solvent extraction Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 210000002268 wool Anatomy 0.000 description 2
- 101100495270 Caenorhabditis elegans cdc-26 gene Proteins 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229920003043 Cellulose fiber Polymers 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 229920005830 Polyurethane Foam Polymers 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229910000410 antimony oxide Inorganic materials 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 238000012669 compression test Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000011496 polyurethane foam Substances 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
Landscapes
- Laminated Bodies (AREA)
- Building Environments (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、吸音性及び断熱性に優
れ、強度の高い吸音断熱性基板及びその基板を芯材とす
る断熱パネル、更にはそれらの製造法に関するものであ
る。更に詳しくは、例えば表面に意匠性のクロス、フィ
ルム、壁紙材等を貼合して、吸音性、断熱性の内装材な
どとして使用される吸音断熱性基板や、その基板を芯材
として得られる、例えば建物や冷凍・冷蔵室などにおけ
る間仕切り材、天井材、壁材、床材などとして使用され
る断熱パネル及びそれらの製造法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sound absorbing and heat insulating substrate having excellent sound absorbing properties and heat insulating properties and high strength, a heat insulating panel having the substrate as a core material, and a method for producing them. More specifically, for example, a sound-absorbing and heat-insulating substrate used as a sound-absorbing or heat-insulating interior material or the like can be obtained by laminating a design cloth, a film, a wallpaper material, etc. on the surface, and the substrate as a core material. For example, the present invention relates to a heat insulating panel used as a partitioning material, a ceiling material, a wall material, a floor material, etc. in a building, a freezing / refrigerating room and the like, and a manufacturing method thereof.
【0002】[0002]
【従来の技術】従来、間仕切りパネルとしては、低密度
のグラスウールやロックウールの平板を、断熱機能を目
的としてパネル内に充填したものや、発泡樹脂、例えば
ポリウレタン、ウレタン/フェノール樹脂、ポリイソシ
アヌレート樹脂、フェノール樹脂、尿素樹脂、ポリエチ
レン、ポリプロピレン、ポリスチレン、ポリ塩化ビニ
ル、ポリ塩化ビニリデン等をパネル内で発泡硬化させた
り、発泡体をパネル板材で挟持したものの他、紙や段ボ
ール紙、アスベスト紙、ケイ酸カルシウムやケイ酸マグ
ネシウム等の不燃紙、アルミ箔、スチール箔等をハニカ
ム構造にしたものを、パネル板材で挟持したものなどが
知られている。2. Description of the Related Art Conventionally, as a partition panel, a low density glass wool or rock wool flat plate is filled in the panel for the purpose of a heat insulating function, or a foamed resin such as polyurethane, urethane / phenolic resin, polyisocyanurate. Resin, phenol resin, urea resin, polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, etc. are foamed and cured in the panel, and the foam is sandwiched between panel board materials, as well as paper, corrugated paper, asbestos paper, It is known that a non-combustible paper such as calcium silicate or magnesium silicate, an aluminum foil, a steel foil or the like having a honeycomb structure and sandwiched by panel plate materials.
【0003】特にポリウレタン発泡樹脂は、熱伝導性の
低いフロン発泡剤を含有するため断熱性が良く、また、
表面板材のカラー鋼板、スチール板、アルミ板などとの
接着が容易であることから、パネル用芯材として広く使
用されてきたが、近年、環境保全の立場からフロン発泡
剤以外の発泡剤が使用されるようになって断熱性が低下
したり、不燃性が乏しいため使用が規制されるなどの問
題がある。In particular, the polyurethane foam resin has a good heat insulating property because it contains a CFC foaming agent having a low heat conductivity, and
It has been widely used as a core material for panels because it can be easily adhered to color steel plates, steel plates, aluminum plates, etc. as surface plate materials, but in recent years, foaming agents other than CFC foaming agents have been used from the standpoint of environmental protection. As a result, there is a problem that the heat insulating property is deteriorated and the use is regulated due to poor incombustibility.
【0004】一方、不燃性の断熱材としては、グラスウ
ールやロックウールが使用されているが、低密度のグラ
スウールやロックウールの平板には、曲げや圧縮などの
外圧によるパネル表面の変形を防止し得るほどの強度補
強機能が得られないという問題点があった。また、 高密
度のグラスウールやロックウールの平板では、 重量やコ
ストのアップにつながる欠点があった。On the other hand, glass wool or rock wool is used as a non-combustible heat insulating material. However, flat plates of low density glass wool or rock wool prevent deformation of the panel surface due to external pressure such as bending and compression. There was a problem that the strength reinforcement function was not obtained as much as it could be obtained. In addition, high-density glass wool and rock wool flat plates had the drawback of increasing weight and cost.
【0005】例えばグラスウール平板などでは、直径4
〜12μ程度の微細な繊維がウール状に集積積層されてい
るが、その繊維の積層方向は、平板の平面に沿った方向
での積層が多く、平板の厚み方向、すなわち平面と垂直
方向に積層している繊維束は少ないことが知られてい
る。このため、平面からの面圧力、曲げ圧力に対し、抵
抗力が弱いこととなる。For example, a glass wool flat plate has a diameter of 4
Fine fibers of ~ 12μ are accumulated and laminated in a wool shape, but the lamination direction of the fibers is often in the direction along the plane of the flat plate, and is laminated in the thickness direction of the flat plate, that is, the direction perpendicular to the plane. It is known that there are few fiber bundles. For this reason, the resistance against surface pressure and bending pressure from a flat surface is weak.
【0006】このような欠点を改良するため、繊維の平
板を短冊状にカットし、一つ一つの短冊をカット面が平
面側に向くように並べて、繊維の長軸を平板に対して垂
直とする方法や、圧縮強度のある芯棒にグラスウール等
の断熱材を巻いた単位断熱子をパネルの芯材として、芯
棒が平板に対して垂直になるよう配列する方法(特開昭
57−253号公報に記載)が提案されている。In order to improve such a defect, flat plates of fibers are cut into strips, and the strips are arranged so that the cut surfaces face the flat sides, and the long axes of the fibers are perpendicular to the flat plates. Or a method of arranging a unit heat insulator in which a heat insulating material such as glass wool is wound around a core rod having a compressive strength as a core material of a panel so that the core rod is perpendicular to a flat plate (JP-A-57-253). No.) is proposed.
【0007】しかしながら、上記のような方法は、曲げ
強度や圧縮強度などの向上を得ることはできるが、工業
的生産性、コスト等において問題が多いという欠点を有
している。However, although the above-mentioned method can improve the bending strength and the compressive strength, it has a drawback that there are many problems in industrial productivity, cost and the like.
【0008】一方、ハニカム構造体は、その優れた軽量
補強部材としての機能を生かし、数多くのパネル用芯材
に適用されているが、ハニカム体のみをパネル用芯材と
した場合、断熱、吸音性はハニカムコアの空気層のみで
発現されるため充分でない。On the other hand, the honeycomb structure is applied to a large number of panel core materials by utilizing its excellent function as a lightweight reinforcing member. However, when only the honeycomb body is used as a panel core material, heat insulation and sound absorption are performed. The property is not sufficient because it is expressed only in the air layer of the honeycomb core.
【0009】この欠点を改良するため、ハニカム構造体
とグラスウール等の断熱材を複層等に組合わせて、パネ
ル用芯材として使用する方法が、特公昭63−3541
4号公報、特開昭63−239496号公報、実開昭6
3−151610号公報、実開昭59−120212号
公報、実開昭62−30621号公報に、また、ハニカ
ム構造体のセル内にロックウール等の断熱材を圧入充填
する方法が、特公昭53−4729号公報及び特公昭5
5−19174号公報に提案されており、更に、セル内
にグラスウールやウレタンフォームを充填する方法が、
特開平2−57791号公報に開示されている。In order to remedy this drawback, a method of combining a honeycomb structure and a heat insulating material such as glass wool in a plurality of layers to use as a core material for a panel is disclosed in Japanese Patent Publication No. Sho 63-3541.
4, Japanese Unexamined Patent Publication No. 63-239496, Japanese Utility Model Publication No. 6
3-151610, Japanese Utility Model Publication No. 59-120212, Japanese Utility Model Publication No. 62-30621, and a method of press-fitting a heat insulating material such as rock wool into the cells of the honeycomb structure is disclosed in JP-B-53-53. -4729 Publication and Japanese Patent Publication No. 5
The method proposed by JP-A-5-19174 and further filling glass wool or urethane foam in the cell is
It is disclosed in Japanese Patent Laid-Open No. 2-57791.
【0010】上記のような方法によれば、断熱、吸音性
を有し、軽量で剛性の大きなパネルを提供できるが、製
造工程が複雑になり、生産性やコスト等の点で問題を有
している。According to the method described above, a panel having heat insulation and sound absorption, light weight and high rigidity can be provided, but the manufacturing process becomes complicated, and there is a problem in terms of productivity and cost. ing.
【0011】また、特開平4−152115号公報に
は、グラスウール、ロックウール又はセラミックウール
からなる連続波形形状の成形品の成形法が開示されてお
り、波形形状板を集合し中空部を形成したハニカム体、
いわゆるコルゲート法によるハニカム体や、波形形状板
を内装材の芯材(中骨体)に使用することが述べられて
いる。Further, Japanese Unexamined Patent Publication No. 4-152115 discloses a method of molding a continuous corrugated molded product made of glass wool, rock wool or ceramic wool, in which corrugated plates are assembled to form a hollow portion. Honeycomb body,
It is described that a so-called corrugated honeycomb body or a corrugated plate is used as a core material (intermediate bone body) of an interior material.
