Nothing Special   »   [go: up one dir, main page]

JPH07216354A - Luminescent material - Google Patents

Luminescent material

Info

Publication number
JPH07216354A
JPH07216354A JP2754094A JP2754094A JPH07216354A JP H07216354 A JPH07216354 A JP H07216354A JP 2754094 A JP2754094 A JP 2754094A JP 2754094 A JP2754094 A JP 2754094A JP H07216354 A JPH07216354 A JP H07216354A
Authority
JP
Japan
Prior art keywords
light
luminescent material
emission intensity
wavelength
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2754094A
Other languages
Japanese (ja)
Inventor
Hirotoshi Muratsubaki
弘年 村椿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON ITSUTORIUMU KK
Original Assignee
NIPPON ITSUTORIUMU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON ITSUTORIUMU KK filed Critical NIPPON ITSUTORIUMU KK
Priority to JP2754094A priority Critical patent/JPH07216354A/en
Publication of JPH07216354A publication Critical patent/JPH07216354A/en
Pending legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)

Abstract

PURPOSE:To obtain a material which can emit visible light as a result of irradiation with infrared rays in one or two wavelength regions, has high luminescent intensity and suffers less from deterioration due to absorbed moisture by making it of a rare earth oxyhalide having a specified composition. CONSTITUTION:This material is the one represented by the composition of formula I (wherein A is at least one member selected from among Sc, Y, La, Gd, Yb and Lu; y=0.01; x+y=1; and X is Br or a combination of Br with C1). When this material is irradiated with light in a wavelength region of 0.95-1.1mum or in a wavelength region of 1.48-1.58mum, it can emit visible light in response to at least either irradiation of the regions. Further, the material in the title is the one represented by the composition represented by formula II (wherein z <=0.8), and when it is irradiated with light in a wavelength region of 0.95-1.1mum or in a wavelength region of 1.48-1.58mum, it can emit visible light in response to at least either irradiation. The compounds of formulas I and II can be desirably used to detect ultraviolet rays in wavelength regions of 0.95-1.1mum and 1.48-1.58mum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明の化合物は、波長0.95
μm〜1.10μm域および波長1.48μm〜1.58
μm域の赤外線の検出に用いられる発光体に関するもの
である。
BACKGROUND OF THE INVENTION The compound of the present invention has a wavelength of 0.95.
μm to 1.10 μm band and wavelength 1.48 μm to 1.58
The present invention relates to a light emitting body used for detecting infrared rays in the μm range.

【0002】[0002]

【従来の技術】従来、この種の発光体用の化合物は、B
aもしくは希土類元素をホスト元素とする低酸素フッ化
物もしくは無水塩化物であるが、フッ化物発光体が発す
る可視光を目視で確認することを可能とする最低の励起
光強度を100とした場合、塩化物発光体の場合には励
起光強度が50で目視での確認が可能である。又、励起
光強度が等しい場合、フッ化物発光体からの発光強度を
100とすると、塩化物発光体は1000であり、感度
も発光強度もフッ化物発光体は塩化物発光体に劣る。更
に、上記のフッ化物発光体粉末の平均粒径は100μm
であるが、平均粒径を20μmにした場合、発光強度は
25と弱くなる。一方、塩化物発光体においては、吸湿
性が強く、大気中に数時間の放置で発光強度が吸湿前の
初期値に対し30%以下に劣化するため、大気中での成
形作業が困難となる。
2. Description of the Related Art Conventionally, compounds for this type of light-emitting material are
a or a low oxygen fluoride or anhydrous chloride having a rare earth element as a host element, where 100 is the lowest excitation light intensity that allows visual confirmation of visible light emitted by the fluoride luminescent material, In the case of a chloride luminescent material, the excitation light intensity is 50, which can be visually confirmed. Further, when the excitation light intensities are equal, assuming that the emission intensity from the fluoride luminous body is 100, the chloride luminous body is 1000, and the sensitivity and the emission intensity of the fluoride luminous body are inferior to those of the chloride luminous body. Furthermore, the average particle size of the above-mentioned fluoride light emitting powder is 100 μm.
However, when the average particle diameter is set to 20 μm, the emission intensity becomes as weak as 25. On the other hand, the chloride luminous body has a strong hygroscopic property, and the luminous intensity deteriorates to 30% or less of the initial value before moisture absorption when left in the air for several hours, which makes molding work in the air difficult. .

