Nothing Special   »   [go: up one dir, main page]

JPH07211617A - Pattern formation, mask and projection aligner - Google Patents

Pattern formation, mask and projection aligner

Info

Publication number
JPH07211617A
JPH07211617A JP618894A JP618894A JPH07211617A JP H07211617 A JPH07211617 A JP H07211617A JP 618894 A JP618894 A JP 618894A JP 618894 A JP618894 A JP 618894A JP H07211617 A JPH07211617 A JP H07211617A
Authority
JP
Japan
Prior art keywords
mask
light
pattern
thin film
incident angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP618894A
Other languages
Japanese (ja)
Inventor
Hiroshi Fukuda
宏 福田
Toshihiko Tanaka
稔彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP618894A priority Critical patent/JPH07211617A/en
Publication of JPH07211617A publication Critical patent/JPH07211617A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70308Optical correction elements, filters or phase plates for manipulating imaging light, e.g. intensity, wavelength, polarisation, phase or image shift

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

PURPOSE:To enhance resolution and depth of focus by providing a thin film having transmittinity dependent on the incident angle of light between a mask and an illumination optical system when the mask is irradiated with light from a light source through the illumination optical system and a pattern on the mask is projected onto a substrate through a projection lens. CONSTITUTION:When a mask 3 is irradiated with light from a light source 1 through an illumination optical system 2 and a pattern on the mask 3 is projected onto a substrate through a projection lens, an interference filter 13 for increasing the transmittinity relatively to the mask 3 is disposed between the mask 3 and the illumination optical system 2. The interference filter 13 has transmittinity dependent on the incident angle theta being set such that the transmittinity for vertical incident light is decreased. The angular drstribution of light illuminating the mask 3 is controlled variously and the spatial frequency transfer characteristics of the optical system are varied thus enhancing the resolution and increasing the depth of focus. This method allows formation at an LSI having circuit pattern dimensions of about 0.2-0.3mum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種固体素子の微細パ
ターンを形成するためのパターン形成方法、及びこれに
用いられるマスク及び投影露光装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pattern forming method for forming a fine pattern of various solid-state devices, a mask used for the same, and a projection exposure apparatus.

【0002】[0002]

【従来の技術】LSI等の固体素子の集積度及び動作速
度を向上するため、回路パターンの微細化が進んでい
る。現在これらのパターン形成には、量産性と解像性能
に優れた縮小投影露光法が広く用いられている。
2. Description of the Related Art In order to improve the degree of integration and operation speed of solid-state elements such as LSI, circuit patterns are becoming finer. At present, a reduction projection exposure method, which is excellent in mass productivity and resolution performance, is widely used for forming these patterns.

【0003】図4に縮小投影露光法の光学系を模式的に
示す。この方法は、二次光源面上の有効光源1を発した
光を照明光学系2を介してマスク3に照射し、マスク3
上のパターンを投影レンズ4を介して基板5上へ投影す
ることにより基板上にパターンを転写する。
FIG. 4 schematically shows an optical system of the reduction projection exposure method. This method irradiates the mask 3 with the light emitted from the effective light source 1 on the secondary light source surface through the illumination optical system 2 to make the mask 3
The pattern is transferred onto the substrate by projecting the above pattern onto the substrate 5 through the projection lens 4.

【0004】図3(a)はこの方法による結像の原理を
模式的に示す。マスク3に入射した光はマスクにより0
次回折光7,一次回折光8,二次回折光9等に回折さ
れ、これらの回折光が投影レンズ4により再び基板5上
に集束され、互いに干渉することにより像が形成され
る。この方法の解像限界は露光波長に比例し、投影レン
ズの開口数(NA)に反比例するため、高NA化と短波
長化により解像限界の向上が行われてきた。しかし、6
4MbitDRAM以降、回路寸法が光の波長より小さ
くなってしまうため、従来の高NA化と短波長化による
解像度の向上が困難となってきた。
FIG. 3 (a) schematically shows the principle of image formation by this method. The light incident on the mask 3 is 0 by the mask.
The light is diffracted into the secondary diffracted light 7, the primary diffracted light 8, the secondary diffracted light 9, etc., and these diffracted lights are focused again on the substrate 5 by the projection lens 4 and interfere with each other to form an image. Since the resolution limit of this method is proportional to the exposure wavelength and inversely proportional to the numerical aperture (NA) of the projection lens, the resolution limit has been improved by increasing the NA and shortening the wavelength. But 6
After 4 Mbit DRAM, since the circuit size becomes smaller than the wavelength of light, it has become difficult to improve the resolution by increasing the NA and shortening the wavelength in the related art.

【0005】そこで、高NA化と短波長化以外の手段に
より解像度を上げるための様々な方法が試みられてい
る。例えば、マスクを斜めから照明することにより解像
度と焦点深度を向上する変形照明法が知られている。図
3(b)に示す様に、この方法によればより大きな角度
で回折された回折光まで投影レンズの瞳を通過できるた
め、解像度が向上する。
Therefore, various methods have been tried for increasing the resolution by means other than increasing the NA and shortening the wavelength. For example, a modified illumination method is known in which the resolution and the depth of focus are improved by illuminating the mask obliquely. As shown in FIG. 3B, according to this method, even the diffracted light diffracted at a larger angle can pass through the pupil of the projection lens, so that the resolution is improved.

【0006】又、マスクを透過する光の位相を制御する
位相シフト法が知られている。位相シフト法のうち、隣
りあう開口部間の位相を反転させる空間周波数倍増型位
相シフト法は解像度向上に極めて効果的だが、適用パタ
ーンが周期パターン等に限定されるという欠点を有す
る。これに対して、透過パターンの周囲又はエッジ部分
に微小幅の位相反転部を設けるエッジ強調型位相シフト
法は、適用パターンを選ばない点が特長である。
A phase shift method for controlling the phase of light passing through a mask is also known. Among the phase shift methods, the spatial frequency doubling type phase shift method, which inverts the phase between adjacent openings, is extremely effective in improving resolution, but has a drawback that the applied pattern is limited to a periodic pattern or the like. On the other hand, the edge-enhanced phase shift method in which a phase inversion portion having a minute width is provided around the transmission pattern or at the edge portion is characterized in that the applied pattern is not selected.

【0007】図3(c)は、エッジ強調型位相シフトマ
スク11により回折された光が結像する様子を示したも
ので、各回折光線の太さは光の強度を表わしている。こ
のマスクは、図3(a)の従来法と比較して、マスクに
より回折された光のうち大きな角度で回折された高次回
折光成分又は高い空間周波数成分を強調するという作用
を持っている。
FIG. 3C shows a state in which the light diffracted by the edge-enhanced phase shift mask 11 forms an image, and the thickness of each diffracted ray represents the intensity of the light. This mask has an effect of emphasizing a high-order diffracted light component or a high spatial frequency component diffracted at a large angle in the light diffracted by the mask, as compared with the conventional method of FIG.