【0012】しかしながら、上記公報によれば、無機質
繊維を上記波形形状の成形体とするには、型成形に準じ
た予備成形が必要とされるので、生産性やコスト等の点
で問題を有する。また、連続波形形状板は、パネル用芯
材としたとき、補強効果に異方性があり、この異方性を
防ぐため、少なくとも2枚の波形形状板を、互いに直交
するように重ねて使用しなければならないなどの欠点を
有する。[0012] However, according to the above-mentioned publication, in order to form the inorganic fiber into the corrugated shaped body, preforming according to the die forming is required, which causes a problem in productivity and cost. . Further, the continuous corrugated board has anisotropy in reinforcing effect when used as a panel core material, and in order to prevent this anisotropy, at least two corrugated boards are used so as to be orthogonal to each other. It has the drawback that it must be done.
【0013】[0013]
【発明が解決しようとする課題】本発明は、前述したよ
うな従来技術の問題点を解決するためになされたもので
あり、その目的は、不燃性、吸音性、断熱性に優れ、高
い強度を有しておりながら、工業的に生産性のよい吸音
断熱性基板、それを用いた断熱パネル及びそれらの製造
法を提供することにある。SUMMARY OF THE INVENTION The present invention has been made to solve the problems of the prior art as described above, and its purpose is to provide excellent incombustibility, sound absorption, heat insulation and high strength. It is an object of the present invention to provide a sound absorbing and heat insulating substrate having good industrial productivity, a heat insulating panel using the same, and a manufacturing method thereof.
【0014】[0014]
【課題を解決するための手段】上記目的を達成するた
め、本発明の吸音断熱性基板は、補強材と発泡樹脂とが
一体化されてなる吸音断熱性基板において、前記補強材
は、一方の面から見たとき、多数の独立した凸部が全面
に整列分布され、これらの凸部の周りが凹部をなしてお
り、他方の面から見たとき、前記凸部に対応する部分は
凹部をなし、前記凹部に対応する部分は凸部をなしてお
り、両面の凸部の頂部がそれぞれ同じ高さにされた形状
をなし、前記補強材の少なくとも一方の面は、その凹部
に発泡樹脂が充填されて平滑な面に成形され、全体の密
度が10〜200 kg/m3 とされていることを特徴とする。In order to achieve the above object, the sound-insulating and heat-insulating substrate of the present invention is a sound-insulating and heat-insulating substrate in which a reinforcing material and a foamed resin are integrated. When viewed from the surface, a large number of independent convex portions are aligned and distributed over the entire surface, and the periphery of these convex portions forms a concave portion, and when viewed from the other surface, the portion corresponding to the convex portion is a concave portion. None, the portion corresponding to the concave portion forms a convex portion, and the top portions of the convex portions on both sides have the same height, and at least one surface of the reinforcing material has a foamed resin in the concave portion. It is characterized by being filled and molded into a smooth surface and having an overall density of 10 to 200 kg / m 3 .
【0015】また、本発明の断熱パネルは、上記吸音断
熱性基板の両面に、表面板材が接着されてなることを特
徴とする。Further, the heat insulating panel of the present invention is characterized in that surface plate materials are adhered to both surfaces of the sound absorbing and heat insulating substrate.
【0016】一方、本発明の吸音断熱性基板の製造法
は、一方の面から見たとき、多数の独立した凸部が全面
に整列分布され、これらの凸部の周りが凹部をなしてお
り、他方の面から見たとき、前記凸部に対応する部分は
凹部をなし、前記凹部に対応する部分は凸部をなしてお
り、両面の凸部の頂部がそれぞれ同じ高さにされた形状
をなす補強材の少なくとも片面に離型性を有する板材を
当接し、この板材と前記補強材との間隙に発泡樹脂の前
駆体を配置し、次いで前記発泡樹脂の前駆体を発泡硬化
させた後、前記板材をはがすことを特徴とする。On the other hand, in the method of manufacturing the sound-insulating and heat-insulating substrate of the present invention, when viewed from one side, a large number of independent convex portions are arranged and distributed over the entire surface, and concave portions are formed around these convex portions. When viewed from the other surface, the portion corresponding to the convex portion forms a concave portion, and the portion corresponding to the concave portion forms a convex portion, and the tops of the convex portions on both sides have the same height. After a plate material having releasability is brought into contact with at least one surface of the reinforcing material, the precursor of the foamed resin is placed in the gap between the plate material and the reinforcing material, and then the precursor of the foamed resin is foamed and cured. The plate material is peeled off.
【0017】また、本発明の断熱パネルの製造法は、一
方の面から見たとき、多数の独立した凸部が全面に整列
分布され、これらの凸部の周りが凹部をなしており、他
方の面から見たとき、前記凸部に対応する部分は凹部を
なし、前記凹部に対応する部分は凸部をなしており、両
面の凸部の頂部がそれぞれ同じ高さにされた形状をなす
補強材の両面に表面板材を当接し、この表面板材と前記
補強材との間隙に発泡樹脂の前駆体を配置し、次いで前
記発泡樹脂の前駆体を発泡硬化させて、前記表面板材を
接着一体化することを特徴とする。Further, in the method for manufacturing the heat insulating panel of the present invention, when viewed from one surface, a large number of independent convex portions are aligned and distributed over the entire surface, and the concave portions are formed around these convex portions. When viewed from the surface of, the portion corresponding to the convex portion forms a concave portion, and the portion corresponding to the concave portion forms a convex portion, and the top portions of the convex portions on both sides have the same height. The surface plate is brought into contact with both sides of the reinforcing material, the precursor of the foamed resin is placed in the gap between the surface plate and the reinforcing material, and then the precursor of the foamed resin is foamed and cured to bond the surface plate together. It is characterized by
【0018】以下、本発明について好ましい態様を挙げ
て更に詳細に説明する。Hereinafter, the present invention will be described in more detail with reference to preferred embodiments.
【0019】本発明で使用される補強材としては、上記
凹凸形状を有するものであれば、無機質繊維成形板、紙
等のセルロース繊維成形板、金属成形板、セラミックス
成形板、プラスチック成形板、FRP成形板等を何ら支
障なく使用することができる。しかし、低熱伝導性、発
泡樹脂との接着性などの点で、有機質又は無機質繊維か
らなる多孔質の成形板を用いるのが好ましく、特に不燃
性の点で無機質繊維からなる多孔質の成形板が好まし
い。無機質繊維としては、ガラス繊維、シリカ繊維、カ
ーボン繊維、ロックウール、セラミックス繊維等のいず
れの素材も何ら支障なく使用することができるが、コス
ト、生産性などの点で、ガラス繊維を用いるのが好まし
い。As the reinforcing material used in the present invention, as long as it has the above-mentioned concavo-convex shape, inorganic fiber molded plate, cellulose fiber molded plate such as paper, metal molded plate, ceramic molded plate, plastic molded plate, FRP. A molded plate or the like can be used without any trouble. However, in terms of low thermal conductivity, adhesiveness with foamed resin, etc., it is preferable to use a porous molded plate made of organic or inorganic fibers, and in particular a non-flammable porous molded plate made of inorganic fibers is preferable. preferable. As the inorganic fiber, any material such as glass fiber, silica fiber, carbon fiber, rock wool, and ceramics fiber can be used without any problem, but in view of cost, productivity, etc., it is preferable to use glass fiber. preferable.
【0020】上記無機質繊維からなる補強材は、例え
ば、次のような方法により製造することができる。The reinforcing material composed of the above-mentioned inorganic fibers can be manufactured, for example, by the following method.
【0021】まず、補強材を構成する無機質繊維の繊維
長は20mm以上が好ましい。繊維長が20mm未満では、凹又
は凸成形時の引張り作用で繊維間の絡み合いが解け、成
形品の密度が低い部分が生じる。繊維長の上限は特に限
定されないが、直線状の繊維からなる場合には、繊維長
が500mm を超えると、凹又は凸成形時に成形が不充分に
なったり、又は成形時の引張り作用で繊維が引きちぎら
れ、成形品の密度が低い部分が生じることもあるので、
20〜500mm の範囲がより好ましい。また、連続繊維を使
用する場合には、直線状にならないよう環状に集積した
繊維集合体を使用することが好ましい。First, the fiber length of the inorganic fibers constituting the reinforcing material is preferably 20 mm or more. When the fiber length is less than 20 mm, the entanglement between the fibers is released by the tensile action during the concave or convex molding, and the molded product has a low density portion. The upper limit of the fiber length is not particularly limited, but when the fiber length is more than 500 mm when it is composed of linear fibers, the molding becomes insufficient at the time of concave or convex molding, or the fiber may be stretched by the tensile action at the time of molding. It may be torn off, and some parts of the molded product may have low density.
The range of 20 to 500 mm is more preferable. Further, when continuous fibers are used, it is preferable to use a fiber assembly that is annularly accumulated so as not to be linear.