【0003】[0003]

【発明が解決しようとする課題】湿度に対して安定なフ
ッ化物発光体は感度及び発光強度に劣り、粒径を小さく
すると、更に発光強度が低下する。又、感度、発光強度
に優れた塩化物発光体においては、吸湿により発光強度
が著しく低下するため、大気中で成形作業を行うことは
困難である。又、フッ化物発光体、塩化物発光体とも
に、励起光の波長域0.95μm〜1.10μmに対して
可視光を発光する発光体の組成と、励起光の波長域1.
48μm〜1.58μmに対して可視光を発光する発光
体の組成とが異なるため、それぞれの波長域で反応して
可視光を発光する別々の発光体が必要であった。
Fluoride luminescent materials which are stable to humidity are inferior in sensitivity and luminescent intensity, and when the particle size is reduced, the luminescent intensity is further reduced. Further, in a chloride luminescent material having excellent sensitivity and luminescence intensity, it is difficult to carry out the molding operation in the atmosphere because the luminescence intensity is remarkably lowered by moisture absorption. Further, both the fluoride light emitter and the chloride light emitter, the composition of the light emitter that emits visible light in the wavelength range of excitation light of 0.95 μm to 1.10 μm and the wavelength range of excitation light 1.
Since the composition of the luminescent material that emits visible light is different from 48 μm to 1.58 μm, separate luminescent materials that react in each wavelength range and emit visible light were required.

【0004】従って、本発明の課題は、数時間の大気中
への放置後でも塩化物発光体の感度、発光強度に劣らな
いこと、更に、1つの組成でありながら、励起波長域
0.95μm〜1.10μmおよび1.48μm〜1.58
μmの片方もしくは両方の波長域の光を、それぞれ単独
で照射した際、各々の波長域の光に反応して、可視光を
発光することが可能な発光体を見出すことである。
Therefore, the object of the present invention is that the sensitivity and emission intensity of the chloride luminescent material are not inferior even after being left in the atmosphere for several hours, and that the excitation wavelength range is 0.95 μm even with one composition. ~ 1.10 µm and 1.48 µm ~ 1.58
It is to find an illuminant capable of emitting visible light in response to light in each wavelength region when irradiated with light in one or both wavelength regions of μm.

【0005】[0005]

【課題を解決するための手段】組成式がA1-x-yYbx
yOX(但し、AはSc,Y,La,Gd,Ybおよ
びLuの中の1種又は2種以上であり、y≧0.01,
x+y≦1である。又、XはBr、又はBr及びClで
ある)で表される組成を有する希土類オキシハライド化
合物の発光体、もしくは組成式がBa1-zErz
1/4(2+z)X(但し、Z≦1で、XはBr、またはBrお
よびClである)で表される組成を有するBaオキシハ
ライド化合物の発光体であって、波長0.95μm〜1.
10μmおよび波長1.48μm〜1.58μmの2つの
領域のいずれかの赤外領域の光の照射によって励起され
ると、可視光の発光(特に赤色発光)があるので、1つ
の組成の希土類オキシハライド化合物発光体もしくはB
aオキシハライド化合物によって、1つもしくは2つの
領域の赤外線に対して目視で確認可能な赤外線の検出が
可能となる。
[Means for Solving the Problems] The composition formula is A 1-xy Yb x E
r y OX (where A is one or more of Sc, Y, La, Gd, Yb and Lu, and y ≧ 0.01,
x + y ≦ 1. X is Br, or Br and Cl), and is a rare earth oxyhalide compound luminescent material having a composition represented by Ba 1-z Er z O
1. A Ba oxyhalide compound luminescent material having a composition represented by 1/4 (2 + z) X (where Z ≦ 1, X is Br, or Br and Cl), having a wavelength of 0.95 μm. ~ 1.
When excited by irradiation with light in the infrared region of either of 10 μm and a wavelength of 1.48 μm to 1.58 μm, it emits visible light (especially red light). Halide compound luminous body or B
The a-oxyhalide compound enables infrared detection that can be visually confirmed with respect to infrared rays in one or two regions.

【0006】[0006]

【作用】従来の発光体は、Ba又は希土類元素をホスト
元素としたハライドであるが、フッ化物と塩化物のみ
で、臭化物やヨウ化物については考察されていなかっ
た。又、フッ化物よりも塩化物の方が感度、発光強度が
大きいことにより、臭化物やヨウ化物は、更に感度、発
光強度が大きいと予想された。
The conventional luminous body is a halide having Ba or a rare earth element as a host element, but it is only a fluoride and a chloride, and bromide and iodide have not been considered. In addition, bromide and iodide were expected to have even higher sensitivity and emission intensity because chloride had greater sensitivity and emission intensity than fluoride.

【0007】次に、ホスト元素ハライドの安定性を考え
ると、BaF2,BaCl2,BaCl2・2H2O,Ba
Br2,BaBr2・2H2O,YF3,YCl3・6H2Oの
標準エントロピーを比較してみた時、それぞれ96.
4,123.7,203,146,407,100,3
85(単位;J/K・mol)であり、塩化物よりフッ
化物が安定である。又、ハロゲンのイオン半径(単位;
オングストローム)を次に揚げると、F-:1.19、C
-:1.67、Br-:1.82およびI-:2.06であ
り、イオン半径が大きくなる程、結合後の安定性は小さ
くなるため、ブロマイドはクロライドより不安定にな
る。そこで、希土類をホスト元素とした場合、フッ化物
を除くハライドよりも安定なオキシハライドで、またB
aをホスト元素とした場合、ブロライドも含めたオキシ
ハライドで、感度、発光強度の大きい組成を検討するこ
ととした。
Next, considering the stability of the host element halide, BaF 2 , BaCl 2 , BaCl 2 .2H 2 O, Ba
When the standard entropies of Br 2 , BaBr 2 .2H 2 O, YF 3 , and YCl 3 .6H 2 O were compared, they were 96.
4,123.7,203,146,407,100,3
85 (unit: J / K · mol), and fluoride is more stable than chloride. Also, the ionic radius of halogen (unit:
Now frying Angstroms), F -: 1.19, C
l -: 1.67, Br -: 1.82 and I -: 2.06, as the ionic radius increases, since the reduced stability after binding, bromide becomes unstable than chloride. Therefore, when a rare earth is used as a host element, it is an oxyhalide that is more stable than a halide except fluoride, and
When a was used as the host element, it was decided to study a composition having high sensitivity and high emission intensity with an oxyhalide including bromide.

