JPH07202126A - Semiconductor device - Google Patents
Semiconductor deviceInfo
- Publication number
- JPH07202126A JPH07202126A JP5353167A JP35316793A JPH07202126A JP H07202126 A JPH07202126 A JP H07202126A JP 5353167 A JP5353167 A JP 5353167A JP 35316793 A JP35316793 A JP 35316793A JP H07202126 A JPH07202126 A JP H07202126A
- Authority
- JP
- Japan
- Prior art keywords
- diffusion layer
- reference potential
- transistor
- output transistor
- semiconductor device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims description 51
- 229910052751 metal Inorganic materials 0.000 claims abstract description 26
- 239000002184 metal Substances 0.000 claims abstract description 26
- 230000003071 parasitic effect Effects 0.000 claims abstract description 25
- 238000009792 diffusion process Methods 0.000 claims description 57
- 239000000758 substrate Substances 0.000 claims description 16
- 239000003870 refractory metal Substances 0.000 claims description 6
- 229910021332 silicide Inorganic materials 0.000 claims description 6
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims description 6
- 238000002955 isolation Methods 0.000 claims description 5
- 230000015556 catabolic process Effects 0.000 abstract description 11
- 238000000034 method Methods 0.000 abstract description 4
- 230000001681 protective effect Effects 0.000 abstract 6
- 239000010410 layer Substances 0.000 description 44
- 229910052782 aluminium Inorganic materials 0.000 description 18
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 18
- 238000010586 diagram Methods 0.000 description 7
- 239000011229 interlayer Substances 0.000 description 3
- 230000009545 invasion Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/0203—Particular design considerations for integrated circuits
- H01L27/0248—Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
- H01L27/0251—Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
- H01L27/0259—Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using bipolar transistors as protective elements
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Semiconductor Integrated Circuits (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、半導体装置に係り、特
に内部回路を静電破壊から保護するための保護トランジ
スタを備える半導体装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to a semiconductor device having a protection transistor for protecting an internal circuit from electrostatic breakdown.
【0002】[0002]
【従来の技術】従来、半導体集積回路を静電破壊現象か
ら保護する技術としては、例えば、特開平4−1220
59号公報に掲載された技術が知られている。以下、こ
の公知技術について図面を参照して説明する。図5はこ
の従来の半導体装置の回路構成を、図6は同装置のパタ
ーンレイアウトを、図7は図6のb−b断面図をそれぞ
れ示している。2. Description of the Related Art Conventionally, as a technique for protecting a semiconductor integrated circuit from an electrostatic breakdown phenomenon, for example, Japanese Patent Laid-Open No. 4-1220 is known.
The technique disclosed in Japanese Patent Publication No. 59 is known. Hereinafter, this known technique will be described with reference to the drawings. FIG. 5 shows a circuit configuration of this conventional semiconductor device, FIG. 6 shows a pattern layout of the device, and FIG. 7 shows a sectional view taken along line bb of FIG.
【0003】図5において、静電荷の侵入による高電圧
パルスが金属端子である入出力端子1に印加されると、
サージ電流が出力トランジスタ2及び配線100を通っ
てゲート駆動回路に流れ、或は入力抵抗3及び配線10
1を通って、内部回路に流れることで半導体装置が破壊
される。このため、内部回路の入出力端子1の付近に放
電パスを形成する保護トランジスタ4を設けている。保
護トランジスタ4は、電流耐量の大きなバイポーラトラ
ンジスタで構成され、高電圧パルスが印加された際に導
通状態になって印加電圧をクランプする。In FIG. 5, when a high voltage pulse due to invasion of electrostatic charges is applied to the input / output terminal 1 which is a metal terminal,
Surge current flows through the output transistor 2 and the wiring 100 to the gate drive circuit, or the input resistor 3 and the wiring 10
The semiconductor device is destroyed by flowing through 1 to the internal circuit. Therefore, the protection transistor 4 forming a discharge path is provided near the input / output terminal 1 of the internal circuit. The protection transistor 4 is composed of a bipolar transistor having a large withstand current, and becomes conductive when a high voltage pulse is applied to clamp the applied voltage.
【0004】図7において、出力トランジスタ2は、P
型半導体基板5の表面に形成されたN型拡散層6、7及
びゲート電極8を有するN型LDD(Lightly Doped Dr
ain)構造のMOSFETとして構成される。なお、P
型半導体基板5とゲート電極8との間にはゲート酸化膜
15が介在している。出力トランジスタ2のソースとな
るN型拡散層6はアルミ配線9により接地線に接続さ
れ、ドレインとなるN型拡散層7はアルミ配線10によ
り入出力端子1に接続される。なお、ゲート電極8とア
ルミ配線9、10とは、側壁絶縁膜16及び層間絶縁膜
17によって絶縁される。In FIG. 7, the output transistor 2 is P
-Type LDD (Lightly Doped Dr) having N-type diffusion layers 6 and 7 and a gate electrode 8 formed on the surface of a semiconductor substrate 5
ain) structured MOSFET. Note that P
A gate oxide film 15 is interposed between the type semiconductor substrate 5 and the gate electrode 8. The N-type diffusion layer 6 serving as the source of the output transistor 2 is connected to the ground line by the aluminum wiring 9, and the N-type diffusion layer 7 serving as the drain is connected to the input / output terminal 1 by the aluminum wiring 10. The gate electrode 8 and the aluminum wirings 9 and 10 are insulated by the sidewall insulating film 16 and the interlayer insulating film 17.