【0022】これらの無機質繊維を、1m2あたり50〜5,
000 g、好ましくは200 〜2,000 g集積させ、バインダ
ーを含有させてマットとする。バインダーとしては、熱
可塑性樹脂、熱硬化性樹脂、無機質接着剤の周知のもの
が使用できる。例えばフェノール樹脂、尿素樹脂、メラ
ミン樹脂、ポリオレフィン樹脂、ポリエステル樹脂、エ
ポキシ樹脂、スチレン樹脂及びその共重合体等の有機質
バインダーの他、水ガラスを初めとした無機質バインダ
ーやそれらの混合物等が何ら支障なく使用されるが、コ
スト、耐熱性、不燃性の点で特にフェノール系樹脂が好
ましく使用される。バインダーを、全重量に対し2〜70
重量%、好ましくは5〜30重量%、特に好ましくは8〜
20重量%含有したマットが、不燃性、耐熱性、機械的強
度の点で好ましく使用される。These inorganic fibers are added in an amount of 50 to 5 per m 2 .
000 g, preferably 200 to 2,000 g is accumulated and a binder is contained to form a mat. Known binders such as thermoplastic resins, thermosetting resins and inorganic adhesives can be used as the binder. For example, in addition to organic binders such as phenol resins, urea resins, melamine resins, polyolefin resins, polyester resins, epoxy resins, styrene resins and their copolymers, inorganic binders such as water glass and mixtures thereof can be used without any problems. Although used, a phenolic resin is particularly preferably used in terms of cost, heat resistance and nonflammability. 2 to 70 of binder to total weight
% By weight, preferably 5 to 30% by weight, particularly preferably 8 to
A mat containing 20% by weight is preferably used in terms of nonflammability, heat resistance and mechanical strength.
【0023】本発明においては、遠心法により得られる
グラスウールマットや、繊維長20mm以上のチョップドス
トランドマット、環状に集積したコンティニュアススト
ランドマットなどが特に好ましく使用される。これらの
ガラス繊維マットとしては、100mm 幅の試料を用いて、
つかみ間隔100mm 、速度10mm/分で引張り試験を行った
ときの引張り伸度が50%以上、好ましくは70%以上の、
繊維の絡み合いが大きなマットが好ましく用いられる。In the present invention, a glass wool mat obtained by a centrifugal method, a chopped strand mat having a fiber length of 20 mm or more, a continuous strand mat accumulated in an annular shape, etc. are particularly preferably used. For these glass fiber mats, we used 100 mm wide samples,
A tensile elongation of 50% or more, preferably 70% or more, when a tensile test is performed at a grip interval of 100 mm and a speed of 10 mm / min.
A mat having a large entanglement of fibers is preferably used.
【0024】次に、上記無機質繊維マットを、例えば、
全面に整列分布された同じ高さの多数の独立した凸部
と、この凸部の回りを囲む同じ深さの凹部とを有する第
1の型と、前記第1の型の凹部に入り込むように形成さ
れた同じ高さの凸部と、前記第1の型の凸部を受け入れ
るように形成された同じ深さの凹部とを有する第2の型
との間で挟んで、加熱圧縮することにより成形する。こ
の場合、バインダーとして熱硬化性樹脂を用いた場合に
は、マットを加熱圧縮するだけで成形できる。また、バ
インダーとして熱可塑性樹脂を用いた場合には、マット
を一旦加熱した後、圧縮した状態で冷却するのが好まし
い。本発明における加熱圧縮とは、上記のように、加熱
と圧縮とを同時に行う場合に限らず、一旦加熱した後、
圧縮し、更に冷却するような場合も含む意味である。Next, the above-mentioned inorganic fiber mat is, for example,
A first mold having a large number of independent convex portions of the same height, which are aligned and distributed over the entire surface, and concave portions of the same depth surrounding the convex portions, and so as to enter the concave portions of the first mold. By sandwiching it between a second mold having a projection of the same height formed and a recess of the same depth formed so as to receive the projection of the first mold, and by heating and compressing Mold. In this case, when a thermosetting resin is used as the binder, the mat can be molded simply by heating and compression. Further, when a thermoplastic resin is used as the binder, it is preferable to heat the mat once and then cool it in a compressed state. The heating and compression in the present invention is not limited to the case where the heating and the compression are performed at the same time as described above.
It is meant to include cases such as compression and further cooling.
【0025】この場合、補強材の板密度が0.08〜0.8g/c
m3、無機質繊維部分の板厚が0.1 〜10mmになるように、
加熱圧縮して成形するのが好ましい。成形品の密度が0.
08g/cm3 よりも小さいと、補強材の強度が不足し、0.8g
/cm3よりも大きいと、吸音、断熱性が低下するのみなら
ず、発泡樹脂との接着性が低下する。なお、補強材の密
度は、0.1 〜0.6g/cm3とすることが更に好ましい。ま
た、補強材の無機質繊維部分の板厚が0.1 mmよりも薄い
と、十分な強度が得られず、10mmよりも厚いと、補強材
の重量が重くなりすぎてしまう。なお、上記板厚は、1
〜5mmとすることが更に好ましい。In this case, the reinforcing material has a plate density of 0.08 to 0.8 g / c.
m 3 , so that the thickness of the inorganic fiber part is 0.1 to 10 mm,
It is preferable to heat-compress and shape. The density of the molded product is 0.
If it is less than 08g / cm 3 , the strength of the reinforcing material will be insufficient, and 0.8g
If it is larger than / cm 3, not only the sound absorption and heat insulating properties are deteriorated, but also the adhesiveness with the foamed resin is deteriorated. The density of the reinforcing material is more preferably 0.1 to 0.6 g / cm 3 . Further, if the plate thickness of the inorganic fiber portion of the reinforcing material is thinner than 0.1 mm, sufficient strength cannot be obtained, and if it is thicker than 10 mm, the weight of the reinforcing material becomes too heavy. The plate thickness is 1
More preferably, it is set to -5 mm.
【0026】こうして得られた補強材は、一方の面から
見たとき、多数の独立した凸部が全面に整列分布され、
これらの凸部の回りが凹部をなしており、他方の面から
見たとき、前記凸部に対応する部分は凹部をなし、前記
凹部に対応する部分は凸部をなしており、両面の凸部の
頂部がそれぞれ同じ高さにされた形状をなしている。こ
こで独立した凸部というのは、周囲を凹部で囲まれた凸
部という意味である。独立した凸部の形状は、特に限定
されず、例えば丸、四角、三角、+字、Y字など、各種
の形状が採用できる。また、少なくとも一方の面から見
たときに多数の独立した凸部が形成されていればよく、
他方の面から見たときには凸部が連続していてもよい。
但し、この場合、後述する発泡樹脂は、少なくとも多数
の独立した凸部が形成される方の面に施されることが好
ましい。また、本発明においては、凸部と凹部とが交互
に、かつ、いずれの面から見ても、多数の独立した凸部
が存在するように形成することが最も好ましい。In the reinforcing material thus obtained, when viewed from one surface, a large number of independent convex portions are arranged and distributed over the entire surface,
Around these convex portions form a concave portion, and when viewed from the other surface, a portion corresponding to the convex portion forms a concave portion, and a portion corresponding to the concave portion forms a convex portion. The tops of the parts have the same height. Here, the independent convex portion means a convex portion surrounded by concave portions. The shape of the independent convex portion is not particularly limited, and various shapes such as a circle, a square, a triangle, a + character, and a Y shape can be adopted. Also, it is sufficient if a large number of independent convex portions are formed when viewed from at least one surface,
The convex portions may be continuous when viewed from the other surface.
However, in this case, it is preferable that the foamed resin described below is applied to at least the surface on which a large number of independent convex portions are formed. Further, in the present invention, it is most preferable that the convex portions and the concave portions are alternately formed and that there are a large number of independent convex portions when viewed from any surface.
【0027】また、本発明の補強材は、凸部又は凹部が
1m2あたり100 〜10,000個で、一方の面の凸部から他方
の面の凸部に至る全体の厚さが、無機繊維質の板厚の2
倍以上で5〜300 mmとされていることが好ましく、10〜
150mm とされていることが更に好ましい。凸部又は凹部
が1m2あたり100 個以下では、補強材としての効果が少
なく、また、1m2あたり10,000個を超えると、凹凸の高
さが確保できないという欠陥が生じてしまう。凸部又は
凹部は、1m2あたり200 〜2,500 個となるようにするこ
とが更に好ましい。また、補強材全体の厚さが5mm以下
では、補強効果及び断熱、吸音特性が充分に発揮され
ず、上記厚さが300 mm以上では、補強効果が低下する。The reinforcing material of the present invention has 100 to 10,000 convex portions or concave portions per m 2 , and the total thickness from the convex portion on one surface to the convex portion on the other surface is an inorganic fiber material. Thickness of 2
It is preferable that the distance is more than double and the distance is 5 to 300 mm, and 10 to
More preferably, it is 150 mm. If the number of protrusions or recesses is 100 or less per 1 m 2 , the effect as a reinforcing material is small. If the number of protrusions or recesses exceeds 10,000 per 1 2 , the height of irregularities cannot be ensured. It is more preferable that the number of projections or recesses is 200 to 2,500 per 1 m 2 . Further, if the thickness of the entire reinforcing material is 5 mm or less, the reinforcing effect and heat insulation and sound absorbing properties are not sufficiently exhibited, and if the thickness is 300 mm or more, the reinforcing effect is reduced.