【0008】しかし、希土類オキシハライドの製造方法
としては、希土類ハライド含水塩を不活性ガス中で高温
処理することで作製するのが一般であるが、フッ化希土
は酸化物より安定なため、この製造方法では希土類オキ
シフロライドは作製できない。また、Baオキシハライ
ドはBaハライド含水塩を不活性ガス中で高温処理する
ことで得られる。一方、希土類オキシハライドおよびB
aオキシハライドにおいて、酸素含有量の多いフッ化希
土、フッ化バリウム、及び塩化希土、塩化バリウムは発
光強度が弱いため、希土類オキシブロマイド、バリウム
オキシブロマイド、及び希土類オキシアイオダイド、バ
リウムオキシアイオダイドで感度、発光強度の大きい組
成を検討した。
However, as a method for producing a rare earth oxyhalide, it is general to prepare it by subjecting a rare earth halide hydrate to high temperature treatment in an inert gas, but since rare earth fluoride is more stable than an oxide, Rare earth oxyfluoride cannot be produced by this production method. Further, Ba oxyhalide can be obtained by subjecting Ba halide hydrate to high temperature treatment in an inert gas. On the other hand, rare earth oxyhalides and B
In a oxyhalide, since rare earth fluoride, barium fluoride, rare earth chloride, and barium chloride having a high oxygen content have low emission intensity, rare earth oxybromide, barium oxybromide, and rare earth oxyiodide, barium oxyiodide are used. A composition with high sensitivity and high emission intensity was examined with Dyde.

【0009】発光体に照射された光のエネルギーは、Y
bイオン、Erイオンの4f軌道電子の励起として蓄積
される。Erイオン4f軌道電子の励起寿命に比べ、Y
bイオン4f軌道電子の励起寿命は十分短いため、Yb
イオン電子が励起状態から基底状態へ落ちる時、放出す
るエネルギーはErイオン4f軌道電子に伝達され、E
rイオン4f軌道電子を更に励起させて、複数段のポテ
ンショナルエネルギーを可視光として放出する。
The energy of the light applied to the light emitter is Y
It is accumulated as excitation of 4f orbital electrons of b ion and Er ion. Compared to the excitation lifetime of the Er ion 4f orbital electron, Y
Since the excitation life of the b-ion 4f orbital electron is sufficiently short, Yb
When the ion electron falls from the excited state to the ground state, the energy released is transferred to the Er ion 4f orbital electron,
The r-ion 4f orbital electrons are further excited to emit a plurality of stages of potential energy as visible light.

【0010】即ち、Ybイオンは増感剤として作用し、
Erイオンは活性剤として作用し、エネルギー伝達はY
bイオンから放出されるフォノンがホスト化合物の結晶
格子に依存する。しかし、YbイオンがErイオンに比
べ過剰な場合、Yb4f軌道電子に蓄積されたエネルギ
ーは飽和状態となり、熱として放出され、発光体からの
可視光発光強度が小さくなる。
That is, the Yb ion acts as a sensitizer,
Er ion acts as an activator, and energy transfer is Y
The phonons released from the b ions depend on the crystal lattice of the host compound. However, when Yb ions are excessive compared with Er ions, the energy accumulated in Yb4f orbital electrons becomes saturated and is released as heat, and the emission intensity of visible light from the light emitting body is reduced.

【0011】しかし、本発明では、粉末の細粒化及び大
気中での性能の維持という二点で、フッ化物を除くハロ
ゲン化物は潮解性が大きく、大気中での結晶状態の維持
が困難であるため、希土類オキシハライドおよびバリウ
ムオキシハライドを用いた。
However, in the present invention, the halides other than fluoride have a large deliquescent property in that the powders are made finer and the performance is maintained in the atmosphere, and it is difficult to maintain the crystalline state in the atmosphere. Therefore, rare earth oxyhalides and barium oxyhalides were used.

【0012】[0012]

【実施例】以下に、本発明の実施例について、詳細に説
明する。
EXAMPLES Examples of the present invention will be described in detail below.

【0013】(実施例1)組成がLnOBrで表される
希土類オキシハライド発光体を、表1に示す工程に従っ
て作製した。ここで、式中LnはY,YbおよびErを
示し、その比率をモル比で75:20:5とした。
Example 1 A rare earth oxyhalide luminescent material having a composition represented by LnOBr was prepared according to the steps shown in Table 1. Here, Ln represents Y, Yb, and Er in the formula, and the ratio thereof was set to 75: 20: 5 in molar ratio.