【0005】保護トランジスタ4は、P型半導体基板5
をベースとし、N型拡散層7をコレクタとし、N型拡散
層11をエミッタとしたNPNバイポーラトランジスタ
で構成される。なお、N型拡散層7とN型拡散層11と
はフィールド酸化膜18によって絶縁される。また、保
護トランジスタ4のコレクタであるN型拡散層7はアル
ミ配線10により入出力端子1に接続され、同保護トラ
ンジスタ4のエミッタとなるN型拡散層11はアルミ配
線12により接地線に接続される。かかる半導体装置
は、出力トランジスタ2のドレインと保護トランジスタ
4のコレクタとがN型拡散層7として共通に形成され、
パターン面積の縮小及び、入出力端子1に余分な容量が
付加されない構造になっている。The protection transistor 4 is a P-type semiconductor substrate 5
Is a base, the N-type diffusion layer 7 is a collector, and the N-type diffusion layer 11 is an emitter. The N-type diffusion layer 7 and the N-type diffusion layer 11 are insulated by the field oxide film 18. The N-type diffusion layer 7 which is the collector of the protection transistor 4 is connected to the input / output terminal 1 by the aluminum wiring 10, and the N-type diffusion layer 11 which is the emitter of the protection transistor 4 is connected to the ground line by the aluminum wiring 12. It In such a semiconductor device, the drain of the output transistor 2 and the collector of the protection transistor 4 are commonly formed as the N-type diffusion layer 7,
The structure is such that the pattern area is reduced and no extra capacitance is added to the input / output terminal 1.
【0006】また、図5及び図6に示すように、従来の
半導体装置では、出力トランジスタ2のゲート電極8と
コンタクト13、14までの距離S1、S2で決定され
る寄生抵抗103の抵抗値が、コンタクト14、19と
フィールド酸化膜18までの距離S3、S4で決定され
る寄生抵抗102の抵抗値と同程度であって、しかも出
力トランジスタ2の実効チャネル長L1が保護トランジ
スタ4の実効ベース幅L2と同程度である。Further, as shown in FIGS. 5 and 6, in the conventional semiconductor device, the resistance value of the parasitic resistance 103, which is determined by the distances S1 and S2 between the gate electrode 8 of the output transistor 2 and the contacts 13 and 14, is , The resistance value of the parasitic resistance 102 determined by the distances S3 and S4 between the contacts 14 and 19 and the field oxide film 18, and the effective channel length L1 of the output transistor 2 is equal to the effective base width of the protection transistor 4. It is about the same as L2.
【0007】[0007]
【発明が解決しようとする課題】ところで、上記した従
来の半導体装置では、静電荷の侵入に起因する高電圧パ
ルスが入出力端子に印加されると、出力トランジスタが
寄生バイポーラトランジスタとして動作する。即ち、入
出力端子に入力されたサージ電流が、必ずしも保護トラ
ンジスタに全て流れるとは限らず、保護されるべき出力
トランジスタや内部回路にも流れ、半導体装置を破壊す
るという問題がある。In the conventional semiconductor device described above, the output transistor operates as a parasitic bipolar transistor when a high voltage pulse resulting from the intrusion of electrostatic charges is applied to the input / output terminal. That is, the surge current input to the input / output terminal does not always flow through the protection transistor, but also through the output transistor or internal circuit to be protected, which causes a problem that the semiconductor device is destroyed.
【0008】また、半導体装置の集積回路化を図るため
にLDD構造の出力トランジスタで出力トランジスタを
構成する場合、その構造に起因して出力トランジスタに
おける静電破壊耐量が低下するので、半導体装置の静電
破壊現象が起き易くなるという問題がある。When an output transistor having an LDD structure is used to form the integrated circuit of the semiconductor device, the electrostatic breakdown resistance of the output transistor is reduced due to the structure, so that the semiconductor device is not statically damaged. There is a problem that the electric breakdown phenomenon is likely to occur.
【0009】本発明は、上記問題を解決するためになさ
れたもので、最小限のパターン面積の回路構成によっ
て、出力トランジスタ及び内部回路を静電破壊現象から
保護できるようにした半導体装置を提供することを目的
とする。The present invention has been made to solve the above problems, and provides a semiconductor device capable of protecting an output transistor and an internal circuit from an electrostatic breakdown phenomenon with a circuit configuration having a minimum pattern area. The purpose is to
【0010】[0010]
【課題を解決するための手段】上記目的を達成するた
め、本発明の半導体装置は、半導体基板上に設けられた
金属端子と、前記半導体基板の一導電型領域内に形成さ
れ、かつ前記金属端子に接続された逆導電型の第1の拡
散層をドレインとし、第1の基準電位に接続された逆導
電型の第2の拡散層をソースとする出力トランジスタ
と、前記第1の拡散層の近傍に設けられた素子分離絶縁
膜によって前記第1拡散層と分離されると共に、第1の
基準電位又は第2の基準電位に接続された逆導電型の第
3の拡散層をエミッタ、前記第1の拡散層をコレクタ、
前記一導電型領域をベースとする保護トランジスタとを
備え、前記保護トランジスタにおける前記金属端子から
前記第1の基準電位又は第2の基準電位までの寄生抵抗
が、前記出力トランジスタにおける前記金属端子から前
記第1の基準電位までの寄生抵抗よりも小さいことを特
徴とする。前記金属端子は、外部回路と前記半導体基板
の内部回路とを接続する入出力端にすることが望まし
い。To achieve the above object, a semiconductor device of the present invention is provided with a metal terminal provided on a semiconductor substrate and a metal terminal formed in one conductivity type region of the semiconductor substrate. An output transistor having a reverse conductivity type first diffusion layer connected to a terminal as a drain and a reverse conductivity type second diffusion layer connected to a first reference potential as a source; and the first diffusion layer. An element isolation insulating film provided in the vicinity of the first diffusion layer and a third diffusion layer of the opposite conductivity type, which is connected to the first reference potential or the second reference potential, and is separated from the first diffusion layer. The first diffusion layer is the collector,
A protection transistor based on the one conductivity type region, wherein a parasitic resistance from the metal terminal in the protection transistor to the first reference potential or the second reference potential is from the metal terminal in the output transistor It is characterized in that it is smaller than the parasitic resistance up to the first reference potential. It is desirable that the metal terminal be an input / output terminal for connecting an external circuit and an internal circuit of the semiconductor substrate.