【0028】本発明では、上記補強材の少なくとも一方
の面の凹部に発泡樹脂を充填して一体化し、少なくとも
1つの平滑面を有する発泡成形板とする。この場合、特
別に重量やコスト等の制限がなければ、補強材の両面の
凹部に発泡樹脂を充填することが、製品の強度、断熱性
能等の点から好ましい。In the present invention, a foamed resin is filled in the concave portion of at least one surface of the reinforcing material and integrated to form a foamed molded plate having at least one smooth surface. In this case, if there are no particular restrictions on weight, cost, etc., it is preferable to fill the concave portions on both sides of the reinforcing material with the foamed resin from the viewpoint of the strength of the product, the heat insulating performance, and the like.
【0029】また、上記補強材を2枚以上、互いの凸部
を合わせて配置し、補強材凹部間の空隙と、外部に面し
た少なくとも一方の面の凹部とに発泡樹脂を充填して、
厚みの大きな発泡成形板を得ることもできる。Further, two or more of the above reinforcing materials are arranged so that their convex portions are aligned with each other, and the voids between the concave portions of the reinforcing material and the concave portions of at least one surface facing the outside are filled with foamed resin,
It is also possible to obtain a foam molded plate having a large thickness.
【0030】本発明において、補強材の少なくとも片面
に離型性を有する板材を当接し、この板材と補強材との
間隙に発泡樹脂の前駆体を配置し、次いで上記発泡樹脂
の前駆体を加熱又は自己発熱により発泡硬化させた後、
板材をはがすようにすれば、少なくとも片面の凹部に発
泡樹脂が充填されて、平滑な面に成形された吸音断熱性
基板が得られる。In the present invention, a plate material having releasability is brought into contact with at least one side of the reinforcing material, a foamed resin precursor is placed in a gap between the plate material and the reinforcing material, and then the foamed resin precursor is heated. Or after foaming and curing by self-heating,
If the plate material is peeled off, a foamed resin is filled in at least one of the concave portions, and a sound absorbing and heat insulating substrate having a smooth surface is obtained.
【0031】一方、上記補強材の両面に表面板材を当接
し、この表面板材と補強材との間隙に発泡樹脂の前駆体
を配置し、次いで上記発泡樹脂の前駆体を発泡硬化させ
て、補強材の凹部に発泡樹脂を充填させるとともに、上
記表面板材を接着一体化すれば、断熱パネルが得られ
る。この場合、表面板材としては、カラー鋼板、スチー
ル板、アルミ板等の金属板などを用いるのが好ましい。
また、板材の厚さは0.1〜2mmが好ましく、0.3 〜1mm
がより好ましい。On the other hand, a surface plate material is brought into contact with both surfaces of the reinforcing material, a precursor of a foamed resin is placed in a gap between the surface plate material and the reinforcing material, and then the precursor of the foamed resin is foam-cured to reinforce. A heat insulating panel can be obtained by filling the recessed portion of the material with the foamed resin and adhering the surface plate material integrally. In this case, as the surface plate material, it is preferable to use a metal plate such as a color steel plate, a steel plate or an aluminum plate.
Also, the thickness of the plate material is preferably 0.1 to 2 mm, 0.3 to 1 mm
Is more preferable.
【0032】発泡樹脂としては、ポリエチレン、ポリプ
ロピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ
スチレン等の熱可塑性発泡樹脂や、ポリウレタン、ポリ
イソシアヌレート、フェノール樹脂、尿素樹脂、ウレタ
ン/フェノール樹脂、エポキシ樹脂、シリコーン等の熱
硬化性発泡樹脂等を何ら支障なく使用できる。また、水
酸化アルミニウム、酸化アンチモン、ハロゲン化難燃
剤、リン酸系難燃剤等の難燃剤を、上記発泡樹脂と併用
して、発泡体の難燃性を改善することもできる。Examples of the foamed resin include thermoplastic foamed resins such as polyethylene, polypropylene, polyvinyl chloride, polyvinylidene chloride and polystyrene, polyurethane, polyisocyanurate, phenol resin, urea resin, urethane / phenol resin, epoxy resin and silicone. Thermosetting foamed resin such as can be used without any trouble. Further, a flame retardant such as aluminum hydroxide, antimony oxide, a halogenated flame retardant, or a phosphoric acid flame retardant may be used in combination with the foam resin to improve the flame retardancy of the foam.
【0033】上記発泡樹脂は、発泡前の前駆体が液状、
ペースト状、粉状、ビーズ状等の形状であることが、作
業性の点から好ましい。また、発泡樹脂の発泡倍率は5
〜200 倍が好ましく、10〜100 倍がより好ましい。発泡
倍率が5倍未満の発泡樹脂では、樹脂骨格を通しての熱
移動が大きくなり、断熱性が低下するので好ましくな
い。また、発泡倍率が200 倍を超えるものでは、通気性
が増加して断熱性の低下を招いたり、強度が著しく低下
したりするので好ましくない。In the foamed resin, the precursor before foaming is liquid,
From the viewpoint of workability, the shape of paste, powder, beads or the like is preferable. The foaming ratio of the foamed resin is 5
It is preferably from 200 to 200 times, more preferably from 10 to 100 times. A foamed resin having a foaming ratio of less than 5 times is not preferable because the heat transfer through the resin skeleton becomes large and the heat insulating property deteriorates. On the other hand, if the expansion ratio is more than 200 times, the air permeability is increased, the heat insulating property is deteriorated, and the strength is significantly decreased, which is not preferable.
【0034】また、補強材と発泡樹脂との重量比は、
0.1〜0.9 : 0.9〜0.1 の範囲とするのが好ましく、 0.
2〜0.8 : 0.8〜0.2 とするのがより好ましい。補強材
の割合が上記範囲よりも小さいと、補強材による補強効
果が期待されず、一方、発泡樹脂の割合が上記範囲より
も小さいと、発泡樹脂による断熱効果が十分に発現され
ない。The weight ratio of the reinforcing material to the foamed resin is
0.1 to 0.9: 0.9 to 0.1 is preferable and 0.
2 to 0.8: More preferably 0.8 to 0.2. When the proportion of the reinforcing material is smaller than the above range, the reinforcing effect by the reinforcing material is not expected, while when the proportion of the foamed resin is smaller than the above range, the heat insulating effect by the foamed resin is not sufficiently exhibited.
【0035】板材と補強材との間隙に発泡樹脂の前駆体
を配置するには、前駆体を予め補強材や板材上に、散
布、塗布などの方法で付着させたのち、補強材と板材と
当接させればよい。また、前駆体が液状の場合には、補
強材と板材とを当接させたのち、補強材と板材との間隙
に前駆体を圧入してもよい。In order to arrange the foamed resin precursor in the gap between the plate and the reinforcing material, the precursor is preliminarily adhered to the reinforcing material or the plate material by a method such as spraying or coating, and then the reinforcing material and the plate material. It is sufficient to bring them into contact. In addition, when the precursor is liquid, the precursor may be pressed into the gap between the reinforcing material and the plate after the reinforcing material and the plate are brought into contact with each other.
【0036】発泡硬化後における発泡樹脂の密度は、5
〜100kg/m3の範囲とするのが好ましく、10〜50kg/m3 が
より好ましい。更に、補強材と発泡樹脂とを合わせた成
形板全体の密度は10〜200 kg/m3 の範囲とされ、特に20
〜100 kg/m3 であることが好ましい。The density of the foamed resin after foam hardening is 5
It is preferably in the range of ~100kg / m 3, 10~50kg / m 3 and more preferably. Furthermore, the density of the entire molded plate that combines the reinforcing material and the foamed resin is in the range of 10 to 200 kg / m 3 , and especially 20
It is preferably about 100 kg / m 3 .
【0037】こうして得られた本発明の吸音断熱性基板
は、補強材と発泡樹脂とが一体化されており、優れた吸
音性、断熱性及び強度を有している。この吸音断熱性基
板は、例えば既存の方法により意匠性表面材と貼り合わ
せて、内装材として使用することができる。The sound-absorbing and heat-insulating substrate of the present invention thus obtained has the reinforcing material and the foamed resin integrated, and has excellent sound-absorbing property, heat insulating property and strength. This sound-absorbing and heat-insulating substrate can be used as an interior material by adhering it to a design surface material by an existing method, for example.
【0038】一方、本発明の断熱パネルは、上記吸音断
熱性基板を芯材とし、その両面に板材が一体接着されて
おり、優れた断熱性を有している。この断熱性パネル
は、建物や冷凍・冷蔵倉庫等の間仕切り材や、壁材、床
材、天井材等として使用することができる。On the other hand, in the heat insulating panel of the present invention, the sound absorbing and heat insulating substrate is used as the core material, and the plate material is integrally bonded to both surfaces thereof, and thus has excellent heat insulating properties. This heat-insulating panel can be used as a partitioning material for a building, a refrigerated warehouse, a wall material, a floor material, a ceiling material, or the like.
【0039】[0039]
【作用】本発明で使用される補強材は、少なくとも一方
の面から見たとき、多数の独立した凸部が全面に整列分
布されている。この凸部は、その反対面側が凹部をなし
ており、いわばキャップ状に突出した形状をなしてい
る。このような形状の凸部は、それを押し潰そうとする
力が作用したとき、その力が凸部の周壁に対して引張り
力や押圧力として作用する。このため、凸部の周壁を破
壊しなければ押し潰すことができず、そのような力に対
して極めて高い抵抗力を示す。In the reinforcing material used in the present invention, when viewed from at least one surface, a large number of independent convex portions are aligned and distributed over the entire surface. This convex portion has a concave portion on the opposite surface side, and has a so-called cap-like protruding shape. When a force for crushing the convex portion having such a shape acts, the force acts as a tensile force or a pressing force on the peripheral wall of the convex portion. Therefore, it cannot be crushed unless the peripheral wall of the convex portion is destroyed, and an extremely high resistance force against such a force is exhibited.