【0008】一方、実空間としてのマスクに対する空間
周波数空間である投影レンズの瞳面6ではマスクパター
ンのフーリエ変換像が得られる。そこで、瞳面に空間フ
ィルタを設けて振幅透過率を変調することにより、投影
レンズの空間周波数伝達特性を変化させることができ
る。例えば、瞳の周辺部の透過率をその内側より高くし
た高周波強調型瞳フィルタ12を設けると、瞳の周辺部
を通過する高空間周波数成分又は高次回折光が瞳の中心
部を通過する光に対して相対的に強調される(図3
(d))。従って、この方法によってもエッジ強調型位
相シフト法と同様の作用が得られる。又、逆に高次回折
光を抑制した場合、いわゆるアポダイゼーション、又は
多重振幅結像(多重焦点)作用により、焦点深度増大等
の効果が得られる。更に、エッジ強調型位相シフト法又
は瞳フィルタリング法を変形照明法と組み合わせると、
一層大きな効果を得ることができる。
On the other hand, a Fourier transform image of the mask pattern is obtained on the pupil plane 6 of the projection lens, which is the spatial frequency space for the mask as the real space. Therefore, the spatial frequency transfer characteristic of the projection lens can be changed by providing a spatial filter on the pupil plane and modulating the amplitude transmittance. For example, when the high frequency enhancement type pupil filter 12 in which the transmittance of the peripheral portion of the pupil is higher than that of the inside thereof is provided, the high spatial frequency component or the high-order diffracted light passing through the peripheral portion of the pupil is converted into the light passing through the central portion of the pupil. It is relatively emphasized (Fig. 3)
(D)). Therefore, also by this method, the same operation as the edge enhancement type phase shift method can be obtained. On the contrary, when the high-order diffracted light is suppressed, so-called apodization or multi-amplitude imaging (multi-focal point) action provides an effect of increasing the depth of focus. Furthermore, combining the edge-enhanced phase shift method or the pupil filtering method with the modified illumination method,
A greater effect can be obtained.

【0009】なお、変形照明法及び高周波強調型瞳フィ
ルタについては、例えば、ジャパニーズ ジャーナル
オブ アプライド フィジクス,第31巻,第4126
頁から第4130頁(1992年)(Japanese Journal
of Applied Physics, Vol.30,pp.4126−413
0(1992))において論じられている。又、各種位相
シフト法については、例えば、ジャパニーズ ジャーナ
ル オブ アプライドフィジクス,第30巻,第299
1頁から第2997頁(1991年)(JapaneseJournal
of Applied Physics, Vol.30,pp.2991−299
7(1991))に論じられている。瞳フィルタリング
法については、例えば、ジャーナル オブバキュウム
サイエンス アンド テクノロジー,ビー,第9巻,第
6号(1991年)(Journal of Vacuum Science and
Technology,Vol.B9,No.6(1991))において論
じられている。
Regarding the modified illumination method and the high-frequency emphasis type pupil filter, for example, Japanese Journal
Of Applied Physics, Volume 31, 4126
Page to page 4130 (1992) (Japanese Journal
of Applied Physics, Vol.30, pp.4126-413
0 (1992)). Further, regarding various phase shift methods, for example, Japanese Journal of Applied Physics, Volume 30, 299.
Pages 1 to 2997 (1991) (Japanese Journal
of Applied Physics, Vol.30, pp.2991-299
7 (1991)). As for the pupil filtering method, for example, Journal of Vacuum
Science and Technology, B, Vol. 9, No. 6 (1991) (Journal of Vacuum Science and
Technology, Vol. B9, No. 6 (1991)).

【0010】[0010]

【発明が解決しようとする課題】しかし、変形照明法の
場合にも同様に光量の減少を押さえるために照明光学系
の改造が必要であるという問題があった。又、マスクの
直上に位相回折等を設けることにより照明光のマスクへ
の入射角を傾ける方法が提案されているが、この方法で
は光を回折させるために非常に微細な位相回折格子を大
面積にわたって形成しなければならないという問題があ
った。
However, in the modified illumination method as well, there is a problem that the illumination optical system needs to be modified in order to suppress the decrease of the light quantity. Also, a method has been proposed in which the angle of incidence of illumination light on the mask is tilted by providing phase diffraction or the like directly above the mask. However, in this method, a very fine phase diffraction grating has a large area in order to diffract the light. There was a problem that it had to be formed over.

【0011】又、位相シフト法は非常に精密なマスク技
術を要するという問題がある。即ち、マスク上の個々の
パターンに応じて位相を制御するための位相シフタを加
工しなければならないが、特にエッジ強調型マスクの場
合、シフタの横方法寸法がマスク上のパターン寸法より
はるかに小さいため、その加工が難しいという問題があ
った。一方、瞳フィルタリング法では、位相シフト法の
様な細かい加工は必要ないものの、非常に精密な光学系
である投影レンズの内部を改造しなければならないとい
う問題があった。特に、上述の高周波強調型フィルタで
は、瞳中心部での光の透過率を下げるため何らかの方法
で光のエネルギを瞳面から取り除かなければならない。
この場合、熱や迷光が発生してレンズの結像特性が劣化
する恐れがあった。
Further, the phase shift method has a problem that a very precise mask technique is required. That is, the phase shifter for controlling the phase must be processed according to the individual pattern on the mask, but especially in the case of the edge enhancement type mask, the lateral dimension of the shifter is much smaller than the pattern dimension on the mask. Therefore, there is a problem that the processing is difficult. On the other hand, the pupil filtering method has a problem that the inside of the projection lens, which is a very precise optical system, needs to be remodeled, although it does not require fine processing such as the phase shift method. In particular, in the above-described high-frequency emphasis type filter, light energy must be removed from the pupil surface by some method in order to reduce the light transmittance at the center of the pupil.
In this case, there is a risk that heat or stray light is generated and the imaging characteristics of the lens are deteriorated.

【0012】更に、変形照明法と瞳フィルタリング法の
場合、その効果がマスク上の全てのパターンに対して共
通に現れるという問題点があった。一方、近年のLSI
のシステム化に伴い、1チップ上にメモリとロジックが
混在する傾向にある。この場合、メモリ領域とロジック
領域の回路パターンの性質(周期性等)が異なるため、
各領域に対して各々最適化した露光法を適用することが
好ましいが、従来変形照明法と瞳フィルタリング法はこ
の要求に対応できなかった。
Further, in the case of the modified illumination method and the pupil filtering method, there is a problem that the effect thereof is common to all patterns on the mask. On the other hand, recent LSI
With the systematization, memory and logic tend to coexist on one chip. In this case, the characteristics of the circuit pattern (such as periodicity) in the memory area and the logic area are different,
Although it is preferable to apply an optimized exposure method to each region, the conventional modified illumination method and pupil filtering method have not been able to meet this requirement.

【0013】本発明の第一の目的は、照明光学系の改造
や微細な回折格子を必要としない簡便な手法により変形
照明法と同様の効果を実現し、解像度と焦点深度を向上
することにある。
A first object of the present invention is to improve the resolution and the depth of focus by realizing the same effect as the modified illumination method by a simple method that does not require modification of the illumination optical system or a fine diffraction grating. is there.

【0014】本発明の第二の目的は、エッジ強調型位相
シフト法,瞳フィルタリング法等の複雑な方法を用いる
ことなく、より簡便な手法により光学系の空間周波数伝
達特性を改善し、解像度と焦点深度を向上することにあ
る。
A second object of the present invention is to improve the spatial frequency transfer characteristic of an optical system by a simpler method without using a complicated method such as an edge enhancement type phase shift method and a pupil filtering method, and It is to improve the depth of focus.