【0011】保護トランジスタの寄生抵抗を出力トラン
ジスタの寄生抵抗よりも小さくするには、前記金属端子
と前記第1の拡散層との接続部から前記素子分離絶縁膜
までの距離、及び前記第1の基準電位又は第2の基準電
位と第3の拡散層との接続部から前記素子分離絶縁膜ま
での距離を合せた長さを、前記金属端子と前記第1の拡
散層との接続部から前記出力トランジスタのゲート電極
までの距離、及び第1の基準電位と第2の拡散層との接
続部から該出力トランジスタのゲート電極までの距離を
合せた長さよりも短く形成する手段を採用することが望
ましい。In order to make the parasitic resistance of the protection transistor smaller than that of the output transistor, the distance from the connection between the metal terminal and the first diffusion layer to the element isolation insulating film, and the first From the connection between the metal terminal and the first diffusion layer, the length obtained by combining the distance from the connection between the reference potential or the second reference potential and the third diffusion layer to the element isolation insulating film is calculated as follows. It is possible to employ means for forming the distance to the gate electrode of the output transistor and the distance from the connecting portion between the first reference potential and the second diffusion layer to the gate electrode of the output transistor to be shorter than the total length. desirable.
【0012】本発明の半導体装置においては、保護トラ
ンジスタの実効ベース長を出力トランジスタの実効チャ
ネル長よりも短くすることにより、保護トランジスタの
機能を更に有効に発揮させることができ、また、金属端
子と第1の拡散層との接続部及び第1の基準電位と第2
の拡散層との接続部に高融点金属シリサイドパッドを介
在させる構成を採用して、保護トランジスタの機能を有
効に発揮させることもできる。なお、前記一導電型領域
は前記半導体基板内に形成されたウェルとしても、本発
明を適用することができる。In the semiconductor device of the present invention, by making the effective base length of the protection transistor shorter than the effective channel length of the output transistor, the function of the protection transistor can be more effectively exerted, and the metal terminal and The connection portion with the first diffusion layer and the first reference potential and the second
It is also possible to effectively utilize the function of the protection transistor by adopting a configuration in which a refractory metal silicide pad is interposed in the connection portion with the diffusion layer of. The present invention can be applied to the one conductivity type region as a well formed in the semiconductor substrate.
【0013】[0013]
【作用】本発明の半導体装置では、金属端子と第1基準
電位又は第2基準電位との間の保護トランジスタの寄生
抵抗の抵抗値が、金属端子と第1基準電位との間の出力
トランジスタの寄生抵抗の抵抗値よりも小さいので、静
電荷の侵入による高電圧パルスが金属端子に印加されて
も、出力トランジスタが寄生バイポーラトランジスタと
して動作せず、電流耐量の大きい保護トランジスタが主
として動作する。従って、サージ電流の大部分が保護ト
ランジスタに流れるので、出力トランジスタ及び内部回
路の静電破壊耐量が大きく向上する。In the semiconductor device of the present invention, the resistance value of the parasitic resistance of the protection transistor between the metal terminal and the first reference potential or the second reference potential is the output transistor between the metal terminal and the first reference potential. Since the resistance value is smaller than the resistance value of the parasitic resistance, the output transistor does not operate as a parasitic bipolar transistor even when a high voltage pulse due to the intrusion of electrostatic charges is applied to the metal terminal, and the protection transistor having a large current withstanding function mainly operates. Therefore, most of the surge current flows through the protection transistor, and the electrostatic breakdown withstand capability of the output transistor and the internal circuit is greatly improved.
【0014】保護トランジスタの実効ベース長を出力ト
ランジスタの実効チャネル長よりも短くする構成を採用
すると、サージ電流が保護トランジスタに流れ易くな
り、保護トランジスタが有効に機能できるようになる。
また、金属端子と第1の拡散層との接続部及び第1の基
準電位と第2の拡散層との接続部に高融点金属シリサイ
ドパッドを介在させる構成を採用すると、高融点金属シ
リサイドパッドが出力トランジスタの寄生抵抗の抵抗値
を高めるので、拡散層の面積を広げずに出力トランジス
タの静電破壊耐量を大きくできる。If a structure is adopted in which the effective base length of the protection transistor is shorter than the effective channel length of the output transistor, surge current easily flows through the protection transistor, and the protection transistor can effectively function.
Further, when a configuration in which the refractory metal silicide pad is interposed at the connection portion between the metal terminal and the first diffusion layer and the connection portion between the first reference potential and the second diffusion layer, the refractory metal silicide pad is Since the resistance value of the parasitic resistance of the output transistor is increased, the electrostatic breakdown resistance of the output transistor can be increased without expanding the area of the diffusion layer.
【0015】[0015]
【実施例】以下、本発明に係る半導体装置の第1実施例
を図面を参照して説明する。図1は本実施例の半導体装
置の入出力回路の回路図を示し、図2はそのパターンレ
イアウトを示し、図3は図2のa−a断面を示す図であ
る。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of a semiconductor device according to the present invention will be described below with reference to the drawings. FIG. 1 shows a circuit diagram of an input / output circuit of a semiconductor device of this embodiment, FIG. 2 shows its pattern layout, and FIG. 3 shows a cross section taken along the line aa of FIG.