【0040】本発明の吸音断熱性基板は、上記高強度の
補強材の凹部に発泡樹脂を充填したものであり、軽量で
ありながら非常に高い圧縮強度や曲げ強度を有してい
る。また、発泡樹脂が充填された面は平滑面をなしてい
るので、例えばパネル化する場合、表面材との接着面積
が広く接着性が良好になる。更に、補強材が上記凹凸形
状をなすことにより、吸音断熱性基板として充分な量の
発泡樹脂を充填することができる。更にまた、また、発
泡フェノール樹脂、不燃化発泡樹脂等の、強度的に問題
がある発泡樹脂であっても、問題なく使用することがで
きる。The sound-insulating and heat-insulating substrate of the present invention is obtained by filling the concave portion of the high-strength reinforcing material with foamed resin, and has a very high compressive strength and bending strength while being lightweight. Further, since the surface filled with the foamed resin is a smooth surface, for example, in the case of making a panel, the adhesive area with the surface material is wide and the adhesiveness is good. Further, since the reinforcing material has the uneven shape, it is possible to fill a sufficient amount of foamed resin as the sound absorbing and heat insulating substrate. Furthermore, even foamed resins having a problem in strength, such as foamed phenolic resins and incombustible foamed resins, can be used without any problems.
【0041】なお、本発明の好ましい態様において、繊
維長が20mm以上、密度が0.08〜0.8g/cm3、板厚が0.1 〜
10mmの無機質繊維からなる補強材を用いた場合には、発
泡樹脂と補強材との接着性が良好なため、強度が一層改
善される。また、補強材自体が断熱性を有し、補強材を
通しての熱移動が少ないので、断熱性が一層良好にな
る。更に、無機質繊維からなる補強材と、不燃化発泡樹
脂等を組合せた場合には、不燃性の高い基板を得ること
ができる。In a preferred embodiment of the present invention, the fiber length is 20 mm or more, the density is 0.08 to 0.8 g / cm 3 , and the plate thickness is 0.1 to.
When a reinforcing material made of 10 mm inorganic fiber is used, the adhesiveness between the foamed resin and the reinforcing material is good, and therefore the strength is further improved. Further, since the reinforcing material itself has a heat insulating property and the heat transfer through the reinforcing material is small, the heat insulating property is further improved. Furthermore, when a reinforcing material made of an inorganic fiber and a non-combustible foamed resin are combined, a highly non-combustible substrate can be obtained.
【0042】一方、本発明の断熱パネルの製造方法によ
れば、上記補強材に板材を当接し、補強材と板材との間
隙に発泡樹脂の前駆体を配置して、発泡硬化させること
により、強度、断熱性に優れた芯材の成形と、芯材と表
面材の接着とを同時に行うことができ、生産性が大幅に
改善される。また、発泡樹脂の充填ムラや、表面材と芯
材との接着不良等が少なく、パネルの品質も良好にな
る。On the other hand, according to the method of manufacturing a heat insulating panel of the present invention, a plate material is brought into contact with the reinforcing material, a precursor of the foamed resin is placed in a gap between the reinforcing material and the plate material, and foamed and cured. Since the molding of the core material having excellent strength and heat insulation and the bonding of the core material and the surface material can be performed at the same time, the productivity is greatly improved. In addition, the quality of the panel is improved with less uneven filling of the foamed resin and poor adhesion between the surface material and the core material.
【0043】なお、上記の製造方法において、離型性を
有する板材を使用すれば、強度、断熱性、吸音性に優れ
た基板を生産性良く製造することができる。In the above manufacturing method, if a plate material having releasability is used, a substrate excellent in strength, heat insulation and sound absorption can be manufactured with high productivity.
【0044】[0044]
【実施例】図2、3には、本発明において用いられる補
強材の一実施例が示されている。なお、図2は補強材の
斜視図、図3は図2のA−A線に沿った断面図である。2 and 3 show an embodiment of the reinforcing material used in the present invention. 2 is a perspective view of the reinforcing material, and FIG. 3 is a sectional view taken along the line AA of FIG.
【0045】この補強材10は、ガラス繊維マットを圧
縮成形してなる多孔質の板状体1で形成され、一方の面
から見たとき、多数の独立した凸部2が整列して設けら
れ、これらの凸部2の回りが凹部3をなす形状とされて
いる。ただし、反対側の面から見たときには、上記凸部
2に該当する部分が凹部をなし、凹部3に該当する部分
が独立した凸部をなしている。この実施例の場合、凸部
2の頂面及び凹部3の底壁の形状は、正方形とされてい
る。This reinforcing material 10 is formed of a porous plate-like body 1 formed by compression molding a glass fiber mat, and when viewed from one side, a large number of independent convex portions 2 are arranged in an array. Around these convex portions 2, a concave portion 3 is formed. However, when viewed from the opposite surface, the portion corresponding to the convex portion 2 forms a concave portion, and the portion corresponding to the concave portion 3 forms an independent convex portion. In the case of this embodiment, the top surface of the convex portion 2 and the bottom wall of the concave portion 3 have a square shape.
【0046】発泡樹脂と一体化し、また、吸音断熱性基
板としての望ましい曲げ強度や圧縮強度などを得るため
に、多孔質の板状体1を構成するガラス繊維の繊維長は
20mm以上、密度は0.08〜0.8g/cm3とされる。また、図3
における板厚dは、0.1 〜10mmとされる。更に、一方の
面の凸部から他方の面の凸部に至る補強材10の全体の
厚さHは、上記板厚dの2倍以上であって5〜300 mmの
範囲とされる。更に、凹凸のピッチWは10〜100 mm、よ
り好ましくは20〜60mmとされる。そして、一方の面から
見たとき、凸部2の数は、1m2あたり100 〜10,000個と
なるようにされる。In order to be integrated with the foamed resin and to obtain the desired bending strength and compressive strength as the sound absorbing and heat insulating substrate, the fiber length of the glass fiber constituting the porous plate-shaped body 1 is
The density is 20 mm or more and the density is 0.08 to 0.8 g / cm 3 . Also, FIG.
The plate thickness d in the above is 0.1 to 10 mm. Further, the total thickness H of the reinforcing member 10 from the convex portion on one surface to the convex portion on the other surface is not less than twice the plate thickness d and is in the range of 5 to 300 mm. Further, the pitch W of the unevenness is 10 to 100 mm, more preferably 20 to 60 mm. Then, when viewed from one surface, the number of the convex portions 2 is set to 100 to 10,000 per 1 m 2 .
【0047】図4には、上記補強材10の成形方法の一
例が示されている。すなわち、繊維長20mm以上のガラス
繊維を集積してなる、バインダーを含有するマット4
を、全面に整列分布された同じ高さの多数の独立した凸
部6と、この凸部の回りを囲む同じ深さの凹部7とを有
する第1の型5と、前記第1の型5の凹部7に入り込む
ように形成された同じ高さの凸部7’と、前記第1の型
5の凸部6を受け入れるように形成された同じ深さの凹
部6’とを有する第2の型5’との間で挟み、成形品の
密度が0.08〜0.8g/cm3、無機質繊維部分の板厚が0.1 〜
10mmになるように、加熱圧縮して成形する。FIG. 4 shows an example of a method of molding the reinforcing material 10. That is, a mat 4 containing a binder formed by accumulating glass fibers having a fiber length of 20 mm or more.
A first mold 5 having a large number of independent convex portions 6 of the same height which are aligned and distributed on the entire surface, and concave portions 7 surrounding the convex portions and having the same depth; and the first mold 5. Second convex portion 7 ′ having the same height formed so as to enter the concave portion 7 of the first mold 5 and concave portion 6 ′ having the same depth formed so as to receive the convex portion 6 of the first mold 5. sandwiched between the mold 5 ', the density of the molded article 0.08~0.8g / cm 3, the thickness of the inorganic fiber sections 0.1 to
Heat and compress to form 10 mm.
【0048】図1には、上記補強材10と、発泡樹脂1
1と、表面板材12、12’とが一体成形されてなる断
熱パネルが示されている。すなわち、補強材10の両面
に、カラー鋼板等の金属板からなる表面板材12、1
2’が接着され、補強材10と表面板材12、12’と
の間隙に、発泡樹脂11が充填されたものである。この
場合、補強材10の凸部2が表面板材12、12’に当
接されているが、上記凸部2が同じ高さであるため全て
の凸部2を当接させることができる。そして、凸部2の
反対側は凹部3をなし、この凹部3の内部には発泡樹脂
11が充填されている。In FIG. 1, the reinforcing material 10 and the foamed resin 1 are shown.
1 and the surface plate materials 12 and 12 'are integrally molded, the heat insulation panel is shown. That is, on both surfaces of the reinforcing material 10, surface plate materials 12 and 1 made of a metal plate such as a color steel plate.
2'is bonded, and the foamed resin 11 is filled in the gap between the reinforcing material 10 and the surface plate materials 12, 12 '. In this case, the convex portions 2 of the reinforcing member 10 are in contact with the surface plate members 12 and 12 ', but since the convex portions 2 have the same height, all the convex portions 2 can be brought into contact with each other. The opposite side of the convex portion 2 forms a concave portion 3, and the inside of the concave portion 3 is filled with the foamed resin 11.