【0015】本発明の第三の目的は、これらの効果をマ
スク上の特定の領域に対して選択的に得ることのできる
パターン形成方法,マスク,投影露光装置を提供するこ
とにある。
A third object of the present invention is to provide a pattern forming method, a mask and a projection exposure apparatus which can selectively obtain these effects for a specific area on the mask.

【0016】[0016]

【課題を解決するための手段】上記第一の目的は、光源
を発した光を照明光学系を介してマスクに照射し、マス
ク上のパターンを投影レンズを介して基板上へ投影露光
する際、マスクと照明光学系の間に、光透過率が光の入
射角度に依存する様な薄膜を設けることにより達成され
る。この際、上記入射角度依存性は、マスクに垂直に入
射する光に対する透過率が小さくなる様に設定すること
が好ましい。ここで上記入射角度依存性は、薄膜中の多
重干渉効果により制御できる。
The first object is to irradiate a mask with light emitted from a light source through an illumination optical system and project and expose a pattern on the mask onto a substrate through a projection lens. It is achieved by providing a thin film between the mask and the illumination optical system, the light transmittance of which depends on the incident angle of light. At this time, it is preferable that the incident angle dependency is set so that the transmittance with respect to the light which is vertically incident on the mask becomes small. Here, the incident angle dependency can be controlled by the multiple interference effect in the thin film.

【0017】又、上記第二の目的は、基板とレンズの
間、又は投影レンズとマスクの間に、光透過率が光の入
射角度に依存する様な薄膜を設けることにより達成され
る。この際、上記薄膜透過率の入射角度依存性は、マス
クによる0次回折光の入射角度に対する透過率が小さく
なる様にしたり、逆に大きな角度で入射する光に対して
透過率が低くなるようにする等、目的に応じて様々に設
定することができる。この様な薄膜は、基板とレンズの
間に干渉フィルタとして設置してもよく、又、基板上の
レジスト膜の上に直接塗布することもできる。
The second object can be achieved by providing a thin film between the substrate and the lens or between the projection lens and the mask such that the light transmittance depends on the incident angle of light. At this time, the incident angle dependence of the thin film transmittance is such that the transmittance with respect to the incident angle of the 0th-order diffracted light by the mask becomes small, or conversely, the transmittance becomes low for light incident at a large angle. It can be set variously according to the purpose. Such a thin film may be installed as an interference filter between the substrate and the lens, or can be directly applied onto the resist film on the substrate.

【0018】更に、上記第三の目的は、これらの薄膜を
上記マスクの特定の部分に対応する領域に対して選択的
に設けることにより達成される。
Further, the third object is achieved by providing these thin films selectively with respect to a region corresponding to a specific portion of the mask.

【0019】又、上記第二又は第三の目的は、上記マス
クにおいて遮光パターンが形成された面と反対側の面
上、もしくは上記遮光パターン層とマスク基板の間の全
面又は特定の領域に、上記マスクを照明する光の角度分
布の範囲内で光透過率が光の入射角度に依存する特性を
有する薄膜を設けることにより達成される。更に、これ
らの目的は、投影露光装置において、基板と投影レンズ
の間、又は投影レンズとマスクの間、又はマスクと照明
光学系の間のうちの少なくとも一ヵ所に、光透過率が光
の入射角度に依存する特性を有する薄膜干渉フィルタを
設けるとともに、上記フィルタをマスクに応じて交換可
能とすることにより達成される。
The second or third object is to provide a mask on the surface opposite to the surface on which the light-shielding pattern is formed, or on the entire surface between the light-shielding pattern layer and the mask substrate or in a specific region. This is achieved by providing a thin film having a characteristic that the light transmittance depends on the incident angle of light within the range of the angular distribution of light that illuminates the mask. Further, these purposes are such that, in the projection exposure apparatus, the light transmittance of light is incident on at least one of the substrate and the projection lens, the projection lens and the mask, or the mask and the illumination optical system. This is achieved by providing a thin film interference filter having a characteristic that depends on the angle and making the filter replaceable depending on the mask.

【0020】[0020]

【作用】投影露光法で用いられている部分コヒーレント
照明光学系では、一般にマスクは様々な方向からの光で
照明されている。そこで、本発明では、図1に模式的に
示す様に、マスク3に対して斜め方向から入射する光に
対して透過率が相対的に大きくなる様な干渉フィルタ1
3をマスク3と照明光学系2の間に設ける。これによ
り、マスクを照明する照明光の角度分布を様々に制御で
きる。
In the partially coherent illumination optical system used in the projection exposure method, the mask is generally illuminated with light from various directions. Therefore, in the present invention, as schematically shown in FIG. 1, the interference filter 1 having a relatively large transmittance with respect to light obliquely incident on the mask 3.
3 is provided between the mask 3 and the illumination optical system 2. Thereby, the angular distribution of the illumination light that illuminates the mask can be controlled in various ways.

【0021】図1(a)は、有効光源1内の様々な位置
a〜eを発した光が、照明光学系2を介してマスク3を
様々な角度で照明する様子を模式的に示している。干渉
フィルタ13の透過率の入射角度依存性は、図1(b)
に示す様に垂直入射光に対する透過率が小さくなる様に
設定されている。図3(b)に示した様に、変形照明法
ではマスクを斜め方向から照明することにより解像度と
焦点深度を向上する。従って、図1の干渉フィルタを用
いることにより、変形照明法と同様の効果が得られる。
FIG. 1A schematically shows how the light emitted from various positions a to e in the effective light source 1 illuminates the mask 3 at various angles via the illumination optical system 2. There is. The incident angle dependence of the transmittance of the interference filter 13 is shown in FIG.
As shown in, the transmittance for vertically incident light is set to be small. As shown in FIG. 3B, the modified illumination method improves the resolution and the depth of focus by illuminating the mask obliquely. Therefore, by using the interference filter of FIG. 1, the same effect as the modified illumination method can be obtained.

【0022】一方、図3に示した様に、大きな角度で回
折された光は瞳の周辺部を通過し、やはり大きな角度を
持ってレジスト膜へ入射する。
On the other hand, as shown in FIG. 3, the light diffracted at a large angle passes through the peripheral portion of the pupil and is incident on the resist film at a large angle.

【0023】そこで、本発明では、図2(a)に示す様
に、基板5上に塗布された感光性レジスト膜10と投影
レンズ4の間に、干渉フィルタ14を設ける。ここで、
薄膜干渉フィルタ14は、図2(b)に示した様にフィ
ルタに対して垂直に近い角度で入射する0次回折光や低
空間周波数成分を抑制するため、レジスト膜中へ入射す
る光のうち比較的大きな角度を有する高次回折光や高空
間周波数成分が相対的に強調される。更に、これらがレ
ジスト中で干渉して像強度分布を形成し、この分布に応
じた光化学反応がレジスト中に誘起される。
Therefore, in the present invention, as shown in FIG. 2A, an interference filter 14 is provided between the photosensitive resist film 10 coated on the substrate 5 and the projection lens 4. here,
As shown in FIG. 2B, the thin film interference filter 14 suppresses 0th-order diffracted light and low spatial frequency components that are incident at an angle close to vertical to the filter. Higher-order diffracted light having a relatively large angle and high spatial frequency components are relatively emphasized. Further, these interfere with each other in the resist to form an image intensity distribution, and a photochemical reaction corresponding to this distribution is induced in the resist.