【0014】[0014]

【表1】 [Table 1]

【0015】作製された粉末状の発光体試料を外寸が6
0mm×50mm×7mmの石英セルに充填し、光源
(YAG:Xe励起)より1.06μm光を照射し、発
光体からの放射光を安藤電機製分光器AQ−6310B
を使用し、図12(a)に示す測定系により測定した。
The outer diameter of the produced powdery luminous body sample was 6
It was filled in a quartz cell of 0 mm x 50 mm x 7 mm, irradiated with 1.06 μm light from a light source (YAG: Xe excitation), and emitted light from the light emitter was a spectroscope AQ-6310B manufactured by Ando Electric Co., Ltd.
Was measured using the measurement system shown in FIG.

【0016】測定結果を図1(a)に示す。横軸に波長
を、縦軸に発光強度(任意単位)をとっている。又、前
記発光体にレーザーダイオード(LD)1.53μm光
を照射し、発光体からの放射光を、図12(b)に示す
測定系によって測定した結果を図1(b)に示す。
The measurement results are shown in FIG. The horizontal axis represents wavelength and the vertical axis represents emission intensity (arbitrary unit). Further, FIG. 1B shows a result obtained by irradiating the light-emitting body with a laser diode (LD) light having a wavelength of 1.53 μm and measuring the emitted light from the light-emitting body by the measurement system shown in FIG. 12B.

【0017】(実施例2)実施例1と同様にして作製し
た発光体試料を20℃、湿度50%の状態で保管し、保
管開始から4時間ごとに少量を密閉容器に移し、48時
間までの4時間ごとの試料に1.06μm光を照射し、
発光体より放射された可視光の発光強度の時間変化(経
時変化)を日立蛍光光度計850により、図12(a)
に示す測定系により測定した。結果を図2に示す。横軸
に時間、縦軸に発光強度(任意単位)をとっている。
Example 2 A phosphor sample prepared in the same manner as in Example 1 was stored at 20 ° C. and a humidity of 50%, and a small amount was transferred to a closed container every 4 hours from the start of storage until 48 hours. Irradiate the sample every 4 hours with 1.06 μm light,
The time-dependent change (time-dependent change) of the emission intensity of visible light emitted from the light-emitting body was measured by the Hitachi Fluorometer 850 as shown in FIG.
It measured by the measuring system shown in. The results are shown in Figure 2. The horizontal axis represents time, and the vertical axis represents emission intensity (arbitrary unit).

【0018】(実施例3)組成がLnOXで表される希
土類オキシハライド発光体を表2に示す工程に従って作
製した。ここで、式中LnはY,YbおよびErを示
し、その比率がモル比で75:20:5と固定し、一
方、XはBrとClからなり、LnOBr:LnOCl
の比をモル比で100:0,99.99:0.01,9
9.97:0.03,99.95:0.05,99.90:
0.10,99.70:0.30,99.5:0.5,99.
0:1.0,97.0:3.0,95.0:5.0,90:
10および80:20となるように調整して12種類の
発光体試料を用意した。
Example 3 A rare earth oxyhalide luminescent material having a composition represented by LnOX was prepared according to the steps shown in Table 2. Here, in the formula, Ln represents Y, Yb and Er, and the ratio thereof is fixed at a molar ratio of 75: 20: 5, while X is composed of Br and Cl, and LnOBr: LnOCl.
Is a molar ratio of 100: 0, 99.99: 0.01,9
9.97: 0.03, 99.95: 0.05, 99.90:
0.10, 99.70: 0.30, 99.5: 0.5, 99.
0: 1.0, 97.0: 3.0, 95.0: 5.0, 90:
Twelve kinds of luminescent material samples were prepared by adjusting to 10 and 80:20.

【0019】[0019]

【表2】 [Table 2]

【0020】これらの作製された発光体試料を実施例1
で使用したと同様の石英セルに充填し、1.06μm光
を照射し、発光体より放射された可視光を日立蛍光光度
計850により測定した。結果を図3に示す。図中、横
軸にLnOCl濃度(モル%)、縦軸に発光強度(任意
単位)をとっている。
These prepared phosphor samples were used in Example 1.
The same quartz cell as used in 1. was filled, irradiated with 1.06 μm light, and the visible light emitted from the luminescent material was measured with a Hitachi Fluorometer 850. The results are shown in Fig. 3. In the figure, the horizontal axis represents the LnOCl concentration (mol%) and the vertical axis represents the emission intensity (arbitrary unit).