【0049】したがって、このパネルに図1中矢印Fで
示すような押圧力が作用すると、その力は周壁9及び発
泡樹脂11に対する引張り力や押圧力として作用し、周
壁9及び発泡樹脂11を破壊しなければ押し潰すことが
できず、補強材単独または発泡樹脂単独の場合と比較し
て極めて高い抵抗力が得られる。このように、この断熱
パネルは、軽量でありながら充分な強度を有しており、
また、補強材10が多孔質繊維構造であることと、凹部
3に充填された発泡樹脂11とによって、優れた断熱
性、吸音性が付与されている。Therefore, when a pressing force as shown by an arrow F in FIG. 1 is applied to this panel, the force acts as a tensile force or a pressing force on the peripheral wall 9 and the foamed resin 11, and destroys the peripheral wall 9 and the foamed resin 11. If it is not crushed, it cannot be crushed, and extremely high resistance can be obtained as compared with the case of using the reinforcing material alone or the foamed resin alone. In this way, this insulation panel is lightweight yet has sufficient strength,
Further, excellent heat insulating property and sound absorbing property are provided by the reinforcing material 10 having the porous fiber structure and the foamed resin 11 filled in the concave portion 3.
【0050】実施例1 遠心法によって製造されたガラス短繊維に、レゾール型
フェノール樹脂水溶液からなるバインダーを噴霧しつ
つ、有孔ベルト上に集積し、繊維径6〜8μm、繊維長
50〜80mmのガラス短繊維からなる、未硬化のバインダー
が10重量%付着した、単位面積当たりの重量が800 g/m2
であるグラスウールマットを得た。このグラスウールマ
ットの引張り伸度は110 %であった。Example 1 Short glass fibers produced by a centrifugal method were sprayed with a binder consisting of an aqueous solution of a resol type phenolic resin and accumulated on a perforated belt to have a fiber diameter of 6 to 8 μm and a fiber length.
800 g / m 2 per unit area with 10% by weight of uncured binder consisting of 50-80 mm short glass fibers
To obtain a glass wool mat. The tensile elongation of this glass wool mat was 110%.
【0051】こうして得られたグラスウールマットを、
図4に示したような形状の成形型に設置し、第1の型5
と第2の型5’との間に挟んで加熱圧縮することによ
り、図3における全体の厚さHが40mm(投影厚み0.04
m)、凹凸のピッチWが50mm、板厚dが2mm、嵩密度が
20kg/m3 、板の密度が0.18g/cm3 のグラスウール製補強
材を作製した。なお、ここで嵩密度は、成形品の重量を
投影面積(m2)と、投影厚み(m) で割った値であり、以下
の実施例、比較例についても同様である。The glass wool mat thus obtained was
The first mold 5 is installed in a mold having a shape as shown in FIG.
And the second mold 5'is sandwiched and heat-compressed so that the total thickness H in FIG. 3 is 40 mm (projected thickness 0.04
m), the pitch W of the unevenness is 50 mm, the plate thickness d is 2 mm, and the bulk density is
A glass wool reinforcing material having a sheet density of 20 kg / m 3 and a plate density of 0.18 g / cm 3 was produced. Here, the bulk density is a value obtained by dividing the weight of the molded product by the projected area (m 2 ) and the projected thickness (m), and the same applies to the following Examples and Comparative Examples.
【0052】この補強材を、厚さ0.5mm のカラー鋼板2
枚の間に配置し、カラー鋼板と補強材との間隙に、発泡
倍率50倍のノボラック型発泡フェノール樹脂粉末を、片
側につき400g/m2 ずつ散布した。この、カラー鋼板/粉
状発泡フェノール樹脂/補強材/粉状発泡フェノール樹
脂/カラー鋼板のアセンブリ体を、160 ℃のプレスで41
mmの厚みに挟圧加熱して樹脂を発泡硬化せしめ、嵩密度
40kg/m3 、厚さ40mm、補強材と発泡樹脂との重量比 0.
5:0.5 の成形板を芯材としたパネルを得た。This reinforcing material is applied to a color steel plate 2 having a thickness of 0.5 mm.
The novolac-type expanded phenolic resin powder having an expansion ratio of 50 was sprinkled at 400 g / m 2 on each side in the gap between the colored steel plate and the reinforcing material. This colored steel plate / powdered phenolic resin / reinforcement material / powdered phenolic resin / colored steel plate assembly is pressed at a temperature of 160 ° C to
The resin is foamed and hardened by pinching and heating to a thickness of mm to obtain a bulk density.
40kg / m 3 , thickness 40mm, weight ratio of reinforcing material and foamed resin 0.
A panel using a 5: 0.5 molded plate as a core material was obtained.
【0053】こうして得られたパネルの一部を50mm角に
切り出し、切断断面を観察したところ、補強材の全凹部
が発泡フェノール樹脂で充填され、また補強材とカラー
鋼板とが一体的に接着されていた。A part of the panel thus obtained was cut into a 50 mm square and the cut cross section was observed. As a result, all the recesses of the reinforcing material were filled with the foamed phenol resin, and the reinforcing material and the color steel plate were integrally bonded. Was there.
【0054】比較例1 単位面積当りの重量が1600g/m2のグラスウールマットを
実施例1と同様にして成形し、全体の厚さHが40mm(投
影厚み0.04m)、凹凸のピッチWが50mm、板厚dが2m
m、嵩密度が40kg/m3 、板の密度が0.36g/cm3 のグラス
ウール製補強材を作製した。Comparative Example 1 A glass wool mat having a weight per unit area of 1600 g / m 2 was molded in the same manner as in Example 1, and the total thickness H was 40 mm (projected thickness 0.04 m) and the pitch W of the unevenness was 50 mm. , Plate thickness d is 2m
A glass wool reinforcing material having m, a bulk density of 40 kg / m 3 , and a plate density of 0.36 g / cm 3 was produced.
【0055】この補強材の両面の凸部にエポキシ接着剤
を塗布して、2枚のカラー鋼板で挟み、嵩密度40kg/m
3 、厚み40mmの、上記補強材のみを芯材としたパネルを
作製した。Epoxy adhesive was applied to the convex portions on both sides of this reinforcing material, and it was sandwiched between two colored steel plates to give a bulk density of 40 kg / m.
3. A panel having a thickness of 40 mm and using only the above reinforcing material as a core material was produced.
【0056】比較例2 発泡倍率が25倍のノボラック型発泡フェノール樹脂粉末
1600g/m2 を2枚のカラー鋼板間に散布し、160 ℃のプ
レスで41mmの厚みに挟圧加熱して樹脂を発泡硬化せし
め、嵩密度40kg/m3 厚さ40mmの、発泡樹脂のみを芯材と
したパネルを作製した。Comparative Example 2 Novolak-type expanded phenolic resin powder having an expansion ratio of 25 times
Disperse 1600 g / m 2 between two colored steel plates, press and heat at a pressure of 160 ° C to a thickness of 41 mm to foam and harden the resin, and use only the foamed resin with a bulk density of 40 kg / m 3 and a thickness of 40 mm. A panel as a core material was produced.
【0057】比較例3 単位面積当りの重量が1600g/m2のグラスウールマット
を、厚み40mmに成形し、密度40kg/m3 のボードを作製し
た。このボードの両面にエポキシ接着剤を塗布して2枚
のカラー鋼板で挟み、密度40kg/m3 、厚み40mmのグラス
ウールボードのみを芯材としたパネルを作製した。Comparative Example 3 A glass wool mat having a weight per unit area of 1600 g / m 2 was molded to a thickness of 40 mm to prepare a board having a density of 40 kg / m 3 . An epoxy adhesive was applied to both sides of this board and sandwiched between two colored steel plates to prepare a panel using only a glass wool board having a density of 40 kg / m 3 and a thickness of 40 mm as a core material.
【0058】比較例4 実施例1で用いたグラスウールマットを、一方向にのみ
凹凸が形成された波型金型に設置し、加圧圧縮すること
により、全体の厚さが40mm(投影厚み0.04m)、凹凸の
ピッチが50mm、板厚dが2mm、嵩密度が20kg/m3 のグラ
スウール製連続波型補強材を作製した。この補強材を使
用して、実施例1と同様にして、カラー鋼板/発泡樹脂
/波型補強材/発泡樹脂/カラー鋼板のパネルを作製し
た。こうして得られたパネルの一部を50mm角に切り出
し、切断断面を観察したところ、補強材凹部が発泡フェ
ノール樹脂で充填されない部分や、カラー鋼板と接着さ
れてない部分が散見された。Comparative Example 4 The glass wool mat used in Example 1 was placed in a corrugated metal mold having irregularities formed in only one direction and compressed under pressure to give an overall thickness of 40 mm (projected thickness 0.04 m), the pitch of unevenness was 50 mm, the plate thickness d was 2 mm, and the bulk density was 20 kg / m 3, and a continuous wave type reinforcing material made of glass wool was produced. Using this reinforcing material, a panel of colored steel plate / foamed resin / corrugated reinforcing material / foamed resin / colored steel plate was produced in the same manner as in Example 1. A part of the panel thus obtained was cut into a 50 mm square, and the cut cross section was observed. As a result, some parts of the recess of the reinforcing material were not filled with the phenolic resin foam, and some were not bonded to the color steel plate.