【0016】図1に示すように、本実施例の半導体装置
には、外部回路に接続するための金属端子である入出力
端子21と内部回路201の抵抗23との間に入出力信
号の電位を制御する出力トランジスタ22が備えられ、
内部回路や出力トランジスタ22をサージ電流から保護
するために放電パスを形成する保護トランジスタ24、
及び保護ダイオード25が設けられている。As shown in FIG. 1, in the semiconductor device of this embodiment, the potential of the input / output signal is placed between the input / output terminal 21 which is a metal terminal for connecting to an external circuit and the resistor 23 of the internal circuit 201. An output transistor 22 for controlling
A protection transistor 24 forming a discharge path for protecting the internal circuit and the output transistor 22 from a surge current,
And a protection diode 25 are provided.
【0017】出力トランジスタ22は、図3に示すよう
に、P型半導体基板26の表面にN型拡散層27中の2
7a、27b、27c及び、ゲート電極28a、28b
よりなるN型LDD構造のMOSFETから構成され
る。また、出力トランジスタ22のソース領域であるN
型拡散層27bはアルミ配線29によって第1の基準電
位(接地電位)に接続され、ドレイン領域であるN型拡
散層27a、27cはアルミ配線30により入出力端子
21に接続される。P型半導体基板26とゲート電極2
8a、28bとの間にはゲート酸化膜38が介在してい
る。なお、本実施例では、出力トランジスタ22のソー
スを接地線に接続させた構成にしたが、これに限定せ
ず、同ソースを高電位電源ラインの基準電位に接続する
構成にしても、本発明を適用することができる。As shown in FIG. 3, the output transistor 22 has 2 of the N type diffusion layers 27 on the surface of the P type semiconductor substrate 26.
7a, 27b, 27c and gate electrodes 28a, 28b
It is composed of an N-type LDD structure MOSFET. In addition, N which is the source region of the output transistor 22
The type diffusion layer 27b is connected to the first reference potential (ground potential) by the aluminum wiring 29, and the N-type diffusion layers 27a and 27c which are the drain regions are connected to the input / output terminal 21 by the aluminum wiring 30. P-type semiconductor substrate 26 and gate electrode 2
A gate oxide film 38 is interposed between 8a and 28b. Although the source of the output transistor 22 is connected to the ground line in this embodiment, the present invention is not limited to this, and the source may be connected to the reference potential of the high potential power supply line. Can be applied.
【0018】出力トランジスタ22のゲート電極28
a、28bは、図2に示すように、ゲート駆動回路への
配線200に接続され、ゲート駆動回路からの駆動信号
によって出力トランジスタ22の導通、非導通を切り換
えて入出力端子21の電位を制御している。なお、ゲー
ト電極28a、28bとアルミ配線29、30とは、側
壁絶縁膜36及び層間絶縁膜37によって絶縁される。The gate electrode 28 of the output transistor 22
As shown in FIG. 2, a and 28b are connected to the wiring 200 to the gate drive circuit, and switch the conduction / non-conduction of the output transistor 22 by the drive signal from the gate drive circuit to control the potential of the input / output terminal 21. is doing. The gate electrodes 28a and 28b and the aluminum wirings 29 and 30 are insulated by the sidewall insulating film 36 and the interlayer insulating film 37.
【0019】保護ダイオード25は、P型拡散層31と
N型拡散層27aからなるPNダイオードで構成され
る。P型拡散層31はアルミ配線29により接地線に接
続され、N型拡散層27aはアルミ配線30により入出
力端子21に接続される。The protection diode 25 is a PN diode composed of a P-type diffusion layer 31 and an N-type diffusion layer 27a. The P-type diffusion layer 31 is connected to the ground line by the aluminum wiring 29, and the N-type diffusion layer 27a is connected to the input / output terminal 21 by the aluminum wiring 30.
【0020】保護トランジスタ24は、P型半導体基板
26をベースとし、N型拡散層27cをコレクタとし、
N型拡散層27dをエミッタとしたNPNバイポーラト
ランジスタとして構成される。N型拡散層27cとN型
拡散層27dとはフィールド酸化膜32によって絶縁さ
れる。また、コレクタのN型拡散層27cはアルミ配線
30で入出力端子21に接続され、エミッタのN型拡散
層27dはアルミ配線29で接地線に接続される。The protection transistor 24 has a P-type semiconductor substrate 26 as a base and an N-type diffusion layer 27c as a collector.
It is configured as an NPN bipolar transistor having the N-type diffusion layer 27d as an emitter. The N-type diffusion layer 27c and the N-type diffusion layer 27d are insulated by the field oxide film 32. The collector N-type diffusion layer 27c is connected to the input / output terminal 21 by an aluminum wiring 30, and the emitter N-type diffusion layer 27d is connected by an aluminum wiring 29 to a ground line.
【0021】本実施例では、図2に示すように、出力ト
ランジスタ22のゲート電極28bからアルミ配線30
のコンタクト33までの距離S10、及び同ゲート電極
28bからアルミ配線29のコンタクト34までの距離
S11を5μmとし、出力トランジスタ22のコンタク
ト33からフィールド酸化膜32までの距離S12、及
び保護トランジスタ24のエミッタとアルミ配線29と
のコンタクト35からフィールド酸化膜32までの距離
S13を2.5μmとしている。この結果、拡散層の電
気抵抗が、例えば単位長さ及び単位幅あたり50Ωであ
って、かつ出力トランジスタ22の幅が10μmである
と仮定すると、図1に示す寄生抵抗203の抵抗値は5
0Ωとなり、寄生抵抗202の抵抗値25Ωと比較して
2倍の値になる。更に、本実施例では、出力トランジス
タ22の実効チャネル長L10を1.2μmで形成し、
保護トランジスタ24の実効ベース幅L11を0.9μ
mで形成して出力トランジスタ22の実効チャネルを長
くしている。In this embodiment, as shown in FIG. 2, from the gate electrode 28b of the output transistor 22 to the aluminum wiring 30.