【0024】図3(c)及び(d)に示した様に、エッ
ジ強調型位相シフトマスクと瞳フィルタは、マスクによ
る回折光の強度を回折角又は回折次数に応じて変化させ
ることにより、光学系の空間周波数伝達特性を改善す
る。従って、図2の干渉フィルタを用いることにより、
エッジ強調型位相シフトマスクや瞳フィルタを用いるこ
となく、光学系の空間周波数伝達特性を改善することが
できる。干渉フィルタを、マスクの直下に設けた場合に
も同様の効果が得られることは、図2から明らかであ
る。但し、レンズの倍率によりマスク側と基板側で回折
光の角度分布は異なるため、この点を考慮する必要があ
る。干渉フィルタは基板側とマスク側の両方に設けても
よい。
As shown in FIGS. 3 (c) and 3 (d), the edge-enhanced phase shift mask and the pupil filter are arranged so that the intensity of the diffracted light by the mask is changed according to the diffraction angle or the diffraction order. Improve the spatial frequency transfer characteristics of the system. Therefore, by using the interference filter of FIG.
The spatial frequency transfer characteristic of the optical system can be improved without using an edge enhancement type phase shift mask or a pupil filter. It is clear from FIG. 2 that the same effect can be obtained when the interference filter is provided directly below the mask. However, since the angular distribution of the diffracted light differs between the mask side and the substrate side depending on the magnification of the lens, this point needs to be taken into consideration. The interference filter may be provided on both the substrate side and the mask side.

【0025】このように、透過率が光の入射角に依存す
る様な膜を光路中に設けることにより、マスク直上でマ
スク照明光のマスク入射角度分布を制御したり、マスク
直下又はレジスト膜の直上で回折光の強度を回折角又は
回折次数に応じて変化させることにより、露光光学系の
結像特性を改善し、解像度と焦点深度を向上する。透過
率の入射角依存性は、薄膜内の多重干渉効果を利用する
ことにより様々に制御することができる。
As described above, by providing a film whose transmittance depends on the incident angle of light in the optical path, it is possible to control the mask incident angle distribution of the mask illumination light just above the mask, or just below the mask or to the resist film. By changing the intensity of the diffracted light directly above depending on the diffraction angle or the diffraction order, the imaging characteristics of the exposure optical system are improved, and the resolution and the depth of focus are improved. The incident angle dependence of the transmittance can be variously controlled by utilizing the multiple interference effect in the thin film.

【0026】多重干渉フィルタは、マスクの直上,直
下、又はマスクと共役な基板直上に設けることができる
ため、マスク上の特定の領域の直上,直下、又は基板上
で上記領域と共役な領域の直上のみに選択的に設けるこ
とができる。この様にすることにより、上で述べた様々
な効果をマスク上の特定の領域内のパターンのみに対し
て作用させることができる。
Since the multiple interference filter can be provided directly above or below the mask, or directly above the substrate which is conjugate with the mask, it can be provided immediately above or below a specific region on the mask, or in a region conjugate with the above region on the substrate. It can be selectively provided only directly above. By doing so, the various effects described above can be applied only to the pattern in a specific region on the mask.

【0027】更に、多重干渉フィルタをマスク直上に設
けた場合の変形照明効果と、マスク直下又は基板直上に
設けた場合の高空間周波数強調効果又は多重焦点効果を
組み合わせることにより、より大きな効果を得ることが
できる。
Further, a larger effect can be obtained by combining the modified illumination effect when the multiple interference filter is provided directly above the mask with the high spatial frequency enhancement effect or the multiple focus effect when provided just below the mask or immediately above the substrate. be able to.

【0028】多重干渉フィルタをマスクパターンの直上
に設ける場合、干渉膜をマスク上に形成するとともに、
このマスクを遮光部に若干の透過率を与えるとともにそ
の透過光位相をマスク開口部の位相と反転させたいわゆ
るハーフトーン位相シフトマスクとすることにより、解
像度と焦点深度を更に増大することができる。この様な
マスクは、マスクに蒸着する膜の構成を変えるだけで、
光学系の解像や位相シフタ等の複雑なマスク加工なし
に、輪帯照明法の効果と空間周波数特性改善効果を同時
に実現する。
When the multiple interference filter is provided directly on the mask pattern, the interference film is formed on the mask and
The resolution and the depth of focus can be further increased by using this mask as a so-called halftone phase shift mask in which the light shielding portion is provided with a slight transmittance and the transmitted light phase is inverted from the phase of the mask opening portion. With such a mask, simply changing the composition of the film deposited on the mask,
The effect of the annular illumination method and the effect of improving the spatial frequency characteristics are realized at the same time without complicated mask processing such as resolution of the optical system and phase shifter.

【0029】一方、多重干渉フィルタをマスク直下又は
基板直上に設ける場合、0次回折光の入射角度は有効光
源の形状によりある広がりをもっているため、フィルタ
透過率の角度依存性は有効光源の形状に応じて変えるこ
とが好ましい。例えば、回折光の高空間周波数成分を強
調する場合、0次回折光の入射光角度分布の中心付近で
その透過率が最小になるように設定することが望まし
い。更に、図2では簡単のため高次回折光を強調するエ
ッジ強調効果について説明したが、透過率の角度依存性
は目的に応じて様々に設定することが考えられる。例え
ば、図2とは逆に高次回折光を抑制した場合、いわゆる
アポダイゼーション、又は多重振幅結像(多重焦点)作
用により、焦点深度増大等の効果が得られる。この場
合、入射角θ(上記薄膜表面の法線方向と入射光線の成
す角)が、0.7・asin(NA)<θ<asin(NA)
(但し、asinは逆sin関数)の範囲で、透過率が入射角
θの減少関数となる様に設定することが好ましい。又、
エッジ強調効果と多重振幅結像作用を同時に達成するこ
とも可能である。いずれの場合にも輪帯照明等の斜入射
照明と組み合わせることにより焦点深度と解像度をさら
に向上することができる。
On the other hand, when the multiple interference filter is provided directly below the mask or directly above the substrate, the angle of incidence of the 0th-order diffracted light has a certain spread due to the shape of the effective light source, and therefore the angular dependence of the filter transmittance depends on the shape of the effective light source. It is preferable to change. For example, when emphasizing the high spatial frequency component of the diffracted light, it is desirable to set the transmittance so that it becomes minimum near the center of the incident light angle distribution of the 0th-order diffracted light. Further, in FIG. 2, the edge enhancement effect for enhancing the high-order diffracted light has been described for the sake of simplicity, but it is conceivable that the angular dependence of the transmittance may be set variously according to the purpose. For example, when high-order diffracted light is suppressed, which is the opposite of that shown in FIG. 2, so-called apodization or multi-amplitude imaging (multi-focal point) action provides an effect such as increasing the depth of focus. In this case, the incident angle θ (the angle between the normal direction of the thin film surface and the incident ray) is 0.7 · asin (NA) <θ <asin (NA)
It is preferable that the transmittance is set to be a decreasing function of the incident angle θ in the range of (sin is an inverse sin function). or,
It is also possible to simultaneously achieve the edge enhancement effect and the multi-amplitude imaging effect. In any case, the depth of focus and the resolution can be further improved by combining with oblique incidence illumination such as annular illumination.