【0059】試験例 実施例1及び比較例1〜3のパネルについて、厚み変形
率10%における圧縮強度、曲げ破壊強度、及び熱伝導度
を測定した。その結果を表1に示す。Test Example For the panels of Example 1 and Comparative Examples 1 to 3, the compressive strength, bending fracture strength and thermal conductivity at a thickness deformation rate of 10% were measured. The results are shown in Table 1.
【0060】上記において、厚み変形率10%における圧
縮強度は、パネルを305mm ×305mmの正方形に切り出
し、両面を本実験の荷重範囲で撓まない程度の厚さを有
する鉄板で挾み、クロスヘッドスピード10mm/分で圧縮
試験に供し、厚み変形率10%における圧縮強度を求め、
kg/m2 に換算表示した。In the above, the compressive strength at a thickness deformation rate of 10% was obtained by cutting out a panel into a square of 305 mm × 305 mm, sandwiching both sides with an iron plate having a thickness that does not bend in the load range of this experiment, and cross head. It was subjected to a compression test at a speed of 10 mm / min, and the compression strength at a thickness deformation rate of 10% was calculated.
Converted to kg / m 2 .
【0061】曲げ破壊強度は、JIS A-1408に準じ、パネ
ルを300 ×250mm の4号試験体に切り出し、巾250mm 、
スパン250mm で曲げ強度を求め、kg/cm2に換算表示し
た。The bending fracture strength was in accordance with JIS A-1408, and the panel was cut into 300 × 250 mm No. 4 test pieces, and the width was 250 mm.
The bending strength was calculated at a span of 250 mm and converted to kg / cm 2 .
【0062】また、熱伝導度は、パネルを300mm ×300m
m の正方形に切り出し、JIS A-1412の平板直接法に準じ
測定し、Kcal/m2・hr・ ℃に換算表示した。The thermal conductivity of the panel is 300 mm x 300 m.
It was cut into a square of m, measured according to the flat plate direct method of JIS A-1412, and converted into Kcal / m 2 · hr · ° C.
【0063】[0063]
【表1】 [Table 1]
【0064】実施例2 比較例1で作製した、全体の厚さHが40mm(投影厚み0.
04m)、凹凸のピッチWが50mm、板厚dが2mm、嵩密度
が40kg/m3 、板の密度が0.36g/cm3 のグラスウール製補
強材を、厚さ0.5mm のカラー鋼板2枚の間に配置し、カ
ラー鋼板と補強材との間隙に、10重量%の水酸化アルミ
ニウムを混合した発泡倍率100 倍のレゾール型フェノー
ル樹脂水溶液を、固形分として片側につき200g/m2 ずつ
塗布した。次いで、160 ℃のプレスで41mmの厚みに挟圧
加熱して樹脂を発泡硬化せしめ、嵩密度50kg/m3 、厚さ
40mm、補強材と発泡樹脂との重量比0.8 :0.2 の成形板
を芯材としたパネルを得た。得られたパネル材の曲げ強
度は12.0kg/cm2、熱伝導度は0.65Kcal/m2・hr・℃であっ
た。Example 2 The total thickness H produced in Comparative Example 1 was 40 mm (projected thickness was 0.1 mm).
04m), the pitch W of the unevenness is 50 mm, the plate thickness d is 2 mm, the bulk density is 40 kg / m 3 , and the plate density is 0.36 g / cm 3 . An aqueous solution of resol type phenolic resin mixed with 10% by weight of aluminum hydroxide and having a foaming ratio of 100 times was applied to the gap between the color steel plate and the reinforcing material in an amount of 200 g / m 2 on each side as a solid content. Then, the resin is foamed and hardened by pressing it to a thickness of 41 mm with a press at 160 ° C to obtain a bulk density of 50 kg / m 3 and a thickness.
A panel having a molded plate of 40 mm and a weight ratio of the reinforcing material and the foamed resin of 0.8: 0.2 was obtained as a core material. The bending strength of the obtained panel material was 12.0 kg / cm 2 , and the thermal conductivity was 0.65 Kcal / m 2 · hr · ° C.
【0065】実施例3 繊維径11μmのガラス長繊維をループ状に堆積し、単位
面積当たりの重量が400g/m2 になるように集積したマッ
トを得た。このマットを実施例1で使用したレゾール型
フェノール樹脂水溶液に浸した後、過剰な液を除去し、
未硬化の樹脂が10%付着したマットを得た。このマット
を用いて、実施例1と同様な形状で、板厚dが2mm、板
の密度が0.1g/cm3(嵩密度11kg/m3)の補強材を作製し
た。Example 3 A long glass fiber having a fiber diameter of 11 μm was deposited in a loop shape to obtain a mat in which the weight per unit area was 400 g / m 2 . After dipping this mat in the resol type phenolic resin aqueous solution used in Example 1, the excess liquid was removed,
A mat having 10% of uncured resin attached was obtained. Using this mat, a reinforcing material having the same shape as in Example 1 and having a plate thickness d of 2 mm and a plate density of 0.1 g / cm 3 (bulk density 11 kg / m 3 ) was produced.
【0066】この補強材の周囲を高さ41mmの枠材で囲
い、2枚のカラー鋼板で挟圧したのち、補強材とカラー
鋼板との間隙に、20重量%の水酸化アルミニウムを混合
した発泡倍率25倍のウレタン発泡原液を、片側につき80
0g/m2 ずつ圧入し、発泡硬化させて、嵩密度51kg/m3 、
厚さ40mm、補強材と発泡樹脂との重量比0.22:0.78の成
形板を芯材としたパネルを得た。得られたパネル材の曲
げ強度は12.0kg/cm2、熱伝導度は0.50kcal/m2・hr・℃で
あった。The reinforcing material was surrounded by a frame material having a height of 41 mm, sandwiched between two colored steel plates, and then foamed by mixing 20% by weight of aluminum hydroxide in the gap between the reinforcing material and the colored steel plate. 80x urethane foam stock solution with a magnification of 25
Press-fit by 0 g / m 2 each, foam-cure, bulk density 51 kg / m 3 ,
A panel having a molded plate having a thickness of 40 mm and a weight ratio of the reinforcing material and the foamed resin of 0.22: 0.78 as a core material was obtained. The bending strength of the obtained panel material was 12.0 kg / cm 2 , and the thermal conductivity was 0.50 kcal / m 2 · hr · ° C.
【0067】[0067]
【発明の効果】以上説明したように、本発明の吸音断熱
性基板は、特定の凹凸形状を有する補強材の凹部に発泡
樹脂が充填されて平滑な面に成形されているので、優れ
た強度、断熱性、吸音性を有している。そして、パネル
を形成するとき、平滑な面上で表面板材と接着できるた
め、パネルの強度がより高くなる。更に、本発明の製造
方法によれば、断熱基板の成形と表面板材の接着を同時
に行うことができるので、パネルを生産性良く、低コス
トで製造することが可能になる。As described above, since the sound absorbing and heat insulating substrate of the present invention is molded into a smooth surface by filling the concave portion of the reinforcing material having a specific uneven shape with the foamed resin, it has excellent strength. It has heat insulation and sound absorption. Then, when the panel is formed, the strength of the panel becomes higher because it can be bonded to the surface plate material on a smooth surface. Furthermore, according to the manufacturing method of the present invention, since the heat insulating substrate can be molded and the surface plate material can be bonded at the same time, the panel can be manufactured with high productivity and at low cost.
【図1】本発明の断熱パネルの一実施例を示す部分断面
図である。FIG. 1 is a partial sectional view showing an embodiment of a heat insulating panel of the present invention.
【図2】上記吸音断熱性基板及び断熱パネルに使用され
る補強材の一例を示す斜視図である。FIG. 2 is a perspective view showing an example of a reinforcing material used for the sound absorbing and heat insulating substrate and the heat insulating panel.
【図3】図2におけるA−A線に沿った断面図である。3 is a cross-sectional view taken along the line AA in FIG.
【図4】図2、3の補強材の成形方法を示す説明図であ
る。FIG. 4 is an explanatory view showing a method for forming the reinforcing material of FIGS.
1 多孔質の板状体 2 凸部 3 凹部 4 グラスウールマット 5 第1の型 5’ 第2の型 6、7’ 型の凸部 7、6’ 型の凹部 8、8’ 型の斜面部 9 凸部2の周壁部 10 補強材 11 発泡樹脂 12、12’ 表面板材 DESCRIPTION OF SYMBOLS 1 Porous plate-like body 2 Convex part 3 Recessed part 4 Glass wool mat 5 1st type 5'Second type 6, 7'type convex part 7, 6'type concave part 8, 8'type sloped part 9 Peripheral wall portion of the convex portion 10 Reinforcement material 11 Foamed resin 12, 12 'Surface plate material
Claims (6)
吸音断熱性基板において、前記補強材は、一方の面から
見たとき、多数の独立した凸部が全面に整列分布され、
これらの凸部の周りが凹部をなしており、他方の面から
見たとき、前記凸部に対応する部分は凹部をなし、前記
凹部に対応する部分は凸部をなしており、両面の凸部の
頂部がそれぞれ同じ高さにされた形状をなし、前記補強
材の少なくとも一方の面は、その凹部に発泡樹脂が充填
されて平滑な面に成形され、全体の密度が10〜200 kg/m
3 とされていることを特徴とする吸音断熱性基板。1. A sound-absorbing and heat-insulating substrate in which a reinforcing material and a foamed resin are integrated with each other, wherein the reinforcing material has a large number of independent convex portions aligned and distributed when viewed from one side,
Around these protrusions forms a recess, and when viewed from the other surface, the portion corresponding to the protrusion forms a recess, and the portion corresponding to the recess forms a protrusion. The tops of the parts have the same height, and at least one surface of the reinforcing material is filled with foamed resin in the recesses to form a smooth surface having an overall density of 10 to 200 kg / m
Sound absorbing and heat insulating substrate characterized in that it is 3 .