To the contact 33 of the output transistor 22, the distance S11 from the gate electrode 28b to the contact 34 of the aluminum wiring 29 is 5 μm, and the distance S12 from the contact 33 of the output transistor 22 to the field oxide film 32 and the emitter of the protection transistor 24. The distance S13 from the contact 35 between the aluminum wiring 29 and the field oxide film 32 is 2.5 μm. As a result, assuming that the electric resistance of the diffusion layer is, for example, 50Ω per unit length and unit width, and the width of the output transistor 22 is 10 μm, the resistance value of the parasitic resistance 203 shown in FIG.
It becomes 0Ω, which is twice the resistance value of the parasitic resistance 202 of 25Ω. Further, in this embodiment, the effective channel length L10 of the output transistor 22 is formed to be 1.2 μm,
Set the effective base width L11 of the protection transistor 24 to 0.9 μ
and the effective channel of the output transistor 22 is made longer.
【0022】本実施例の半導体装置では、寄生抵抗20
3の抵抗値を高めて出力トランジスタ22が寄生バイポ
ーラトランジスタとして動作し難い構造に形成してい
る。従って、入出力端子21に正極の高電圧パルスが印
加されると、電流耐量の大きい保護トランジスタ24が
作動して導通状態となる。この結果、サージ電流の大部
分が保護トランジスタ24に流れるので、出力トランジ
スタ22の静電破壊耐量を大きく向上させることができ
る。また、入出力端子21に負極の高電圧パルスが印加
されると、保護ダイオード25に順方向のサージ電流が
流れるので、出力トランジスタ22が保護される。In the semiconductor device of this embodiment, the parasitic resistance 20
The resistance value of 3 is increased to form the output transistor 22 in a structure that does not easily operate as a parasitic bipolar transistor. Therefore, when a positive high-voltage pulse is applied to the input / output terminal 21, the protection transistor 24 having a large withstand current operates and becomes conductive. As a result, most of the surge current flows to the protection transistor 24, so that the electrostatic breakdown resistance of the output transistor 22 can be greatly improved. When a negative high voltage pulse is applied to the input / output terminal 21, a forward surge current flows through the protection diode 25, so that the output transistor 22 is protected.
【0023】次に本発明の第2実施例の半導体装置につ
いて説明する。図4は本実施例のパターンレイアウトを
示す図である。なお、本実施例の半導体装置の入出力部
の基本的な回路構成は、第1実施例の半導体装置と同様
である。Next, a semiconductor device according to the second embodiment of the present invention will be described. FIG. 4 is a diagram showing a pattern layout of this embodiment. The basic circuit configuration of the input / output unit of the semiconductor device of this embodiment is the same as that of the semiconductor device of the first embodiment.
【0024】本実施例と第1実施例とが異なる点は、入
出力端子21からのアルミ配線30又は接地線からのア
ルミ配線29とN型拡散層27との間に高融点金属シリ
サイドパッド40を介在させ、出力トランジスタ22の
寄生抵抗203の抵抗値を、拡散層の面積を広げずに大
きくしている点にある。このような構成にすることによ
り、保護トランジスタ24は更に有効に機能する。ま
た、超高速用LSIに本実施例を適用すれば、出力トラ
ンジスタは非常に高い静電耐量を得ることができる。The difference between this embodiment and the first embodiment is that the refractory metal silicide pad 40 is provided between the N-type diffusion layer 27 and the aluminum wiring 30 from the input / output terminal 21 or the aluminum wiring 29 from the ground line. Is interposed to increase the resistance value of the parasitic resistance 203 of the output transistor 22 without increasing the area of the diffusion layer. With such a configuration, the protection transistor 24 functions more effectively. Further, when the present embodiment is applied to the ultra-high speed LSI, the output transistor can obtain a very high electrostatic withstand capability.
【0025】なお、上記各実施例では、P型半導体基板
26内に出力トランジスタ22を直接形成する構成を採
用したが、これに限定するものではなく、半導体基板2
6のウェル内に出力トランジスタ22を形成しても良
い。また、出力トランジスタ22及び保護トランジスタ
24の双方を基準電位の接地線に接続したが、これに限
定するものではなく、一方の素子を高電位電源ラインの
基準電位に接続しても良い。In each of the above embodiments, the output transistor 22 is directly formed in the P-type semiconductor substrate 26, but the present invention is not limited to this.
The output transistor 22 may be formed in the well of No. 6. Further, although both the output transistor 22 and the protection transistor 24 are connected to the ground line of the reference potential, the invention is not limited to this, and one element may be connected to the reference potential of the high potential power supply line.
【0026】[0026]
【発明の効果】以上説明したように、本発明の半導体装
置によれば、保護トランジスタの寄生抵抗の抵抗値が出
力トランジスタの寄生抵抗の抵抗値よりも小さいので、
金属端子に高電圧パルスが印加されても、電流耐量の大
きい保護トランジスタだけが動作して導通状態になる。
従って、サージ電流の大部分が保護トランジスタに流れ
るので、出力トランジスタの静電破壊耐量が大きく向上
するという効果を奏する。また、半導体装置の入出力回
路に余分な容量や抵抗素子を付加する必要がないので、
最小限のパターン面積の回路構成によって、出力トラン
ジスタ及び内部回路を静電破壊現象から保護できるとい
う効果を奏する。As described above, according to the semiconductor device of the present invention, since the resistance value of the parasitic resistance of the protection transistor is smaller than the resistance value of the parasitic resistance of the output transistor,
Even if a high voltage pulse is applied to the metal terminal, only the protection transistor having a large withstand current operates and becomes conductive.