【0030】多重干渉フィルタをマスク直下又は基板直
上に設ける場合、投影光学系の光路中にフィルタが挿入
されることになる。従って、これにより透過光の位相が
フィルタ入射角に応じて変化して収差が発生する恐れが
ある。従って、できるだけ位相変化が小さくなるように
多重干渉フィルタを設計することが好ましい。又、必要
に応じて予め収差補正を行っておくことが望ましい。収
差補正法としてはレンズ設計段階で行うほか、瞳収差補
正フィルタ等を用いることができる。一方、多重干渉フ
ィルタによる位相変化を積極的に利用することもでき
る。即ち、高空間周波数成分の位相を低空間周波数成分
の位相と反転させることにより、多重焦点効果もしくは
デフォーカス収差抑制効果が得られる。
When the multiple interference filter is provided directly below the mask or directly above the substrate, the filter is inserted in the optical path of the projection optical system. Therefore, this may cause the phase of the transmitted light to change depending on the incident angle of the filter to cause aberration. Therefore, it is preferable to design the multiple interference filter so that the phase change is as small as possible. Further, it is desirable to perform aberration correction in advance if necessary. As the aberration correction method, a pupil aberration correction filter or the like can be used in addition to the lens design stage. On the other hand, it is possible to positively use the phase change by the multiple interference filter. That is, by inverting the phase of the high spatial frequency component with the phase of the low spatial frequency component, a multifocal effect or a defocus aberration suppressing effect can be obtained.

【0031】なお、界面での光の反射は入射光の偏光状
態に依存するが、一般に露光に用いられる光は無偏光状
態なので、S偏光(入射面に垂直な電場振動成分)の干
渉とP偏光(入射面に平行電場振動成分)の干渉の効果
は平均化される。しかし、一般にS偏光を用いるとより
大きな干渉の効果が得られる。そこで、マスクパターン
が特定の方向に伸びる周期パターンの場合、パターンの
繰返し方向と垂直な方向に電場が振動するS偏光を用い
ることにより、より大きな効果が得られる。又、これは
高NA化したときに問題となるP偏光により生じる電場
の光軸方向成分による像コントラストの低下を防ぐとい
う意味からも好ましい。
Although the light reflection at the interface depends on the polarization state of the incident light, since the light used for exposure is generally in the non-polarization state, it interferes with S-polarized light (electric field vibration component perpendicular to the incident surface) and P. The effect of interference of polarized light (parallel electric field vibration component on the plane of incidence) is averaged. However, in general, the use of S-polarized light provides a larger interference effect. Therefore, in the case where the mask pattern is a periodic pattern extending in a specific direction, a larger effect can be obtained by using S-polarized light in which the electric field vibrates in a direction perpendicular to the pattern repeating direction. This is also preferable from the viewpoint of preventing a decrease in image contrast due to a component of the electric field in the optical axis direction caused by P-polarized light, which becomes a problem when the NA is increased.

【0032】また、レジスト膜直上に干渉フィルタを設
ける代わりに、レジスト上に適当な薄膜を直接塗布して
もよい。干渉フィルタの場合、広い範囲で光学条件を制
御できるため強い多重干渉効果を得ることができるのに
対して、レジスト上に干渉膜を塗布する場合材料的な制
約から屈折率等の光学条件が限定されてしまうが、簡便
なプロセス的手法により実現できるという点で魅力的で
ある。
Further, instead of providing an interference filter directly on the resist film, an appropriate thin film may be directly applied on the resist. In the case of an interference filter, a strong multiple interference effect can be obtained because the optical conditions can be controlled in a wide range, whereas when the interference film is applied on the resist, the optical conditions such as the refractive index are limited due to material restrictions. However, it is attractive in that it can be realized by a simple process method.

【0033】[0033]

【実施例】(実施例1)開口数0.5 のi線縮小投影露
光装置を用いて、Si基板上に塗布したノボラック系ポ
ジ型レジスト膜(膜厚1μm)上に、様々なパターンを
含むマスクを様々なデフォーカス条件で転写した。ここ
で、マスクの直上に図5に示す透過率の入射角度依存性
を有する干渉フィルタを設けた。この結果、0.30μ
mL/Sパターンを焦点深度1.3μm で形成できた。
比較のために、フィルタを設けずに同様の実験を行った
ところ、焦点深度は0.4μmL/S パターンに対して
1μmしか得られず、本発明の効果が確認された。
EXAMPLE 1 Using an i-line reduction projection exposure apparatus with a numerical aperture of 0.5, various patterns are formed on a novolac-based positive resist film (film thickness 1 μm) coated on a Si substrate. The mask was transferred under various defocus conditions. Here, the interference filter having the incident angle dependency of the transmittance shown in FIG. 5 was provided immediately above the mask. As a result, 0.30μ
An mL / S pattern could be formed with a focal depth of 1.3 μm.
For comparison, a similar experiment was conducted without providing a filter, and the depth of focus was only 1 μm for a 0.4 μmL / S pattern, confirming the effect of the present invention.

【0034】なお、フィルタ膜は、マスクのパターン面
の反対側の面に直接蒸着形成する等してもよい。フィル
タの材料は、BN,SiC,SiCN,SiO2 ,人工
ダイヤモンド、又は適当な金属薄膜とこれらの組合せ
等、様々なものを用いることができる。又、誘電体多層
膜とすることにより、透過率の角度依存性を様々に設定
することが可能である。又、露光装置の波長,開口数,
使用するレジストプロセス等に関しても、上記実施例に
示したものに限定しない。
The filter film may be directly formed on the surface of the mask opposite to the pattern surface by vapor deposition. As the material of the filter, various materials such as BN, SiC, SiCN, SiO 2 , artificial diamond, or a suitable metal thin film and a combination thereof can be used. In addition, the use of the dielectric multilayer film allows various settings of the angular dependence of the transmittance. Also, the wavelength of the exposure device, the numerical aperture,
The resist process used and the like are not limited to those shown in the above embodiment.

【0035】(実施例2)図6(a)に模式的に示す様
な、メモリマット上の周期的配線パターンと、周辺回路
部上のランダムな配線パターンを有するメモリの配線層
に対するマスクにおいて、マスク基板20上のメモリマ
ット部に対応する領域のみに実施例1と同様の特性を有
する多重干渉膜21を、又、周辺回路部領域に光強度調
整膜22を形成した。その上に保護膜23を形成し、さ
らにその上に通常の遮光パターン24を形成した。な
お、光強度調整膜は多重干渉膜21による光強度の減衰
を相殺するために設けたもので、省略することも可能で
ある。又、保護膜も必ずしも必要ない。
(Embodiment 2) In a mask for a wiring layer of a memory having a periodic wiring pattern on a memory mat and a random wiring pattern on a peripheral circuit portion as schematically shown in FIG. The multiple interference film 21 having the same characteristics as in Example 1 was formed only in the region corresponding to the memory mat portion on the mask substrate 20, and the light intensity adjusting film 22 was formed in the peripheral circuit region. A protective film 23 was formed thereon, and a normal light-shielding pattern 24 was further formed thereon. The light intensity adjusting film is provided to cancel the attenuation of the light intensity due to the multiple interference film 21, and may be omitted. Further, a protective film is not always necessary.

【0036】図6(b)は本実施例のマスク断面図を示
す。本実施例により、メモリマット及び周辺回路部の両
方に対して良好なパターン形成を行うことができた。
FIG. 6B shows a sectional view of the mask of this embodiment. According to this example, good pattern formation could be performed on both the memory mat and the peripheral circuit section.