が0.08〜0.8g/cm3、板厚が0.1 〜10mmの無機質繊維から
なり、前記凸部又は凹部が1m2あたり100 〜10,000個
で、一方の面の凸部から他方の面の凸部に至る全体の厚
さが、前記板厚の2倍以上であって、かつ、5〜300 mm
の範囲とされている請求項1記載の吸音断熱性基板。2. The reinforcing material is made of an inorganic fiber having a fiber length of 20 mm or more, a density of 0.08 to 0.8 g / cm 3 , and a plate thickness of 0.1 to 10 mm, and the convex portion or the concave portion is 100 to 10,000 per 1 m 2. The total thickness from the convex portion of one surface to the convex portion of the other surface is twice or more the plate thickness and is 5 to 300 mm.
The sound absorbing and heat insulating substrate according to claim 1, wherein
〜 0.9:0.9 〜 0.1で、前記発泡樹脂の密度が5〜100k
g/m3とされている請求項1又は2記載の吸音断熱性基
板。3. The weight ratio of the reinforcing material to the foamed resin is 0.1.
~ 0.9: 0.9 ~ 0.1, the density of the foamed resin is 5 ~ 100k
The sound absorbing and heat insulating substrate according to claim 1 or 2, which has g / m 3 .
音断熱性基板の両面に、表面板材が接着されてなること
を特徴とする断熱パネル。4. A heat insulating panel comprising a sound absorbing and heat insulating substrate according to any one of claims 1 to 3 and a surface plate material adhered to both surfaces thereof.
凸部が全面に整列分布され、これらの凸部の周りが凹部
をなしており、他方の面から見たとき、前記凸部に対応
する部分は凹部をなし、前記凹部に対応する部分は凸部
をなしており、両面の凸部の頂部がそれぞれ同じ高さに
された形状をなす補強材の少なくとも片面に離型性を有
する板材を当接し、この板材と前記補強材との間隙に発
泡樹脂の前駆体を配置し、次いで前記発泡樹脂の前駆体
を発泡硬化させた後、前記板材をはがすことを特徴とす
る吸音断熱性基板の製造法。5. When viewed from one surface, a large number of independent projections are arranged and distributed over the entire surface, and the circumferences of these projections form recesses, and when viewed from the other surface, the projections are formed. The portion corresponding to the above is a concave portion, and the portion corresponding to the concave portion is a convex portion, and the tops of the convex portions on both sides have a releasability on at least one surface of the reinforcing material having a shape with the same height. A sound-insulating thermal insulation characterized by abutting a plate material having the same, arranging a foamed resin precursor in a gap between the plate material and the reinforcing material, and then foam-curing the foamed resin precursor, and then peeling the plate material. For manufacturing flexible substrates.
凸部が全面に整列分布され、これらの凸部の周りが凹部
をなしており、他方の面から見たとき、前記凸部に対応
する部分は凹部をなし、前記凹部に対応する部分は凸部
をなしており、両面の凸部の頂部がそれぞれ同じ高さに
された形状をなす補強材の両面に表面板材を当接し、こ
の表面板材と前記補強材との間隙に発泡樹脂の前駆体を
配置し、次いで前記発泡樹脂の前駆体を発泡硬化させ
て、前記表面板材を接着一体化することを特徴とする断
熱パネルの製造法。6. When viewed from one surface, a large number of independent projections are aligned and distributed over the entire surface, and the circumferences of these projections form recesses, and when viewed from the other surface, the projections are formed. The portion corresponding to the above is a concave portion, and the portion corresponding to the concave portion is a convex portion, and the top surface of the convex portion on both sides is in contact with the surface plate material on both sides of the reinforcing material having the shape of the same height. A heat-insulating panel characterized in that a precursor of a foamed resin is arranged in a gap between the surface plate and the reinforcing material, and then the precursor of the foamed resin is foamed and cured to bond and integrate the surface plate. Manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6045132A JPH07227926A (en) | 1994-02-18 | 1994-02-18 | Sound absorbing and heat insulating board, heat insulating panel using the same and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6045132A JPH07227926A (en) | 1994-02-18 | 1994-02-18 | Sound absorbing and heat insulating board, heat insulating panel using the same and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07227926A true JPH07227926A (en) | 1995-08-29 |
Family
ID=12710756
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6045132A Pending JPH07227926A (en) | 1994-02-18 | 1994-02-18 | Sound absorbing and heat insulating board, heat insulating panel using the same and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07227926A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010265589A (en) * | 2009-05-12 | 2010-11-25 | Nagoya Oil Chem Co Ltd | Heat insulating and sound insulating structure of roof |
WO2013154190A1 (en) * | 2012-04-13 | 2013-10-17 | 阿波製紙株式会社 | Tetra cube structure |
JP2014526713A (en) * | 2011-09-08 | 2014-10-06 | ヘクセル コーポレイション | Separation of diaphragm in sound-absorbing beehive |
JP2015510461A (en) * | 2012-02-24 | 2015-04-09 | エルジー・ハウシス・リミテッドLg Hausys,Ltd. | Reinforced phenol foam board |
WO2016195245A1 (en) * | 2015-06-03 | 2016-12-08 | 공진문 | Method for filling film of phase change material, and film and phase change material filling panel manufactured thereby |
CN106437066A (en) * | 2016-11-14 | 2017-02-22 | 苏州亨达尔工业材料有限公司 | Plate |
CN108231053A (en) * | 2018-03-13 | 2018-06-29 | 吉林大学 | A kind of acoustics packaging material with convex closure form and preparation method thereof |
JP2020139321A (en) * | 2019-02-28 | 2020-09-03 | 積水化学工業株式会社 | Partition structure, and construction method of the same |
CN113994422A (en) * | 2019-05-03 | 2022-01-28 | 国家航空航天研究所 | Surface decoration element for generating sound attenuation |
-
1994
- 1994-02-18 JP JP6045132A patent/JPH07227926A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010265589A (en) * | 2009-05-12 | 2010-11-25 | Nagoya Oil Chem Co Ltd | Heat insulating and sound insulating structure of roof |
JP2014526713A (en) * | 2011-09-08 | 2014-10-06 | ヘクセル コーポレイション | Separation of diaphragm in sound-absorbing beehive |
JP2015510461A (en) * | 2012-02-24 | 2015-04-09 | エルジー・ハウシス・リミテッドLg Hausys,Ltd. | Reinforced phenol foam board |
WO2013154190A1 (en) * | 2012-04-13 | 2013-10-17 | 阿波製紙株式会社 | Tetra cube structure |
WO2016195245A1 (en) * | 2015-06-03 | 2016-12-08 | 공진문 | Method for filling film of phase change material, and film and phase change material filling panel manufactured thereby |
CN106437066A (en) * | 2016-11-14 | 2017-02-22 | 苏州亨达尔工业材料有限公司 | Plate |
CN108231053A (en) * | 2018-03-13 | 2018-06-29 | 吉林大学 | A kind of acoustics packaging material with convex closure form and preparation method thereof |
JP2020139321A (en) * | 2019-02-28 | 2020-09-03 | 積水化学工業株式会社 | Partition structure, and construction method of the same |
CN113994422A (en) * | 2019-05-03 | 2022-01-28 | 国家航空航天研究所 | Surface decoration element for generating sound attenuation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0144340B1 (en) | Acoustical structure and method of manufacturing it | |
US4641726A (en) | Composite structure and method of manufacturing it | |
JPH1044281A (en) | Composite board and manufacture thereof | |
JP2934048B2 (en) | Foamed phenolic resin composite molding | |
US2528049A (en) | Acoustic panel | |
JPH07227926A (en) | Sound absorbing and heat insulating board, heat insulating panel using the same and manufacture thereof | |
JP4009921B2 (en) | FRP sandwich panel | |
JPH06297488A (en) | Core material for panel and manufacture thereof | |
JPH0882021A (en) | Heat insulating panel and manufacture thereof | |
JPH0882020A (en) | Manufacture of heat insulating panel | |
KR100467983B1 (en) | Boom-adiabatic panel | |
JP2838982B2 (en) | Fireproof panel | |
JPH0820086A (en) | Heat insulating panel and production thereof | |
JP2577065B2 (en) | Fire protection panel | |
JP2006083593A (en) | Composite board and its manufacturing method | |
JPH08174731A (en) | Honeycomb composite molded article and production thereof | |
JPH09228507A (en) | Composite heat insulative panel | |
JP3230207B2 (en) | Fire resistant composite board | |
US20240175255A1 (en) | Composite framing member comprising elements that provide a thermal break | |
JP3223928B2 (en) | Fire resistant composite board | |
JP2001121630A (en) | Lightweight panel material | |
JPH0775957B2 (en) | Manufacturing method of molded ceiling material for automobiles | |
JPS5931454B2 (en) | sandwich panel | |
JPH08105127A (en) | Heat-insulation panel | |
KR100407509B1 (en) | Manufacture method of construction panel |