Therefore, most of the surge current flows to the protection transistor, and thus the electrostatic breakdown resistance of the output transistor is greatly improved. Moreover, since it is not necessary to add an extra capacitance or resistance element to the input / output circuit of the semiconductor device,
With the circuit configuration having the minimum pattern area, the output transistor and the internal circuit can be protected from the electrostatic breakdown phenomenon.
【図1】本発明の半導体装置の第1実施例の回路構成を
示す回路図である。FIG. 1 is a circuit diagram showing a circuit configuration of a first embodiment of a semiconductor device of the present invention.
【図2】同実施例の回路のパターンレイアウトを示す図
である。FIG. 2 is a diagram showing a pattern layout of the circuit of the embodiment.
【図3】図2のa−a断面図である。FIG. 3 is a sectional view taken along line aa of FIG.
【図4】本発明の半導体装置の第2実施例の回路のパタ
ーンレイアウトを示す図である。FIG. 4 is a diagram showing a pattern layout of a circuit of a second embodiment of the semiconductor device of the present invention.
【図5】従来の半導体装置の入出力部の回路構成を示す
回路図である。FIG. 5 is a circuit diagram showing a circuit configuration of an input / output unit of a conventional semiconductor device.
【図6】同半導体装置の回路のパターンレイアウトを示
す図である。FIG. 6 is a diagram showing a pattern layout of a circuit of the semiconductor device.
【図7】図6のb−b断面図である。7 is a sectional view taken along line bb of FIG.
【符号の説明】 21 入出力端子 22 出力トランジスタ 23 抵抗 24 保護トランジスタ 25 保護ダイオード 26 P型半導体基板 27(27a、27b、27c、27d) N型拡散層 28a、28b ゲート電極 29、30 アルミ配線 31 P型拡散層 32 フィールド酸化膜 33、34、35 コンタクト 36 側壁絶縁膜 37 層間絶縁膜 38 ゲート酸化膜 40 高融点金属シリサイドパッド 200 ゲート駆動回路への配線 201 内部回路への配線 202 保護トランジスタの寄生抵抗 203 出力トランジスタの寄生抵抗[Explanation of reference numerals] 21 input / output terminal 22 output transistor 23 resistance 24 protection transistor 25 protection diode 26 P-type semiconductor substrate 27 (27a, 27b, 27c, 27d) N-type diffusion layers 28a, 28b Gate electrodes 29, 30 Aluminum wiring 31 P-type diffusion layer 32 Field oxide film 33, 34, 35 Contact 36 Side wall insulating film 37 Interlayer insulating film 38 Gate oxide film 40 Refractory metal silicide pad 200 Wiring to gate drive circuit 201 Wiring to internal circuit 202 Parasitic of protection transistor Resistor 203 Parasitic resistance of output transistor
Claims (6)
前記半導体基板の一導電型領域内に形成され、かつ前記
金属端子に接続された逆導電型の第1の拡散層をドレイ
ンとし、第1の基準電位に接続された逆導電型の第2の
拡散層をソースとする出力トランジスタと、前記第1の
拡散層の近傍に設けられた素子分離絶縁膜によって前記
第1拡散層と分離されると共に、第1の基準電位又は第
2の基準電位に接続された逆導電型の第3の拡散層をエ
ミッタとし、前記第1の拡散層をコレクタとし、前記一
導電型領域をベースとする保護トランジスタとを備え、 前記保護トランジスタにおける前記金属端子から前記第
1の基準電位又は第2の基準電位までの寄生抵抗が、前
記出力トランジスタにおける前記金属端子から前記第1
の基準電位までの寄生抵抗よりも小さいことを特徴とす
る半導体装置。1. A metal terminal provided on a semiconductor substrate,
A second conductivity type second diffusion layer, which is formed in one conductivity type region of the semiconductor substrate and is connected to the metal terminal, is used as a drain, and is connected to a first reference potential. An output transistor having a diffusion layer as a source and an element isolation insulating film provided in the vicinity of the first diffusion layer separates the first diffusion layer from the first diffusion layer and sets the first reference potential or the second reference potential. A protection transistor having the connected third conductivity type diffusion layer as an emitter, the first diffusion layer as a collector, and the one conductivity type region as a base; A parasitic resistance up to a first reference potential or a second reference potential is applied from the metal terminal of the output transistor to the first reference potential.
The semiconductor device is characterized by being smaller than the parasitic resistance up to the reference potential.
板の内部回路とを接続する入出力端子である、請求項1
に記載の半導体装置。2. The metal terminal is an input / output terminal for connecting an external circuit and an internal circuit of the semiconductor substrate.
The semiconductor device according to.
続部から前記素子分離絶縁膜までの距離及び前記第1の
基準電位又は第2の基準電位と第3の拡散層との接続部
から前記素子分離絶縁膜までの距離を合せた長さが、前
記金属端子と前記第1の拡散層との接続部から前記出力
トランジスタのゲート電極までの距離及び第1の基準電
位と第2の拡散層との接続部から該出力トランジスタの
ゲート電極までの距離を合せた長さよりも短いことを特
徴とする、請求項1又は2に記載の半導体装置。3. The distance from the connection between the metal terminal and the first diffusion layer to the element isolation insulating film and the connection between the first reference potential or the second reference potential and the third diffusion layer. The distance from the connecting portion between the metal terminal and the first diffusion layer to the gate electrode of the output transistor, the first reference potential, and the second reference potential. 3. The semiconductor device according to claim 1, wherein the length is shorter than the combined length of the distance from the connection portion with the diffusion layer to the gate electrode of the output transistor.