【0021】(実施例4)組成がLnOBrで表される
希土類オキシハライド発光体を表1に示す工程に従って
作製した。ここで、式中LnはY,YbおよびErを示
し、その比率がモル比で80:20:0,79.9:2
0:0.1,79.7:20:0.3,79.5:20:
0.5,79.0:20:1.0,77.0:20.0:3.
0,75.0:20.0:5.0,70.0:20.0:1
0.0,65.0:20.0:15.0,60.0:20.
0:20.0,および50.0:20.0:30.0である
11種類の発光体試料を用意した。
Example 4 A rare earth oxyhalide luminescent material having a composition represented by LnOBr was prepared according to the steps shown in Table 1. Here, Ln represents Y, Yb and Er in the formula, and the molar ratio thereof is 80: 20: 0, 79.9: 2.
0: 0.1, 79.7: 20: 0.3, 79.5: 20:
0.5, 79.0: 20: 1.0, 77.0: 20.0: 3.
0.75.0: 20.0: 5.0, 70.0: 20.0: 1
0.0, 65.0: 20.0: 15.0, 60.0: 20.
Eleven kinds of luminescent material samples of 0: 20.0 and 50.0: 20.0: 30.0 were prepared.

【0022】上記の発光体試料を実施例1で使用したの
と同様の石英セルに充填し、1.06μm光を照射し、
発光体試料より放射された可視光を日立蛍光光度計85
0により測定した。結果を図4に示す。図中、横軸にE
rOBr濃度(モル%)、縦軸に発光強度(任意単位)
をとっている。
The above luminescent material sample was filled in the same quartz cell as used in Example 1 and irradiated with 1.06 μm light,
Hitachi Fluorometer 85
It was measured by 0. The results are shown in Fig. 4. E on the horizontal axis in the figure
rOBr concentration (mol%), vertical axis shows emission intensity (arbitrary unit)
Is taking.

【0023】(実施例5)組成がLnOBrで表される
希土類オキシハライド発光体を表1に示す工程に従って
作製した。ここで、LnはY,YbおよびErであっ
て、その濃度比がモル比で95:0:5.0,94.9:
0.1:5.0,94.7:0.3:5.0,94.5:0.
5:5.0,94.0:1.0:5.0,92.0:3.0:
5.0,90.0:5.0:5.0,85.0:10.0:
5.0,80.0:15.0:5.0,75.0:20.0:
5.0,65.0:30.0:5.0,55.0:40.0:
5.0,45.0:50.0:5.0,および35.0:6
0.0:5.0からなる11種類の発光体試料であり、実
施例4と同様にして測定した。
Example 5 A rare earth oxyhalide luminescent material having a composition represented by LnOBr was prepared according to the steps shown in Table 1. Here, Ln is Y, Yb, and Er, and the concentration ratio is 95: 0: 5.0, 94.9: in molar ratio.
0.1: 5.0, 94.7: 0.3: 5.0, 94.5: 0.
5: 5.0, 94.0: 1.0: 5.0, 92.0: 3.0:
5.0, 90.0: 5.0: 5.0, 85.0: 10.0:
5.0, 80.0: 15.0: 5.0, 75.0: 20.0:
5.0, 65.0: 30.0: 5.0, 55.0: 40.0:
5.0, 45.0: 50.0: 5.0, and 35.0: 6
Eleven kinds of luminescent material samples consisting of 0.0: 5.0 were measured in the same manner as in Example 4.

【0024】結果を図5に示す。図中、横軸はYbOB
r濃度(モル%)、縦軸は発光強度(任意単位)をとっ
ている。
The results are shown in FIG. In the figure, the horizontal axis is YbOB
r concentration (mol%), and the vertical axis represents emission intensity (arbitrary unit).

【0025】(実施例6)実施例4と同じ条件で作製し
た発光体試料に、光源としてLDの1.53μm光を照
射した場合の結果を図6に示す。図6は、ErOBr濃
度(モル%)と発光強度(任意単位)との関係を示す特
性図である。
(Embodiment 6) FIG. 6 shows the result when a light-emitting body sample manufactured under the same conditions as in Embodiment 4 was irradiated with 1.53 μm light from an LD as a light source. FIG. 6 is a characteristic diagram showing the relationship between ErOBr concentration (mol%) and emission intensity (arbitrary unit).

【0026】(実施例7)実施例5と同じ条件で作製し
た発光体試料に光源としてLDの1.53μm光を照射
した場合、その結果を図7に示す。図7は、YbOBr
濃度(モル%)と発光強度(任意単位)との関係を示す
特性図である。
(Embodiment 7) FIG. 7 shows the result when a light emitting sample prepared under the same conditions as in Embodiment 5 was irradiated with 1.53 μm light from an LD as a light source. FIG. 7 shows YbOBr.
It is a characteristic view which shows the relationship between concentration (mol%) and emission intensity (arbitrary unit).

【0027】(実施例8)組成がBa1-zErz
1/4(2+z)Brで表されるバリウムオキシハライド発光体
を表3に示す工程に従って作製した。ここで、式中のz
は0.2とした。
Example 8 The composition is Ba 1-z Er z O
A barium oxyhalide luminescent material represented by 1/4 (2 + z) Br was produced according to the steps shown in Table 3. Where z in the formula
Was set to 0.2.

【0028】[0028]

【表3】 [Table 3]

【0029】作製された粉末状の発光体試料を実施例1
と同様、外寸が60mm×50mm×7mmの石英セル
に充填し、光源(LD)より1.53μm光を照射し、
発光体からの放射光を安藤電気製分光器AQ−6310
Bを使用し、図12(b)に示す測定系により測定し
た。測定結果を図8に示す。図中、横軸に波長を、縦軸
に発光強度(任意単位)をとっている。
The produced powdery luminescent material sample was used in Example 1.
In the same manner as above, a quartz cell with external dimensions of 60 mm x 50 mm x 7 mm is filled and irradiated with 1.53 μm light from a light source (LD).
The radiant light from the light emitter is used as a spectroscope AQ-6310 manufactured by Ando Electric Co., Ltd.
B was used and the measurement was performed using the measurement system shown in FIG. The measurement result is shown in FIG. In the figure, the horizontal axis represents wavelength and the vertical axis represents emission intensity (arbitrary unit).

【0030】(実施例9)実施例8と同様にして作製し
た発光体試料を20℃、湿度50%の状態で保管し、保
管開始から4時間ごとに少量を密閉容器に移し、48時
間までの4時間ごとの試料に1.53μm光を照射し、
可視光の発光強度を測定した。測定結果を図9に示す。
横軸に時間、縦軸に発光強度(任意単位)をとってい
る。
(Example 9) A phosphor sample prepared in the same manner as in Example 8 was stored at 20 ° C and a humidity of 50%, and a small amount was transferred to a hermetically sealed container every 4 hours from the start of storage until 48 hours. Irradiate the sample every 4 hours with 1.53 μm light,
The emission intensity of visible light was measured. The measurement result is shown in FIG.
The horizontal axis represents time, and the vertical axis represents emission intensity (arbitrary unit).

【0031】(実施例10)組成がBa1-zErz
1/4(2+z)Xで表されるバリウムオキシハライド発光体を
表3に示す工程に従って作製した。ここで、式中のzは
0.2とする。一方、XはBrとClからなり、Br:
Clの比をモル比で、100:0,99.99:0.0
1,99.97:0.03,99.95:0.05,99.
9:0.1,99.7:0.3,99.5:0.5,99.
0:1.0,97.0:3.0,95.0:5.0,90:
10および80:20となるように調整して12種類の
発光体試料を用意した。
(Example 10) The composition was Ba 1-z Er z O.
A barium oxyhalide luminescent material represented by 1/4 (2 + z) X was prepared according to the steps shown in Table 3. Here, z in the formula is set to 0.2. On the other hand, X consists of Br and Cl, and Br:
The molar ratio of Cl is 100: 0, 99.99: 0.0.
1,99.97: 0.03,99.95: 0.05,99.
9: 0.1, 99.7: 0.3, 99.5: 0.5,99.
0: 1.0, 97.0: 3.0, 95.0: 5.0, 90:
Twelve kinds of luminescent material samples were prepared by adjusting to 10 and 80:20.

【0032】これらの作製された発光体試料を実施例1
で使用したと同様の石英セルに充填し、1.53μm光
を照射し、発光体より放射された可視光を日立蛍光光度
計850により測定した。結果を図10に示す。図中、
横軸にBa0.8Er0.20.55Cl濃度(モル%)を、縦
軸に発光強度(任意単位)をとっている。
These prepared phosphor samples were used in Example 1.
The same quartz cell as used in 1. was filled with 1.53 μm light, and the visible light emitted from the light emitter was measured with a Hitachi Fluorometer 850. The results are shown in Fig. 10. In the figure,
The horizontal axis represents the concentration of Ba 0.8 Er 0.2 O 0.55 Cl (mol%), and the vertical axis represents the emission intensity (arbitrary unit).

【0033】(実施例11)組成がBa1-zErz
1/4(2+z)Brで表されるバリウムオキシハライド発光体
を表3に示す工程に準じて作製した。ここで、式中のz
を、0,0.01,0.03,0.05,0.10,0.2
0,0.30,0.40,0.50,0.60および0.7
0である11種類の発光体試料を用意した。
Example 11 The composition is Ba 1-z Er z O.
A barium oxyhalide luminescent material represented by 1/4 (2 + z) Br was produced according to the steps shown in Table 3. Where z in the formula
To 0, 0.01, 0.03, 0.05, 0.10, 0.2
0, 0.30, 0.40, 0.50, 0.60 and 0.7
Eleven kinds of luminescent material samples of 0 were prepared.

【0034】上記の発光体試料を実施例1で使用したの
と同様の石英セルに充填し、1.53μm光を照射し、
発光体より放射された可視光を日立蛍光光度計850に
より測定した。結果を図11に示す。図中、横軸にz、
縦軸に発光強度(任意単位)をとっている。
The above phosphor sample was filled in the same quartz cell as used in Example 1 and irradiated with 1.53 μm light,
Visible light emitted from the illuminant was measured by Hitachi Fluorometer 850. The results are shown in Fig. 11. In the figure, the horizontal axis is z,
The vertical axis represents the emission intensity (arbitrary unit).