【0037】(実施例3)実施例2において、メモリマ
ット部の遮光パターンを透過率4%の半透明膜とし、か
つ、その透過光の位相がマスク開口部の透過光の位相と
反転するような、いわゆるハーフトーン位相シフトマス
クとした。これにより、メモリマット部の解像度が更に
向上した。
(Third Embodiment) In the second embodiment, the light-shielding pattern of the memory mat portion is a semi-transparent film having a transmittance of 4%, and the phase of the transmitted light is inverted from the phase of the transmitted light of the mask opening. A so-called halftone phase shift mask was used. As a result, the resolution of the memory mat portion is further improved.

【0038】(実施例4)実施例2において、メモリマ
ット部を空間周波数倍増型(周期的)位相シフトマスク
で構成し、かつ、多重干渉膜21を実施例1で用いたよ
うな特性のものに代えて、逆にマスクパターンに垂直に
入射する光に対する透過率が大きくなるようなものとし
た。これにより、メモリマット部においては空間周波数
倍増型位相シフトマスクを高コヒーレント照明下で用い
たのと同様の、極めて高い解像度と大きな焦点深度を得
ることができた。一方、周辺回路部では従来通りの転写
特性が維持された。又、周辺回路部に更に実施例1の特
性をもつ多重干渉膜を設ける等してもよい。これによ
り、周辺回路部では輪帯照明の効果が得られる。
(Embodiment 4) In Embodiment 2, the memory mat portion is composed of a spatial frequency doubling type (periodic) phase shift mask, and the multiple interference film 21 has the same characteristics as those used in Embodiment 1. Instead, the transmittance for light that is perpendicularly incident on the mask pattern is increased. As a result, it was possible to obtain extremely high resolution and large depth of focus in the memory mat portion, similar to the case where the spatial frequency doubling type phase shift mask is used under high coherent illumination. On the other hand, in the peripheral circuit section, the conventional transfer characteristics were maintained. Further, the peripheral circuit section may be further provided with a multiple interference film having the characteristics of the first embodiment. As a result, the effect of annular illumination can be obtained in the peripheral circuit section.

【0039】(実施例5)実施例1と同様の露光装置と
レジストを用いて、同様のパターン転写を行った。ここ
で、基板とレンズの間にSiNのメンブレン構造からな
る干渉フィルタを設けた。メンブレン膜厚が、1.5,
1.7,2μmの3種類(各々フィルタA,B,Cとす
る)を用意した。
(Example 5) Using the same exposure apparatus and resist as in Example 1, the same pattern transfer was performed. Here, an interference filter having a SiN membrane structure was provided between the substrate and the lens. Membrane thickness is 1.5
Three types of 1.7 and 2 μm (filters A, B and C respectively) were prepared.

【0040】図7はこれらの干渉フィルタの透過率の入
射角度依存性を示す。なお、SiN膜の屈折率は約2.
2 であった。これらのメンブレンフィルタは、X線リ
ソグラフィ用のマスクの場合と全く同様にして製作する
ことができる。
FIG. 7 shows the incident angle dependence of the transmittance of these interference filters. The refractive index of the SiN film is about 2.
It was 2. These membrane filters can be manufactured in exactly the same manner as in the case of a mask for X-ray lithography.

【0041】照明条件をσが0.6〜0.7の輪帯照明と
し、フィルタBを用いて周期的なラインアンドスペース
(L/S)パターンを転写した。この結果、0.28μ
m パターンを焦点深度1.7μmで形成できた。又、照
明条件をσが0.5の通常照明に戻し、これに代えて実
施例1で用いたフィルタをマスク直上に設けたところ、
ほぼ同様の効果が得られた。一方、σ=0.5 の通常照
明とフィルタAを用いたところ、0.42 μmホールパ
ターンを約2.5μmの焦点深度内で形成できた。レジ
ストパターンの断面形状も良好であった。次に、NAを
0.45 に変更し、フィルタCを用いて同様のパターン
転写を行ったところ、やはり同様の効果が認められた。
Illumination conditions were set to annular illumination with σ of 0.6 to 0.7, and a filter B was used to transfer a periodic line-and-space (L / S) pattern. As a result, 0.28μ
m pattern could be formed with a focal depth of 1.7 μm. In addition, the illumination condition was returned to normal illumination having σ of 0.5, and the filter used in Example 1 was provided directly above the mask instead of the normal illumination.
Almost the same effect was obtained. On the other hand, when the normal illumination of σ = 0.5 and the filter A were used, 0.42 μm hole pattern could be formed within the depth of focus of about 2.5 μm. The cross-sectional shape of the resist pattern was also good. Next, when the NA was changed to 0.45 and the same pattern transfer was performed using the filter C, the same effect was observed.

【0042】比較のために、フィルタを設けずに同様の
実験を行ったところ、焦点深度は0.4 μmのL/Sパ
ターンに対して1μmしか得られず、本発明の効果が確
認された。なお、本実施例ではメンブレン構造のフィル
タを用いたが、オプチカルフラットな石英基板上に薄膜
を蒸着する等してもよい。又、基板にペリクル膜を用い
ることもできる。
For comparison, a similar experiment was conducted without providing a filter, and only 1 μm was obtained for an L / S pattern having a depth of focus of 0.4 μm, confirming the effect of the present invention. . Although the membrane-structured filter is used in this embodiment, a thin film may be deposited on an optically flat quartz substrate. Also, a pellicle film can be used for the substrate.

【0043】(実施例6)図8に示す様に周期的パター
ンから構成されるメモリ領域30と、ランダムパターン
から構成されるロジック領域31を含むマスク32を露
光するに際して、マスクの直上及び直下に、マスク上メ
モリ領域に相当する領域のみに各々多重干渉膜33,3
4を形成したフィルタを設けた。ここで、干渉フィルタ
33は実施例1同様マスクを斜め方向から照明する光を
強調し、干渉フィルタ34は、実施例3同様マスクによ
り大きな角度で回折された光を強調する。これにより、
ロジック領域に対しては従来通りの露光が行われるのに
対して、メモリ領域に対しては実質的に輪帯照明及び高
空間周波数強調が行われる。本実施例により、メモリ領
域に対する高い解像度と大きな焦点深度と、ロジック領
域に対する良好なパターン忠実性を両立させることがで
きた。
(Embodiment 6) As shown in FIG. 8, when a mask 32 including a memory area 30 composed of a periodic pattern and a logic area 31 composed of a random pattern is exposed, it is formed directly above and directly below the mask. , The multiple interference films 33 and 3 are formed only in the area corresponding to the memory area on the mask.
4 was provided. Here, the interference filter 33 emphasizes the light that illuminates the mask obliquely as in the first embodiment, and the interference filter 34 emphasizes the light diffracted by the mask at a large angle as in the third embodiment. This allows
Conventional exposure is performed on the logic area, while substantially annular illumination and high spatial frequency enhancement are performed on the memory area. According to this embodiment, it was possible to achieve both high resolution and large depth of focus for the memory area and good pattern fidelity for the logic area.

【0044】又、実施例4と同様、メモリ領域を空間周
波数倍増型(周期的)位相シフトマスクとするとともに
干渉膜33を垂直照明光を強調するものに変更すると、
メモリ領域の解像度を更に上げることができる(この場
合、干渉膜34は必要ない。)。これによりメモリ領域
の設計ルールを微細化し、LSIチップの面積を減少さ
せることができる。
As in the case of the fourth embodiment, when the memory area is a spatial frequency doubling type (periodic) phase shift mask and the interference film 33 is changed to one that emphasizes vertical illumination light,
The resolution of the memory area can be further increased (in this case, the interference film 34 is not necessary). This makes it possible to reduce the design rule of the memory area and reduce the area of the LSI chip.

【0045】(実施例7)Si基板上に塗布したノボラ
ック系ポジ型レジスト膜(膜厚1μm)上に、パーフル
オロアルキルポリエーテルを塗布(膜厚100nm)
し、これに開口数0.5 のi線縮小投影露光装置を用い
て、様々なパターンを含むマスクを様々なデフォーカス
条件で転写した。レジスト及びパーフルオロアルキルポ
リエーテルの屈折率は、各々約1.7及び1.29であっ
た。本実施例により、露光領域の全面で0.42μmホ
ールパターンを約1.5μmの焦点深度内で±10%の
寸法精度で形成することができた。レジストパターンの
断面形状も良好であった。比較のために、薄膜を塗布せ
ずに同様の実験を行ったところ、焦点深度は0.4 μm
のパターンに対して1μmしか得られず、本発明の効果
が確認された。
(Embodiment 7) A perfluoroalkyl polyether is coated (film thickness 100 nm) on a novolac type positive resist film (film thickness 1 μm) coated on a Si substrate.
Then, using this i-line reduction projection exposure apparatus with a numerical aperture of 0.5, masks containing various patterns were transferred under various defocus conditions. The refractive indices of the resist and perfluoroalkyl polyether were about 1.7 and 1.29, respectively. According to this example, a 0.42 μm hole pattern could be formed on the entire surface of the exposure region with a dimensional accuracy of ± 10% within a depth of focus of about 1.5 μm. The cross-sectional shape of the resist pattern was also good. For comparison, the same experiment was performed without applying a thin film, and the depth of focus was 0.4 μm.
Only 1 μm was obtained with respect to the pattern No., confirming the effect of the present invention.

【0046】[0046]

【発明の効果】本発明によれば、光源を発した光を照明
光学系を介してマスクに照射し、マスク上のパターンを
投影レンズを介して基板上へ投影露光してパターンを形
成する際、露光光学系の光路中にその透過率が光の入射
角に依存する様な薄膜を設けることにより、変形照明
法,位相シフト法,瞳フィルタリング法等を用いること
なく、光学系の空間周波数伝達特性を変化させて解像度
向上及び焦点深度を増大させることができる。これによ
り、光リソグラフィを用いて、0.2〜0.3μmの回路
パターン寸法を有するLSIを形成することができる。
According to the present invention, when the light emitted from the light source is applied to the mask through the illumination optical system and the pattern on the mask is projected and exposed on the substrate through the projection lens to form the pattern. By providing a thin film in the optical path of the exposure optical system whose transmittance depends on the incident angle of light, the spatial frequency transmission of the optical system can be performed without using the modified illumination method, phase shift method, pupil filtering method, etc. The characteristics can be changed to improve the resolution and increase the depth of focus. This makes it possible to form an LSI having a circuit pattern size of 0.2 to 0.3 μm by using optical lithography.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理の説明図。FIG. 1 is an explanatory diagram of the principle of the present invention.

【図2】本発明の原理の説明図。FIG. 2 is an explanatory diagram of the principle of the present invention.

【図3】従来法の作用を示す説明図。FIG. 3 is an explanatory view showing the operation of the conventional method.

【図4】従来装置の構成を示す説明図。FIG. 4 is an explanatory diagram showing a configuration of a conventional device.

【図5】本発明の一実施例の特性図。FIG. 5 is a characteristic diagram of an example of the present invention.

【図6】本発明の第二の実施例の説明図。FIG. 6 is an explanatory diagram of a second embodiment of the present invention.

【図7】本発明の第二の実施例の特性図。FIG. 7 is a characteristic diagram of the second embodiment of the present invention.

【図8】本発明の第三の実施例の説明図。FIG. 8 is an explanatory diagram of a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…有効光源、2…照明光学系、3…マスク、13…薄
膜干渉フィルタ。
1 ... Effective light source, 2 ... Illumination optical system, 3 ... Mask, 13 ... Thin film interference filter.

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】光源を発した光を照明光学系を介してマス
クに照射し、上記マスク上のパターンを投影レンズを介
して基板上へ投影露光することによりパターンを形成す
る方法であって、上記光の光路の途中に、光透過率が光
の入射角度に依存する特性を有する薄膜を設けたことを
特徴とするパターン形成方法。
1. A method of forming a pattern by irradiating a mask with light emitted from a light source through an illumination optical system and projecting and exposing the pattern on the mask onto a substrate through a projection lens, the method comprising: A pattern forming method, characterized in that a thin film having a characteristic that light transmittance depends on an incident angle of light is provided in the optical path of the light.
【請求項2】請求項1において、上記光透過率が光の入
射角度に依存する特性を有する薄膜は、上記マスクと上
記照明光学系の間に設けるパターン形成方法。
2. The pattern forming method according to claim 1, wherein the thin film having the characteristic that the light transmittance depends on the incident angle of light is provided between the mask and the illumination optical system.
【請求項3】請求項1において、上記光透過率が光の入
射角度に依存する特性を有する薄膜は、少なくとも上記
基板と上記投影レンズの間、又は上記投影レンズと上記
マスクの間のうちのどちらかに設けるパターン形成方
法。
3. The thin film according to claim 1, wherein the light transmittance has a characteristic that depends on the incident angle of light, at least between the substrate and the projection lens or between the projection lens and the mask. A pattern forming method provided on either side.
【請求項4】請求項2において、上記薄膜の光透過率の
入射角度依存性は、上記マスクに垂直に入射する光に対
する透過率が小さくなる様に設定されるパターン形成方
法。
4. The pattern forming method according to claim 2, wherein the incident angle dependence of the light transmittance of the thin film is set such that the light transmittance of light perpendicularly incident on the mask becomes small.
【請求項5】請求項3において、上記薄膜の光透過率の
入射角度依存性は、上記マスクによる0次回折光の入射
角度に対する透過率が小さくなる様に設定されるパター
ン形成方法。
5. The pattern forming method according to claim 3, wherein the incident angle dependence of the light transmittance of the thin film is set so that the transmittance with respect to the incident angle of the 0th order diffracted light by the mask becomes small.
【請求項6】請求項3において、上記薄膜の光透過率
は、入射角θが、0.7・asin(NA)<θ<asin(N
A)(但し、asinは逆sin関数、NAは上記投影レンズ
の開口数)の範囲で、入射角θの減少関数であるパター
ン形成方法。
6. The light transmittance of the thin film according to claim 3, wherein an incident angle θ is 0.7 · asin (NA) <θ <asin (N
A) A pattern forming method which is a decreasing function of the incident angle θ within a range of (where asin is an inverse sin function and NA is the numerical aperture of the projection lens).
【請求項7】請求項1において、上記薄膜は、上記マス
クの特定の部分に対応する領域に対して選択的に設けら
れたパターン形成方法。
7. The pattern forming method according to claim 1, wherein the thin film is selectively provided in a region corresponding to a specific portion of the mask.
【請求項8】請求項1において、上記薄膜の光透過率の
入射角度依存性は、薄膜中の多重干渉効果により制御さ
れるパターン形成方法。
8. The pattern forming method according to claim 1, wherein the incident angle dependence of the light transmittance of the thin film is controlled by a multiple interference effect in the thin film.
【請求項9】請求項2または3において、上記薄膜は上
記マスク上に直接蒸着された膜であるパターン形成方
法。
9. The pattern forming method according to claim 2, wherein the thin film is a film deposited directly on the mask.
【請求項10】請求項3において、上記薄膜は上記基板
表面のレジスト上に塗布された塗布膜であるパターン形
成方法。
10. The pattern forming method according to claim 3, wherein the thin film is a coating film coated on a resist on the surface of the substrate.
【請求項11】光源を発した光を照明光学系を介してマ
スクに照射し、上記マスク上のパターンを投影レンズを
介して基板上へ投影露光する際に用いられるマスクであ
って、上記マスクの遮光パターンが形成された面と反対
側の面上、もしくは上記遮光パターン層とマスク基板の
間の全面又は特定の領域に、その透過率が上記マスクに
斜めに入射する光より垂直に入射する光に対して小さく
なる様な特性を有する薄膜を設けたことを特徴とするマ
スク。
11. A mask used when irradiating light emitted from a light source onto a mask through an illumination optical system and projecting and exposing a pattern on the mask onto a substrate through a projection lens. On the surface opposite to the surface on which the light-shielding pattern is formed, or on the entire surface or a specific region between the light-shielding pattern layer and the mask substrate, the transmittance of which is perpendicular to the light obliquely incident on the mask. A mask provided with a thin film having a property of becoming smaller with respect to light.
【請求項12】請求項11において、上記遮光パターン
は2%から10%の透過率を有し、上記遮光パターンを
透過した光の位相が、同一マスク上の上記遮光パターン
が存在しない領域の透過光の位相とほぼ反転しているマ
スク。
12. The light-shielding pattern according to claim 11, wherein the light-shielding pattern has a transmittance of 2% to 10%, and the phase of light transmitted through the light-shielding pattern is transmitted in a region on the same mask where the light-shielding pattern does not exist. A mask that is almost the opposite of the phase of light.
【請求項13】光源を発した光を照明光学系を介してマ
スクに照射し、上記マスク上のパターンを投影レンズを
介して基板上へ投影露光する投影露光装置であって、上
記マスクと上記照明光学系の間、上記投影レンズと上記
マスクの間、又は上記基板と上記投影レンズの間のうち
の少なくとも一ヵ所に、光透過率が光の入射角度に依存
する特性を有する薄膜干渉フィルタを設けたことを特徴
とする投影露光装置。
13. A projection exposure apparatus for irradiating a mask with light emitted from a light source through an illumination optical system and projecting and exposing a pattern on the mask onto a substrate through a projection lens, the mask and the mask. A thin film interference filter having a characteristic that the light transmittance depends on the incident angle of light is provided in at least one of the illumination optical system, the projection lens and the mask, or the substrate and the projection lens. A projection exposure apparatus, which is provided.
【請求項14】請求項13において、上記薄膜干渉フィ
ルタは上記マスクに応じて交換可能である投影露光装
置。
14. The projection exposure apparatus according to claim 13, wherein the thin film interference filter is replaceable according to the mask.
JP618894A 1994-01-25 1994-01-25 Pattern formation, mask and projection aligner Pending JPH07211617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP618894A JPH07211617A (en) 1994-01-25 1994-01-25 Pattern formation, mask and projection aligner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP618894A JPH07211617A (en) 1994-01-25 1994-01-25 Pattern formation, mask and projection aligner

Publications (1)

Publication Number Publication Date
JPH07211617A true JPH07211617A (en) 1995-08-11

Family

ID=11631590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP618894A Pending JPH07211617A (en) 1994-01-25 1994-01-25 Pattern formation, mask and projection aligner

Country Status (1)

Country Link
JP (1) JPH07211617A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6627356B2 (en) 2000-03-24 2003-09-30 Kabushiki Kaisha Toshiba Photomask used in manufacturing of semiconductor device, photomask blank, and method of applying light exposure to semiconductor wafer by using said photomask
JP2005136244A (en) * 2003-10-31 2005-05-26 Semiconductor Leading Edge Technologies Inc Exposure method
US7582921B2 (en) 1998-07-03 2009-09-01 Hitachi, Ltd. Semiconductor device and method for patterning
JP2009260342A (en) * 2008-04-14 2009-11-05 Nikon Corp Illumination optical system, exposure apparatus, device method for manufacturing
JP2010008604A (en) * 2008-06-25 2010-01-14 Hoya Corp Mask blank and transfer mask
JP2012028803A (en) * 2004-06-04 2012-02-09 Carl Zeiss Smt Gmbh Projection system with compensation of intensity variations and compensation element therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7582921B2 (en) 1998-07-03 2009-09-01 Hitachi, Ltd. Semiconductor device and method for patterning
US6627356B2 (en) 2000-03-24 2003-09-30 Kabushiki Kaisha Toshiba Photomask used in manufacturing of semiconductor device, photomask blank, and method of applying light exposure to semiconductor wafer by using said photomask
JP2005136244A (en) * 2003-10-31 2005-05-26 Semiconductor Leading Edge Technologies Inc Exposure method
JP2012028803A (en) * 2004-06-04 2012-02-09 Carl Zeiss Smt Gmbh Projection system with compensation of intensity variations and compensation element therefor
JP2009260342A (en) * 2008-04-14 2009-11-05 Nikon Corp Illumination optical system, exposure apparatus, device method for manufacturing
JP2010008604A (en) * 2008-06-25 2010-01-14 Hoya Corp Mask blank and transfer mask

Similar Documents

Publication Publication Date Title
JP3245882B2 (en) Pattern forming method and projection exposure apparatus
JP3574417B2 (en) Optical proximity correction
KR0171947B1 (en) Exposure apparatus and for forming a fine pattern and method thereof
US5715039A (en) Projection exposure apparatus and method which uses multiple diffraction gratings in order to produce a solid state device with fine patterns
JPH08316125A (en) Method and apparatus for projection exposing
JP2996127B2 (en) Pattern formation method
JPH07183201A (en) Exposure device and method therefor
US5650632A (en) Focal plane phase-shifting lithography
US6020950A (en) Exposure method and projection exposure apparatus
JP3347670B2 (en) Mask and exposure method using the same
JP5571289B2 (en) Exposure mask and pattern forming method
JP4579977B2 (en) Imaging and equipment in lithography
JPH07211617A (en) Pattern formation, mask and projection aligner
JPH07147223A (en) Pattern forming method
JPH09120154A (en) Polarizing mask and its production as well as pattern exposure method and pattern projection aligner using the same
Ma et al. Preventing sidelobe printing in applying attenuated phase-shift reticles
JP3290862B2 (en) Photomask, exposure method using the photomask, and method for manufacturing the photomask
JP3323815B2 (en) Exposure method and exposure apparatus
JP3133618B2 (en) Spatial filter used in reduction projection exposure apparatus
JP3571397B2 (en) Light source filter, projection exposure apparatus and projection exposure method using the same
JPH052261A (en) Mask and projection exposure method using the same
JP3351401B2 (en) Projection exposure equipment
JPH05315226A (en) Projection aligner
JP3732603B2 (en) Photo mask
JPH0774080A (en) Pattern formation method