が、前記出力トランジスタの実効チャネル長よりも短い
ことを特徴とする、請求項1から請求項3のうち1つの
請求項に記載の半導体装置。4. The semiconductor device according to claim 1, wherein an effective base length of the protection transistor is shorter than an effective channel length of the output transistor.
続部及び前記第1の基準電位と前記第2の拡散層との接
続部に高融点金属シリサイドパッドを介在させたことを
特徴とする、請求項1から請求項4のうち1つの請求項
に記載の半導体装置。5. A refractory metal silicide pad is interposed between a connection portion between the metal terminal and the first diffusion layer and a connection portion between the first reference potential and the second diffusion layer. The semiconductor device according to any one of claims 1 to 4.
形成されたウェルであることを特徴とする、請求項1か
ら請求項5のうち1つの請求項に記載の半導体装置。6. The semiconductor device according to claim 1, wherein the one conductivity type region is a well formed in the semiconductor substrate.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5353167A JP2638462B2 (en) | 1993-12-29 | 1993-12-29 | Semiconductor device |
US08/364,275 US5449939A (en) | 1993-12-29 | 1994-12-27 | Semiconductor device having a protective transistor |
KR1019940037702A KR0164908B1 (en) | 1993-12-29 | 1994-12-28 | Semiconductor device having a protective transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5353167A JP2638462B2 (en) | 1993-12-29 | 1993-12-29 | Semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07202126A true JPH07202126A (en) | 1995-08-04 |
JP2638462B2 JP2638462B2 (en) | 1997-08-06 |
Family
ID=18429017
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5353167A Expired - Lifetime JP2638462B2 (en) | 1993-12-29 | 1993-12-29 | Semiconductor device |
Country Status (3)
Country | Link |
---|---|
US (1) | US5449939A (en) |
JP (1) | JP2638462B2 (en) |
KR (1) | KR0164908B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6320241B1 (en) | 1998-08-17 | 2001-11-20 | Nec Corporation | Circuitry and method of forming the same |
US6374391B1 (en) | 1998-08-17 | 2002-04-16 | Nec Corporation | Method for estimating parasitic capacitance coupled to signal line longer than critical length at high-speed |
Families Citing this family (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5757037A (en) * | 1995-02-01 | 1998-05-26 | Silicon Power Corporation | Power thyristor with MOS gated turn-off and MOS-assised turn-on |
US5516717A (en) * | 1995-04-19 | 1996-05-14 | United Microelectronics Corporation | Method for manufacturing electrostatic discharge devices |
JPH08316426A (en) * | 1995-05-16 | 1996-11-29 | Nittetsu Semiconductor Kk | Mos semiconductor device and its manufacture |
US5929491A (en) * | 1995-07-20 | 1999-07-27 | Siemens Aktiengesellschaft | Integrated circuit with ESD protection |
ATE213872T1 (en) * | 1995-11-13 | 2002-03-15 | Micron Technology Inc | PROTECTIVE STRUCTURE WITH OFFSET CONTACTS TO PROTECT AGAINST ELECTROSTATIC DISCHARGE |
JP3019760B2 (en) * | 1995-11-15 | 2000-03-13 | 日本電気株式会社 | Semiconductor integrated circuit device |
US5910675A (en) * | 1995-12-14 | 1999-06-08 | Nec Corporation | Semiconductor device and method of making the same |
US5686751A (en) * | 1996-06-28 | 1997-11-11 | Winbond Electronics Corp. | Electrostatic discharge protection circuit triggered by capacitive-coupling |
JP3161508B2 (en) * | 1996-07-25 | 2001-04-25 | 日本電気株式会社 | Semiconductor device |
US5910873A (en) * | 1997-02-19 | 1999-06-08 | National Semiconductor Corporation | Field oxide transistor based feedback circuit for electrical overstress protection |
JP3129223B2 (en) * | 1997-02-28 | 2001-01-29 | 日本電気株式会社 | Semiconductor device |
US6061551A (en) * | 1998-10-21 | 2000-05-09 | Parkervision, Inc. | Method and system for down-converting electromagnetic signals |
US7515896B1 (en) | 1998-10-21 | 2009-04-07 | Parkervision, Inc. | Method and system for down-converting an electromagnetic signal, and transforms for same, and aperture relationships |
US7236754B2 (en) | 1999-08-23 | 2007-06-26 | Parkervision, Inc. | Method and system for frequency up-conversion |
US6370371B1 (en) | 1998-10-21 | 2002-04-09 | Parkervision, Inc. | Applications of universal frequency translation |
US7039372B1 (en) | 1998-10-21 | 2006-05-02 | Parkervision, Inc. | Method and system for frequency up-conversion with modulation embodiments |
US6879817B1 (en) * | 1999-04-16 | 2005-04-12 | Parkervision, Inc. | DC offset, re-radiation, and I/Q solutions using universal frequency translation technology |
US6853690B1 (en) | 1999-04-16 | 2005-02-08 | Parkervision, Inc. | Method, system and apparatus for balanced frequency up-conversion of a baseband signal and 4-phase receiver and transceiver embodiments |
US7110444B1 (en) | 1999-08-04 | 2006-09-19 | Parkervision, Inc. | Wireless local area network (WLAN) using universal frequency translation technology including multi-phase embodiments and circuit implementations |
US7693230B2 (en) | 1999-04-16 | 2010-04-06 | Parkervision, Inc. | Apparatus and method of differential IQ frequency up-conversion |
US7065162B1 (en) | 1999-04-16 | 2006-06-20 | Parkervision, Inc. | Method and system for down-converting an electromagnetic signal, and transforms for same |
US8295406B1 (en) | 1999-08-04 | 2012-10-23 | Parkervision, Inc. | Universal platform module for a plurality of communication protocols |
JP3942324B2 (en) * | 1999-09-29 | 2007-07-11 | Necエレクトロニクス株式会社 | Input protection circuit |