【0035】[0035]

【発明の効果】本発明によれば、 1)発光強度の大きい 2)従来の物より吸湿による劣化の少ない 3)粒径により発光強度が変化しないため、成形加工し
易い 4)簡単な設備で製造できる 5)1つの組成で、複数の波長域で励起される可視光の
発光が起こる という利点を持った発光体の提供が可能になった。
EFFECTS OF THE INVENTION According to the present invention, 1) high emission intensity is 2) less deterioration due to moisture absorption than conventional products 3) emission intensity does not change due to particle size, so molding is easy 4) simple equipment Manufacturable 5) It has become possible to provide a light-emitting body having the advantage that visible light emission excited in a plurality of wavelength regions occurs with one composition.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1にかかるLnOBr発光体の
1.06μm励起光による発光特性を示す特性図。図1
(a)は1.06μm励起の場合、図1(b)は1.53
μm励起の場合を示す特性図。
FIG. 1 is a characteristic diagram showing an emission characteristic of a LnOBr luminescent material according to Example 1 of the present invention when excited by 1.06 μm excitation light. Figure 1
(A) is 1.06 μm excitation, and FIG. 1 (b) is 1.53 μm.
The characteristic view showing the case of μm excitation.

【図2】本発明の実施例2にかかるLnOBr発光体の
発光強度の経時変化を示す特性図。
FIG. 2 is a characteristic diagram showing changes over time in the emission intensity of the LnOBr luminescent material according to Example 2 of the present invention.

【図3】本発明の実施例3にかかるLnOX発光体のL
nOCl濃度と発光強度との関係を示す特性図。
FIG. 3 is an L of an LnOX light emitter according to Example 3 of the present invention.
The characteristic view which shows the relationship between nOCl density | concentration and luminescence intensity.

【図4】本発明の実施例4にかかるLnOBr発光体の
ErOBr濃度と発光強度(1.06μm励起)との関
係を示す特性図。
FIG. 4 is a characteristic diagram showing the relationship between the ErOBr concentration and the emission intensity (1.06 μm excitation) of the LnOBr luminescent material according to Example 4 of the present invention.

【図5】本発明の実施例5にかかるLnOBr発光体の
YbOBr濃度と発光強度(1.06μm励起)との関
係を示す特性図。
FIG. 5 is a characteristic diagram showing the relationship between the YbOBr concentration and the emission intensity (1.06 μm excitation) of the LnOBr luminescent material according to Example 5 of the present invention.

【図6】本発明の実施例6にかかるLnOBr発光体の
ErOBr濃度と発光強度(1.53μm励起)との関
係を示す特性図。
FIG. 6 is a characteristic diagram showing the relationship between the ErOBr concentration and the emission intensity (1.53 μm excitation) of the LnOBr luminescent material according to Example 6 of the present invention.

【図7】本発明の実施例7にかかるLnOBr発光体の
YbOBr濃度度と発光強度(1.53μm励起)との
関係を示す特性図。
FIG. 7 is a characteristic diagram showing the relationship between the YbOBr concentration and the emission intensity (1.53 μm excitation) of the LnOBr luminescent material according to Example 7 of the present invention.

【図8】本発明の実施例8にかかるBaオキシハライド
発光体の1.53μm励起光による発光特性を示す特性
図。
FIG. 8 is a characteristic diagram showing emission characteristics of a Ba oxyhalide luminescent material according to Example 8 of the present invention under excitation light of 1.53 μm.

【図9】本発明の実施例9にかかるBaオキシハライド
発光体の発光強度の経時変化を示す特性図。
FIG. 9 is a characteristic diagram showing changes with time in emission intensity of a Ba oxyhalide luminescent material according to Example 9 of the present invention.

【図10】本発明の実施例10にかかるBaオキシハラ
イド発光体のBa1-zErz1/4( 2+z)Cl濃度と発光強
度との関係を示す特性図。
FIG. 10 is a characteristic diagram showing the relationship between the Ba 1-z Er z O 1/4 ( 2 + z) Cl concentration and the emission intensity of the Ba oxyhalide luminescent material according to Example 10 of the present invention.

【図11】本発明の実施例11にかかるBaオキシハラ
イド発光体のEr濃度と発光強度(1.53μm励起)
との関係を示す特性図。
FIG. 11: Er concentration and emission intensity (1.53 μm excitation) of Ba oxyhalide luminescent material according to Example 11 of the present invention.
The characteristic view showing the relationship with.

【図12】発光体からの放射光を測定する測定係を示す
図で、図12(a)は1.06μm光を照射する場合を
示す図、図12(b)は1.53μm光を照射する場合
を示す図。
12A and 12B are views showing a measuring section for measuring emitted light from a light emitting body, FIG. 12A shows a case of irradiating with 1.06 μm light, and FIG. 12B shows irradiation with 1.53 μm of light. FIG.

【符号の説明】[Explanation of symbols]

1 光源(1.06μm) 11 光源(1.53μm) 2 試料室 3 セル 4 分光器 5 励起光 6 放射光 M 反射鏡 S 試料 1 Light source (1.06 μm) 11 Light source (1.53 μm) 2 Sample chamber 3 Cell 4 Spectrometer 5 Excitation light 6 Emission light M Reflector S Sample

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 組成がA1-x-yYbxEryOX(但し、
AはSc,Y,La,Gd,YbおよびLuの中の1種
又は2種以上であり、y≧0.01,x+y≦1であ
る。又、XはBr、又はBr及びClである)で、波長
0.95μm〜1.10μm域および1.48μm〜1.5
8μm域の照射をそれぞれ単独で行った場合、両波長域
もしくは片方の波長域に対し可視光の発光があることを
特徴とする発光体。
1. A composition of A 1-xy Yb x Er y OX (provided that
A is one or more of Sc, Y, La, Gd, Yb and Lu, and y ≧ 0.01 and x + y ≦ 1. X is Br, or Br and Cl) and has a wavelength of 0.95 μm to 1.10 μm region and 1.48 μm to 1.5.
A light-emitting body, which emits visible light in both wavelength regions or one wavelength region when irradiation is performed independently in the 8 μm region.
【請求項2】 組成がBa1-zErz1/4(2+z)X(但
し、z≦0.8であり、XはBr、又はBrおよびCl
である)で、波長0.95μm〜1.10μm域および
1.48μm〜1.58μm域の照射をそれぞれ単独で行
った場合、両波長域もしくは片方の波長域に対して可視
光の発光があることを特徴とする発光体。
2. The composition has a composition of Ba 1 -z Er z O 1/4 (2 + z) X (where z ≦ 0.8, X is Br, or Br and Cl).
In the case of irradiation with wavelengths of 0.95 μm to 1.10 μm range and 1.48 μm to 1.58 μm range respectively, visible light is emitted in both wavelength ranges or one of the wavelength ranges. A luminous body characterized by the above.
JP2754094A 1994-01-31 1994-01-31 Luminescent material Pending JPH07216354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2754094A JPH07216354A (en) 1994-01-31 1994-01-31 Luminescent material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2754094A JPH07216354A (en) 1994-01-31 1994-01-31 Luminescent material

Publications (1)

Publication Number Publication Date
JPH07216354A true JPH07216354A (en) 1995-08-15

Family

ID=12223928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2754094A Pending JPH07216354A (en) 1994-01-31 1994-01-31 Luminescent material

Country Status (1)

Country Link
JP (1) JPH07216354A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010053311A (en) * 2008-08-29 2010-03-11 Nemoto & Co Ltd Infrared ray-emitting phosphor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010053311A (en) * 2008-08-29 2010-03-11 Nemoto & Co Ltd Infrared ray-emitting phosphor

Similar Documents

Publication Publication Date Title
Van Loef et al. Scintillation and spectroscopy of the pure and Ce3+-doped elpasolites: Cs2LiYX6 (X= Cl, Br)
US5541012A (en) Infrared-to-visible up-conversion material
Bril et al. Fluorescent Properties of Some Europium‐Activated Phosphors
Qiu et al. Photostimulated luminescence in Eu 2+-doped fluoroaluminate glasses
CN109135750B (en) Optical temperature measuring material with high sensitivity and signal discrimination, and preparation method and application thereof
De Leeuw et al. Kinetics of photostimulated luminescence in BaFBr: Eu
KR101121717B1 (en) LUMINESCENT SUBSTANCES HAVING Eu (2+) -DOPED SILICATE LUMINOPHORES
JP2003096445A (en) Improved quantum splitting oxide fluorescent substance and method of production for the same
US6251304B1 (en) Luminescent material
JPH07216354A (en) Luminescent material
Dietze et al. Photostimulation redshift for nonstoichiometric Ba1− x Sr x FBr: Eu2+
EP0057026B1 (en) Luminescent screen
JP4205936B2 (en) Aluminate phosphor, method for producing the same, phosphor paste composition, and vacuum ultraviolet light-emitting device
Sommerdijk et al. Decay of the Ce3+ luminescence of LaMgAl11O19: Ce3+ and of CeMgAl11O19 activated with Tb3+ or Eu3+
EP0569257B1 (en) Infrared-to-visible up-conversion material, and infrared light identification elements comprising same
JP2002528563A5 (en)
EP1258520B1 (en) Quantum-splitting oxide-based phosphors
JP2006002043A (en) Fluorescent substance to be excited by vacuum ultraviolet rays, method for producing the same, and vacuum ultraviolet ray-excited light-emitting element
Uehara et al. Copper‐Activated Calcium Orthophosphate and Related Phosphors
Pfahnl Properties of fast-decay cathode-ray tube phosphors
US6376982B1 (en) Electric discharge lamp and luminescent material and compound
Uehara et al. Wave‐Length Dependence of the Quantum Efficiency and Absorption of Powder Phosphors
Sidorenko et al. Luminescence and thermoluminescence of Sr2B5O9X: Ce3+, A+ (X= Cl, Br, A= Na+, K+) phosphors
Gorokhova et al. Spectrokinetic characteristics of Gd 2 O 2 S: Pr, Ce ceramics
JP7323129B2 (en) RPL material, light emitting device, method for manufacturing RPL material, and method for increasing luminescence intensity of RPL material