TW445627B (en) * | 1999-10-04 | 2001-07-11 | Winbond Electronics Corp | Electrostatic discharge buffer apparatus |
US6429491B1 (en) * | 1999-10-20 | 2002-08-06 | Transmeta Corporation | Electrostatic discharge protection for MOSFETs |
US7010286B2 (en) | 2000-04-14 | 2006-03-07 | Parkervision, Inc. | Apparatus, system, and method for down-converting and up-converting electromagnetic signals |
DE10022368A1 (en) * | 2000-05-08 | 2001-11-29 | Micronas Gmbh | ESD protective structure |
DE10022367C2 (en) * | 2000-05-08 | 2002-05-08 | Micronas Gmbh | ESD protection structure and manufacturing method |
US7454453B2 (en) | 2000-11-14 | 2008-11-18 | Parkervision, Inc. | Methods, systems, and computer program products for parallel correlation and applications thereof |
US7072427B2 (en) | 2001-11-09 | 2006-07-04 | Parkervision, Inc. | Method and apparatus for reducing DC offsets in a communication system |
US7379883B2 (en) * | 2002-07-18 | 2008-05-27 | Parkervision, Inc. | Networking methods and systems |
US7460584B2 (en) | 2002-07-18 | 2008-12-02 | Parkervision, Inc. | Networking methods and systems |
JP2004296998A (en) * | 2003-03-28 | 2004-10-21 | Matsushita Electric Ind Co Ltd | Semiconductor device |
DE10325718B4 (en) | 2003-06-06 | 2006-07-06 | Micronas Gmbh | Semiconductor sensor with a FET and method for driving such a semiconductor sensor |
FR2904473B1 (en) * | 2006-07-27 | 2009-01-16 | St Microelectronics Sa | DEVICE FOR PROTECTING AN INTEGRATED CIRCUIT AGAINST ELECTROSTATIC DISCHARGES |
CN102790050B (en) * | 2011-12-12 | 2016-01-20 | 钜泉光电科技(上海)股份有限公司 | Possesses the chip of antistatic protection function |
TWI667765B (en) * | 2015-10-15 | 2019-08-01 | 聯華電子股份有限公司 | Electrostatic discharge protection semiconductor device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6153761A (en) * | 1984-08-24 | 1986-03-17 | Hitachi Ltd | Semiconductor device |
JPH04122059A (en) * | 1990-09-13 | 1992-04-22 | Nissan Motor Co Ltd | Output protecting circuit |
US5291051A (en) * | 1992-09-11 | 1994-03-01 | National Semiconductor Corporation | ESD protection for inputs requiring operation beyond supply voltages |
-
1993
- 1993-12-29 JP JP5353167A patent/JP2638462B2/en not_active Expired - Lifetime
-
1994
- 1994-12-27 US US08/364,275 patent/US5449939A/en not_active Expired - Lifetime
- 1994-12-28 KR KR1019940037702A patent/KR0164908B1/en not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6320241B1 (en) | 1998-08-17 | 2001-11-20 | Nec Corporation | Circuitry and method of forming the same |
US6374391B1 (en) | 1998-08-17 | 2002-04-16 | Nec Corporation | Method for estimating parasitic capacitance coupled to signal line longer than critical length at high-speed |
Also Published As
Publication number | Publication date |
---|---|
KR0164908B1 (en) | 1998-12-15 |
KR950021509A (en) | 1995-07-26 |
US5449939A (en) | 1995-09-12 |
JP2638462B2 (en) | 1997-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2638462B2 (en) | Semiconductor device | |
US4509067A (en) | Semiconductor integrated circuit devices with protective means against overvoltages | |
US7183612B2 (en) | Semiconductor device having an electrostatic discharge protecting element | |
JP2706626B2 (en) | Semiconductor device | |
US6605844B2 (en) | Semiconductor device | |
JPH06104444A (en) | Power mos fet circuit provided with active clamp | |
JPH0662529A (en) | Protective device of integrated circuit against static discharge | |
JP2007235151A (en) | Protection structure for integrated circuit | |
EP0253105B1 (en) | Integrated circuit with improved protective device | |
EP0162460B1 (en) | Integrated circuit with an input protective device | |
US5710452A (en) | Semiconductor device having electrostatic breakdown protection circuit | |
JPH08191132A (en) | Semiconductor device | |
JP3861426B2 (en) | Semiconductor device protection circuit | |
KR100206675B1 (en) | Semiconductor integrated circuit device | |
JP4995364B2 (en) | Semiconductor integrated circuit device | |
JP2007287919A (en) | Semiconductor device with temperature detection function | |
JP2004521477A (en) | Multi-finger current ballasting ESD protection circuit for ESD-sensitive circuits and interleaved ballasting | |
JP3185723B2 (en) | Semiconductor device | |
JP3574359B2 (en) | Semiconductor device | |
JP2611639B2 (en) | Semiconductor device | |
US5432369A (en) | Input/output protection circuit | |
JP3706446B2 (en) | MOS field effect transistor with protection circuit | |
JP3146650B2 (en) | Power integrated circuit | |
JP3442331B2 (en) | Semiconductor device | |
JP3409718B2 (en) | IGBT with built-in circuit and power converter using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080425 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090425 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100425 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110425 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120425 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130425 Year of fee payment: 16 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130425 Year of fee payment: 16 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140425 Year of fee payment: 17 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |