Nothing Special   »   [go: up one dir, main page]

JPH07202126A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH07202126A
JPH07202126A JP5353167A JP35316793A JPH07202126A JP H07202126 A JPH07202126 A JP H07202126A JP 5353167 A JP5353167 A JP 5353167A JP 35316793 A JP35316793 A JP 35316793A JP H07202126 A JPH07202126 A JP H07202126A
Authority
JP
Japan
Prior art keywords
diffusion layer
reference potential
transistor
output transistor
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5353167A
Other languages
Japanese (ja)
Other versions
JP2638462B2 (en
Inventor
Yoko Horiguchi
洋子 堀口
Kaoru Narita
薫 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5353167A priority Critical patent/JP2638462B2/en
Priority to US08/364,275 priority patent/US5449939A/en
Priority to KR1019940037702A priority patent/KR0164908B1/en
Publication of JPH07202126A publication Critical patent/JPH07202126A/en
Application granted granted Critical
Publication of JP2638462B2 publication Critical patent/JP2638462B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0259Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using bipolar transistors as protective elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To protect an output transistor and an internal circuit from electrostatic breakdown by a method wherein the parasitic resistance, from the metal terminal in a protective transistor to the first reference potential or the second reference potential, is made smaller than the parasitic resistance from the metal terminal in the output transistor to the first reference potential. CONSTITUTION:An output transistor 22, which controls the potential of an input-output signal, is provided between an output terminal 21, which is the metal terminal used to connect an outer circuit, and the resistor 23 of an inner circuit 201, and a protective transistor 24, with which a discharge path is formed, and a protective diode 25 are provided to protect the inner circuit and the output transistor 22 from a surge current. As the resistance value of the parasitic resistor 202 of the protective transistor is smaller than the resistance value of the parasitic resistor 203 of the output transistor, only the protective transistor, having large current resistivity, is put in operation even when a high voltage pulse is applied to the metal terminal. Accordingly, the most of the surge current is allowed to flow to the protective transistor 24.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置に係り、特
に内部回路を静電破壊から保護するための保護トランジ
スタを備える半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to a semiconductor device having a protection transistor for protecting an internal circuit from electrostatic breakdown.

【0002】[0002]

【従来の技術】従来、半導体集積回路を静電破壊現象か
ら保護する技術としては、例えば、特開平4−1220
59号公報に掲載された技術が知られている。以下、こ
の公知技術について図面を参照して説明する。図5はこ
の従来の半導体装置の回路構成を、図6は同装置のパタ
ーンレイアウトを、図7は図6のb−b断面図をそれぞ
れ示している。
2. Description of the Related Art Conventionally, as a technique for protecting a semiconductor integrated circuit from an electrostatic breakdown phenomenon, for example, Japanese Patent Laid-Open No. 4-1220 is known.
The technique disclosed in Japanese Patent Publication No. 59 is known. Hereinafter, this known technique will be described with reference to the drawings. FIG. 5 shows a circuit configuration of this conventional semiconductor device, FIG. 6 shows a pattern layout of the device, and FIG. 7 shows a sectional view taken along line bb of FIG.

【0003】図5において、静電荷の侵入による高電圧
パルスが金属端子である入出力端子1に印加されると、
サージ電流が出力トランジスタ2及び配線100を通っ
てゲート駆動回路に流れ、或は入力抵抗3及び配線10
1を通って、内部回路に流れることで半導体装置が破壊
される。このため、内部回路の入出力端子1の付近に放
電パスを形成する保護トランジスタ4を設けている。保
護トランジスタ4は、電流耐量の大きなバイポーラトラ
ンジスタで構成され、高電圧パルスが印加された際に導
通状態になって印加電圧をクランプする。
In FIG. 5, when a high voltage pulse due to invasion of electrostatic charges is applied to the input / output terminal 1 which is a metal terminal,
Surge current flows through the output transistor 2 and the wiring 100 to the gate drive circuit, or the input resistor 3 and the wiring 10
The semiconductor device is destroyed by flowing through 1 to the internal circuit. Therefore, the protection transistor 4 forming a discharge path is provided near the input / output terminal 1 of the internal circuit. The protection transistor 4 is composed of a bipolar transistor having a large withstand current, and becomes conductive when a high voltage pulse is applied to clamp the applied voltage.

【0004】図7において、出力トランジスタ2は、P
型半導体基板5の表面に形成されたN型拡散層6、7及
びゲート電極8を有するN型LDD(Lightly Doped Dr
ain)構造のMOSFETとして構成される。なお、P
型半導体基板5とゲート電極8との間にはゲート酸化膜
15が介在している。出力トランジスタ2のソースとな
るN型拡散層6はアルミ配線9により接地線に接続さ
れ、ドレインとなるN型拡散層7はアルミ配線10によ
り入出力端子1に接続される。なお、ゲート電極8とア
ルミ配線9、10とは、側壁絶縁膜16及び層間絶縁膜
17によって絶縁される。
In FIG. 7, the output transistor 2 is P
-Type LDD (Lightly Doped Dr) having N-type diffusion layers 6 and 7 and a gate electrode 8 formed on the surface of a semiconductor substrate 5
ain) structured MOSFET. Note that P
A gate oxide film 15 is interposed between the type semiconductor substrate 5 and the gate electrode 8. The N-type diffusion layer 6 serving as the source of the output transistor 2 is connected to the ground line by the aluminum wiring 9, and the N-type diffusion layer 7 serving as the drain is connected to the input / output terminal 1 by the aluminum wiring 10. The gate electrode 8 and the aluminum wirings 9 and 10 are insulated by the sidewall insulating film 16 and the interlayer insulating film 17.

【0005】保護トランジスタ4は、P型半導体基板5
をベースとし、N型拡散層7をコレクタとし、N型拡散
層11をエミッタとしたNPNバイポーラトランジスタ
で構成される。なお、N型拡散層7とN型拡散層11と
はフィールド酸化膜18によって絶縁される。また、保
護トランジスタ4のコレクタであるN型拡散層7はアル
ミ配線10により入出力端子1に接続され、同保護トラ
ンジスタ4のエミッタとなるN型拡散層11はアルミ配
線12により接地線に接続される。かかる半導体装置
は、出力トランジスタ2のドレインと保護トランジスタ
4のコレクタとがN型拡散層7として共通に形成され、
パターン面積の縮小及び、入出力端子1に余分な容量が
付加されない構造になっている。
The protection transistor 4 is a P-type semiconductor substrate 5
Is a base, the N-type diffusion layer 7 is a collector, and the N-type diffusion layer 11 is an emitter. The N-type diffusion layer 7 and the N-type diffusion layer 11 are insulated by the field oxide film 18. The N-type diffusion layer 7 which is the collector of the protection transistor 4 is connected to the input / output terminal 1 by the aluminum wiring 10, and the N-type diffusion layer 11 which is the emitter of the protection transistor 4 is connected to the ground line by the aluminum wiring 12. It In such a semiconductor device, the drain of the output transistor 2 and the collector of the protection transistor 4 are commonly formed as the N-type diffusion layer 7,
The structure is such that the pattern area is reduced and no extra capacitance is added to the input / output terminal 1.

【0006】また、図5及び図6に示すように、従来の
半導体装置では、出力トランジスタ2のゲート電極8と
コンタクト13、14までの距離S1、S2で決定され
る寄生抵抗103の抵抗値が、コンタクト14、19と
フィールド酸化膜18までの距離S3、S4で決定され
る寄生抵抗102の抵抗値と同程度であって、しかも出
力トランジスタ2の実効チャネル長L1が保護トランジ
スタ4の実効ベース幅L2と同程度である。
Further, as shown in FIGS. 5 and 6, in the conventional semiconductor device, the resistance value of the parasitic resistance 103, which is determined by the distances S1 and S2 between the gate electrode 8 of the output transistor 2 and the contacts 13 and 14, is , The resistance value of the parasitic resistance 102 determined by the distances S3 and S4 between the contacts 14 and 19 and the field oxide film 18, and the effective channel length L1 of the output transistor 2 is equal to the effective base width of the protection transistor 4. It is about the same as L2.

【0007】[0007]

【発明が解決しようとする課題】ところで、上記した従
来の半導体装置では、静電荷の侵入に起因する高電圧パ
ルスが入出力端子に印加されると、出力トランジスタが
寄生バイポーラトランジスタとして動作する。即ち、入
出力端子に入力されたサージ電流が、必ずしも保護トラ
ンジスタに全て流れるとは限らず、保護されるべき出力
トランジスタや内部回路にも流れ、半導体装置を破壊す
るという問題がある。
In the conventional semiconductor device described above, the output transistor operates as a parasitic bipolar transistor when a high voltage pulse resulting from the intrusion of electrostatic charges is applied to the input / output terminal. That is, the surge current input to the input / output terminal does not always flow through the protection transistor, but also through the output transistor or internal circuit to be protected, which causes a problem that the semiconductor device is destroyed.

【0008】また、半導体装置の集積回路化を図るため
にLDD構造の出力トランジスタで出力トランジスタを
構成する場合、その構造に起因して出力トランジスタに
おける静電破壊耐量が低下するので、半導体装置の静電
破壊現象が起き易くなるという問題がある。
When an output transistor having an LDD structure is used to form the integrated circuit of the semiconductor device, the electrostatic breakdown resistance of the output transistor is reduced due to the structure, so that the semiconductor device is not statically damaged. There is a problem that the electric breakdown phenomenon is likely to occur.

【0009】本発明は、上記問題を解決するためになさ
れたもので、最小限のパターン面積の回路構成によっ
て、出力トランジスタ及び内部回路を静電破壊現象から
保護できるようにした半導体装置を提供することを目的
とする。
The present invention has been made to solve the above problems, and provides a semiconductor device capable of protecting an output transistor and an internal circuit from an electrostatic breakdown phenomenon with a circuit configuration having a minimum pattern area. The purpose is to

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、本発明の半導体装置は、半導体基板上に設けられた
金属端子と、前記半導体基板の一導電型領域内に形成さ
れ、かつ前記金属端子に接続された逆導電型の第1の拡
散層をドレインとし、第1の基準電位に接続された逆導
電型の第2の拡散層をソースとする出力トランジスタ
と、前記第1の拡散層の近傍に設けられた素子分離絶縁
膜によって前記第1拡散層と分離されると共に、第1の
基準電位又は第2の基準電位に接続された逆導電型の第
3の拡散層をエミッタ、前記第1の拡散層をコレクタ、
前記一導電型領域をベースとする保護トランジスタとを
備え、前記保護トランジスタにおける前記金属端子から
前記第1の基準電位又は第2の基準電位までの寄生抵抗
が、前記出力トランジスタにおける前記金属端子から前
記第1の基準電位までの寄生抵抗よりも小さいことを特
徴とする。前記金属端子は、外部回路と前記半導体基板
の内部回路とを接続する入出力端にすることが望まし
い。
To achieve the above object, a semiconductor device of the present invention is provided with a metal terminal provided on a semiconductor substrate and a metal terminal formed in one conductivity type region of the semiconductor substrate. An output transistor having a reverse conductivity type first diffusion layer connected to a terminal as a drain and a reverse conductivity type second diffusion layer connected to a first reference potential as a source; and the first diffusion layer. An element isolation insulating film provided in the vicinity of the first diffusion layer and a third diffusion layer of the opposite conductivity type, which is connected to the first reference potential or the second reference potential, and is separated from the first diffusion layer. The first diffusion layer is the collector,
A protection transistor based on the one conductivity type region, wherein a parasitic resistance from the metal terminal in the protection transistor to the first reference potential or the second reference potential is from the metal terminal in the output transistor It is characterized in that it is smaller than the parasitic resistance up to the first reference potential. It is desirable that the metal terminal be an input / output terminal for connecting an external circuit and an internal circuit of the semiconductor substrate.

【0011】保護トランジスタの寄生抵抗を出力トラン
ジスタの寄生抵抗よりも小さくするには、前記金属端子
と前記第1の拡散層との接続部から前記素子分離絶縁膜
までの距離、及び前記第1の基準電位又は第2の基準電
位と第3の拡散層との接続部から前記素子分離絶縁膜ま
での距離を合せた長さを、前記金属端子と前記第1の拡
散層との接続部から前記出力トランジスタのゲート電極
までの距離、及び第1の基準電位と第2の拡散層との接
続部から該出力トランジスタのゲート電極までの距離を
合せた長さよりも短く形成する手段を採用することが望
ましい。
In order to make the parasitic resistance of the protection transistor smaller than that of the output transistor, the distance from the connection between the metal terminal and the first diffusion layer to the element isolation insulating film, and the first From the connection between the metal terminal and the first diffusion layer, the length obtained by combining the distance from the connection between the reference potential or the second reference potential and the third diffusion layer to the element isolation insulating film is calculated as follows. It is possible to employ means for forming the distance to the gate electrode of the output transistor and the distance from the connecting portion between the first reference potential and the second diffusion layer to the gate electrode of the output transistor to be shorter than the total length. desirable.

【0012】本発明の半導体装置においては、保護トラ
ンジスタの実効ベース長を出力トランジスタの実効チャ
ネル長よりも短くすることにより、保護トランジスタの
機能を更に有効に発揮させることができ、また、金属端
子と第1の拡散層との接続部及び第1の基準電位と第2
の拡散層との接続部に高融点金属シリサイドパッドを介
在させる構成を採用して、保護トランジスタの機能を有
効に発揮させることもできる。なお、前記一導電型領域
は前記半導体基板内に形成されたウェルとしても、本発
明を適用することができる。
In the semiconductor device of the present invention, by making the effective base length of the protection transistor shorter than the effective channel length of the output transistor, the function of the protection transistor can be more effectively exerted, and the metal terminal and The connection portion with the first diffusion layer and the first reference potential and the second
It is also possible to effectively utilize the function of the protection transistor by adopting a configuration in which a refractory metal silicide pad is interposed in the connection portion with the diffusion layer of. The present invention can be applied to the one conductivity type region as a well formed in the semiconductor substrate.

【0013】[0013]

【作用】本発明の半導体装置では、金属端子と第1基準
電位又は第2基準電位との間の保護トランジスタの寄生
抵抗の抵抗値が、金属端子と第1基準電位との間の出力
トランジスタの寄生抵抗の抵抗値よりも小さいので、静
電荷の侵入による高電圧パルスが金属端子に印加されて
も、出力トランジスタが寄生バイポーラトランジスタと
して動作せず、電流耐量の大きい保護トランジスタが主
として動作する。従って、サージ電流の大部分が保護ト
ランジスタに流れるので、出力トランジスタ及び内部回
路の静電破壊耐量が大きく向上する。
In the semiconductor device of the present invention, the resistance value of the parasitic resistance of the protection transistor between the metal terminal and the first reference potential or the second reference potential is the output transistor between the metal terminal and the first reference potential. Since the resistance value is smaller than the resistance value of the parasitic resistance, the output transistor does not operate as a parasitic bipolar transistor even when a high voltage pulse due to the intrusion of electrostatic charges is applied to the metal terminal, and the protection transistor having a large current withstanding function mainly operates. Therefore, most of the surge current flows through the protection transistor, and the electrostatic breakdown withstand capability of the output transistor and the internal circuit is greatly improved.

【0014】保護トランジスタの実効ベース長を出力ト
ランジスタの実効チャネル長よりも短くする構成を採用
すると、サージ電流が保護トランジスタに流れ易くな
り、保護トランジスタが有効に機能できるようになる。
また、金属端子と第1の拡散層との接続部及び第1の基
準電位と第2の拡散層との接続部に高融点金属シリサイ
ドパッドを介在させる構成を採用すると、高融点金属シ
リサイドパッドが出力トランジスタの寄生抵抗の抵抗値
を高めるので、拡散層の面積を広げずに出力トランジス
タの静電破壊耐量を大きくできる。
If a structure is adopted in which the effective base length of the protection transistor is shorter than the effective channel length of the output transistor, surge current easily flows through the protection transistor, and the protection transistor can effectively function.
Further, when a configuration in which the refractory metal silicide pad is interposed at the connection portion between the metal terminal and the first diffusion layer and the connection portion between the first reference potential and the second diffusion layer, the refractory metal silicide pad is Since the resistance value of the parasitic resistance of the output transistor is increased, the electrostatic breakdown resistance of the output transistor can be increased without expanding the area of the diffusion layer.

【0015】[0015]

【実施例】以下、本発明に係る半導体装置の第1実施例
を図面を参照して説明する。図1は本実施例の半導体装
置の入出力回路の回路図を示し、図2はそのパターンレ
イアウトを示し、図3は図2のa−a断面を示す図であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of a semiconductor device according to the present invention will be described below with reference to the drawings. FIG. 1 shows a circuit diagram of an input / output circuit of a semiconductor device of this embodiment, FIG. 2 shows its pattern layout, and FIG. 3 shows a cross section taken along the line aa of FIG.

【0016】図1に示すように、本実施例の半導体装置
には、外部回路に接続するための金属端子である入出力
端子21と内部回路201の抵抗23との間に入出力信
号の電位を制御する出力トランジスタ22が備えられ、
内部回路や出力トランジスタ22をサージ電流から保護
するために放電パスを形成する保護トランジスタ24、
及び保護ダイオード25が設けられている。
As shown in FIG. 1, in the semiconductor device of this embodiment, the potential of the input / output signal is placed between the input / output terminal 21 which is a metal terminal for connecting to an external circuit and the resistor 23 of the internal circuit 201. An output transistor 22 for controlling
A protection transistor 24 forming a discharge path for protecting the internal circuit and the output transistor 22 from a surge current,
And a protection diode 25 are provided.

【0017】出力トランジスタ22は、図3に示すよう
に、P型半導体基板26の表面にN型拡散層27中の2
7a、27b、27c及び、ゲート電極28a、28b
よりなるN型LDD構造のMOSFETから構成され
る。また、出力トランジスタ22のソース領域であるN
型拡散層27bはアルミ配線29によって第1の基準電
位(接地電位)に接続され、ドレイン領域であるN型拡
散層27a、27cはアルミ配線30により入出力端子
21に接続される。P型半導体基板26とゲート電極2
8a、28bとの間にはゲート酸化膜38が介在してい
る。なお、本実施例では、出力トランジスタ22のソー
スを接地線に接続させた構成にしたが、これに限定せ
ず、同ソースを高電位電源ラインの基準電位に接続する
構成にしても、本発明を適用することができる。
As shown in FIG. 3, the output transistor 22 has 2 of the N type diffusion layers 27 on the surface of the P type semiconductor substrate 26.
7a, 27b, 27c and gate electrodes 28a, 28b
It is composed of an N-type LDD structure MOSFET. In addition, N which is the source region of the output transistor 22
The type diffusion layer 27b is connected to the first reference potential (ground potential) by the aluminum wiring 29, and the N-type diffusion layers 27a and 27c which are the drain regions are connected to the input / output terminal 21 by the aluminum wiring 30. P-type semiconductor substrate 26 and gate electrode 2
A gate oxide film 38 is interposed between 8a and 28b. Although the source of the output transistor 22 is connected to the ground line in this embodiment, the present invention is not limited to this, and the source may be connected to the reference potential of the high potential power supply line. Can be applied.

【0018】出力トランジスタ22のゲート電極28
a、28bは、図2に示すように、ゲート駆動回路への
配線200に接続され、ゲート駆動回路からの駆動信号
によって出力トランジスタ22の導通、非導通を切り換
えて入出力端子21の電位を制御している。なお、ゲー
ト電極28a、28bとアルミ配線29、30とは、側
壁絶縁膜36及び層間絶縁膜37によって絶縁される。
The gate electrode 28 of the output transistor 22
As shown in FIG. 2, a and 28b are connected to the wiring 200 to the gate drive circuit, and switch the conduction / non-conduction of the output transistor 22 by the drive signal from the gate drive circuit to control the potential of the input / output terminal 21. is doing. The gate electrodes 28a and 28b and the aluminum wirings 29 and 30 are insulated by the sidewall insulating film 36 and the interlayer insulating film 37.

【0019】保護ダイオード25は、P型拡散層31と
N型拡散層27aからなるPNダイオードで構成され
る。P型拡散層31はアルミ配線29により接地線に接
続され、N型拡散層27aはアルミ配線30により入出
力端子21に接続される。
The protection diode 25 is a PN diode composed of a P-type diffusion layer 31 and an N-type diffusion layer 27a. The P-type diffusion layer 31 is connected to the ground line by the aluminum wiring 29, and the N-type diffusion layer 27a is connected to the input / output terminal 21 by the aluminum wiring 30.

【0020】保護トランジスタ24は、P型半導体基板
26をベースとし、N型拡散層27cをコレクタとし、
N型拡散層27dをエミッタとしたNPNバイポーラト
ランジスタとして構成される。N型拡散層27cとN型
拡散層27dとはフィールド酸化膜32によって絶縁さ
れる。また、コレクタのN型拡散層27cはアルミ配線
30で入出力端子21に接続され、エミッタのN型拡散
層27dはアルミ配線29で接地線に接続される。
The protection transistor 24 has a P-type semiconductor substrate 26 as a base and an N-type diffusion layer 27c as a collector.
It is configured as an NPN bipolar transistor having the N-type diffusion layer 27d as an emitter. The N-type diffusion layer 27c and the N-type diffusion layer 27d are insulated by the field oxide film 32. The collector N-type diffusion layer 27c is connected to the input / output terminal 21 by an aluminum wiring 30, and the emitter N-type diffusion layer 27d is connected by an aluminum wiring 29 to a ground line.

【0021】本実施例では、図2に示すように、出力ト
ランジスタ22のゲート電極28bからアルミ配線30
のコンタクト33までの距離S10、及び同ゲート電極
28bからアルミ配線29のコンタクト34までの距離
S11を5μmとし、出力トランジスタ22のコンタク
ト33からフィールド酸化膜32までの距離S12、及
び保護トランジスタ24のエミッタとアルミ配線29と
のコンタクト35からフィールド酸化膜32までの距離
S13を2.5μmとしている。この結果、拡散層の電
気抵抗が、例えば単位長さ及び単位幅あたり50Ωであ
って、かつ出力トランジスタ22の幅が10μmである
と仮定すると、図1に示す寄生抵抗203の抵抗値は5
0Ωとなり、寄生抵抗202の抵抗値25Ωと比較して
2倍の値になる。更に、本実施例では、出力トランジス
タ22の実効チャネル長L10を1.2μmで形成し、
保護トランジスタ24の実効ベース幅L11を0.9μ
mで形成して出力トランジスタ22の実効チャネルを長
くしている。
In this embodiment, as shown in FIG. 2, from the gate electrode 28b of the output transistor 22 to the aluminum wiring 30.
To the contact 33 of the output transistor 22, the distance S11 from the gate electrode 28b to the contact 34 of the aluminum wiring 29 is 5 μm, and the distance S12 from the contact 33 of the output transistor 22 to the field oxide film 32 and the emitter of the protection transistor 24. The distance S13 from the contact 35 between the aluminum wiring 29 and the field oxide film 32 is 2.5 μm. As a result, assuming that the electric resistance of the diffusion layer is, for example, 50Ω per unit length and unit width, and the width of the output transistor 22 is 10 μm, the resistance value of the parasitic resistance 203 shown in FIG.
It becomes 0Ω, which is twice the resistance value of the parasitic resistance 202 of 25Ω. Further, in this embodiment, the effective channel length L10 of the output transistor 22 is formed to be 1.2 μm,
Set the effective base width L11 of the protection transistor 24 to 0.9 μ
and the effective channel of the output transistor 22 is made longer.

【0022】本実施例の半導体装置では、寄生抵抗20
3の抵抗値を高めて出力トランジスタ22が寄生バイポ
ーラトランジスタとして動作し難い構造に形成してい
る。従って、入出力端子21に正極の高電圧パルスが印
加されると、電流耐量の大きい保護トランジスタ24が
作動して導通状態となる。この結果、サージ電流の大部
分が保護トランジスタ24に流れるので、出力トランジ
スタ22の静電破壊耐量を大きく向上させることができ
る。また、入出力端子21に負極の高電圧パルスが印加
されると、保護ダイオード25に順方向のサージ電流が
流れるので、出力トランジスタ22が保護される。
In the semiconductor device of this embodiment, the parasitic resistance 20
The resistance value of 3 is increased to form the output transistor 22 in a structure that does not easily operate as a parasitic bipolar transistor. Therefore, when a positive high-voltage pulse is applied to the input / output terminal 21, the protection transistor 24 having a large withstand current operates and becomes conductive. As a result, most of the surge current flows to the protection transistor 24, so that the electrostatic breakdown resistance of the output transistor 22 can be greatly improved. When a negative high voltage pulse is applied to the input / output terminal 21, a forward surge current flows through the protection diode 25, so that the output transistor 22 is protected.

【0023】次に本発明の第2実施例の半導体装置につ
いて説明する。図4は本実施例のパターンレイアウトを
示す図である。なお、本実施例の半導体装置の入出力部
の基本的な回路構成は、第1実施例の半導体装置と同様
である。
Next, a semiconductor device according to the second embodiment of the present invention will be described. FIG. 4 is a diagram showing a pattern layout of this embodiment. The basic circuit configuration of the input / output unit of the semiconductor device of this embodiment is the same as that of the semiconductor device of the first embodiment.

【0024】本実施例と第1実施例とが異なる点は、入
出力端子21からのアルミ配線30又は接地線からのア
ルミ配線29とN型拡散層27との間に高融点金属シリ
サイドパッド40を介在させ、出力トランジスタ22の
寄生抵抗203の抵抗値を、拡散層の面積を広げずに大
きくしている点にある。このような構成にすることによ
り、保護トランジスタ24は更に有効に機能する。ま
た、超高速用LSIに本実施例を適用すれば、出力トラ
ンジスタは非常に高い静電耐量を得ることができる。
The difference between this embodiment and the first embodiment is that the refractory metal silicide pad 40 is provided between the N-type diffusion layer 27 and the aluminum wiring 30 from the input / output terminal 21 or the aluminum wiring 29 from the ground line. Is interposed to increase the resistance value of the parasitic resistance 203 of the output transistor 22 without increasing the area of the diffusion layer. With such a configuration, the protection transistor 24 functions more effectively. Further, when the present embodiment is applied to the ultra-high speed LSI, the output transistor can obtain a very high electrostatic withstand capability.

【0025】なお、上記各実施例では、P型半導体基板
26内に出力トランジスタ22を直接形成する構成を採
用したが、これに限定するものではなく、半導体基板2
6のウェル内に出力トランジスタ22を形成しても良
い。また、出力トランジスタ22及び保護トランジスタ
24の双方を基準電位の接地線に接続したが、これに限
定するものではなく、一方の素子を高電位電源ラインの
基準電位に接続しても良い。
In each of the above embodiments, the output transistor 22 is directly formed in the P-type semiconductor substrate 26, but the present invention is not limited to this.
The output transistor 22 may be formed in the well of No. 6. Further, although both the output transistor 22 and the protection transistor 24 are connected to the ground line of the reference potential, the invention is not limited to this, and one element may be connected to the reference potential of the high potential power supply line.

【0026】[0026]

【発明の効果】以上説明したように、本発明の半導体装
置によれば、保護トランジスタの寄生抵抗の抵抗値が出
力トランジスタの寄生抵抗の抵抗値よりも小さいので、
金属端子に高電圧パルスが印加されても、電流耐量の大
きい保護トランジスタだけが動作して導通状態になる。
従って、サージ電流の大部分が保護トランジスタに流れ
るので、出力トランジスタの静電破壊耐量が大きく向上
するという効果を奏する。また、半導体装置の入出力回
路に余分な容量や抵抗素子を付加する必要がないので、
最小限のパターン面積の回路構成によって、出力トラン
ジスタ及び内部回路を静電破壊現象から保護できるとい
う効果を奏する。
As described above, according to the semiconductor device of the present invention, since the resistance value of the parasitic resistance of the protection transistor is smaller than the resistance value of the parasitic resistance of the output transistor,
Even if a high voltage pulse is applied to the metal terminal, only the protection transistor having a large withstand current operates and becomes conductive.
Therefore, most of the surge current flows to the protection transistor, and thus the electrostatic breakdown resistance of the output transistor is greatly improved. Moreover, since it is not necessary to add an extra capacitance or resistance element to the input / output circuit of the semiconductor device,
With the circuit configuration having the minimum pattern area, the output transistor and the internal circuit can be protected from the electrostatic breakdown phenomenon.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体装置の第1実施例の回路構成を
示す回路図である。
FIG. 1 is a circuit diagram showing a circuit configuration of a first embodiment of a semiconductor device of the present invention.

【図2】同実施例の回路のパターンレイアウトを示す図
である。
FIG. 2 is a diagram showing a pattern layout of the circuit of the embodiment.

【図3】図2のa−a断面図である。FIG. 3 is a sectional view taken along line aa of FIG.

【図4】本発明の半導体装置の第2実施例の回路のパタ
ーンレイアウトを示す図である。
FIG. 4 is a diagram showing a pattern layout of a circuit of a second embodiment of the semiconductor device of the present invention.

【図5】従来の半導体装置の入出力部の回路構成を示す
回路図である。
FIG. 5 is a circuit diagram showing a circuit configuration of an input / output unit of a conventional semiconductor device.

【図6】同半導体装置の回路のパターンレイアウトを示
す図である。
FIG. 6 is a diagram showing a pattern layout of a circuit of the semiconductor device.

【図7】図6のb−b断面図である。7 is a sectional view taken along line bb of FIG.

【符号の説明】 21 入出力端子 22 出力トランジスタ 23 抵抗 24 保護トランジスタ 25 保護ダイオード 26 P型半導体基板 27(27a、27b、27c、27d) N型拡散層 28a、28b ゲート電極 29、30 アルミ配線 31 P型拡散層 32 フィールド酸化膜 33、34、35 コンタクト 36 側壁絶縁膜 37 層間絶縁膜 38 ゲート酸化膜 40 高融点金属シリサイドパッド 200 ゲート駆動回路への配線 201 内部回路への配線 202 保護トランジスタの寄生抵抗 203 出力トランジスタの寄生抵抗[Explanation of reference numerals] 21 input / output terminal 22 output transistor 23 resistance 24 protection transistor 25 protection diode 26 P-type semiconductor substrate 27 (27a, 27b, 27c, 27d) N-type diffusion layers 28a, 28b Gate electrodes 29, 30 Aluminum wiring 31 P-type diffusion layer 32 Field oxide film 33, 34, 35 Contact 36 Side wall insulating film 37 Interlayer insulating film 38 Gate oxide film 40 Refractory metal silicide pad 200 Wiring to gate drive circuit 201 Wiring to internal circuit 202 Parasitic of protection transistor Resistor 203 Parasitic resistance of output transistor

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に設けられた金属端子と、
前記半導体基板の一導電型領域内に形成され、かつ前記
金属端子に接続された逆導電型の第1の拡散層をドレイ
ンとし、第1の基準電位に接続された逆導電型の第2の
拡散層をソースとする出力トランジスタと、前記第1の
拡散層の近傍に設けられた素子分離絶縁膜によって前記
第1拡散層と分離されると共に、第1の基準電位又は第
2の基準電位に接続された逆導電型の第3の拡散層をエ
ミッタとし、前記第1の拡散層をコレクタとし、前記一
導電型領域をベースとする保護トランジスタとを備え、 前記保護トランジスタにおける前記金属端子から前記第
1の基準電位又は第2の基準電位までの寄生抵抗が、前
記出力トランジスタにおける前記金属端子から前記第1
の基準電位までの寄生抵抗よりも小さいことを特徴とす
る半導体装置。
1. A metal terminal provided on a semiconductor substrate,
A second conductivity type second diffusion layer, which is formed in one conductivity type region of the semiconductor substrate and is connected to the metal terminal, is used as a drain, and is connected to a first reference potential. An output transistor having a diffusion layer as a source and an element isolation insulating film provided in the vicinity of the first diffusion layer separates the first diffusion layer from the first diffusion layer and sets the first reference potential or the second reference potential. A protection transistor having the connected third conductivity type diffusion layer as an emitter, the first diffusion layer as a collector, and the one conductivity type region as a base; A parasitic resistance up to a first reference potential or a second reference potential is applied from the metal terminal of the output transistor to the first reference potential.
The semiconductor device is characterized by being smaller than the parasitic resistance up to the reference potential.
【請求項2】 前記金属端子が外部回路と前記半導体基
板の内部回路とを接続する入出力端子である、請求項1
に記載の半導体装置。
2. The metal terminal is an input / output terminal for connecting an external circuit and an internal circuit of the semiconductor substrate.
The semiconductor device according to.
【請求項3】 前記金属端子と前記第1の拡散層との接
続部から前記素子分離絶縁膜までの距離及び前記第1の
基準電位又は第2の基準電位と第3の拡散層との接続部
から前記素子分離絶縁膜までの距離を合せた長さが、前
記金属端子と前記第1の拡散層との接続部から前記出力
トランジスタのゲート電極までの距離及び第1の基準電
位と第2の拡散層との接続部から該出力トランジスタの
ゲート電極までの距離を合せた長さよりも短いことを特
徴とする、請求項1又は2に記載の半導体装置。
3. The distance from the connection between the metal terminal and the first diffusion layer to the element isolation insulating film and the connection between the first reference potential or the second reference potential and the third diffusion layer. The distance from the connecting portion between the metal terminal and the first diffusion layer to the gate electrode of the output transistor, the first reference potential, and the second reference potential. 3. The semiconductor device according to claim 1, wherein the length is shorter than the combined length of the distance from the connection portion with the diffusion layer to the gate electrode of the output transistor.
【請求項4】 前記保護トランジスタの実効ベース長
が、前記出力トランジスタの実効チャネル長よりも短い
ことを特徴とする、請求項1から請求項3のうち1つの
請求項に記載の半導体装置。
4. The semiconductor device according to claim 1, wherein an effective base length of the protection transistor is shorter than an effective channel length of the output transistor.
【請求項5】 前記金属端子と前記第1の拡散層との接
続部及び前記第1の基準電位と前記第2の拡散層との接
続部に高融点金属シリサイドパッドを介在させたことを
特徴とする、請求項1から請求項4のうち1つの請求項
に記載の半導体装置。
5. A refractory metal silicide pad is interposed between a connection portion between the metal terminal and the first diffusion layer and a connection portion between the first reference potential and the second diffusion layer. The semiconductor device according to any one of claims 1 to 4.
【請求項6】 前記一導電型領域が前記半導体基板内に
形成されたウェルであることを特徴とする、請求項1か
ら請求項5のうち1つの請求項に記載の半導体装置。
6. The semiconductor device according to claim 1, wherein the one conductivity type region is a well formed in the semiconductor substrate.
JP5353167A 1993-12-29 1993-12-29 Semiconductor device Expired - Lifetime JP2638462B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP5353167A JP2638462B2 (en) 1993-12-29 1993-12-29 Semiconductor device
US08/364,275 US5449939A (en) 1993-12-29 1994-12-27 Semiconductor device having a protective transistor
KR1019940037702A KR0164908B1 (en) 1993-12-29 1994-12-28 Semiconductor device having a protective transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5353167A JP2638462B2 (en) 1993-12-29 1993-12-29 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH07202126A true JPH07202126A (en) 1995-08-04
JP2638462B2 JP2638462B2 (en) 1997-08-06

Family

ID=18429017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5353167A Expired - Lifetime JP2638462B2 (en) 1993-12-29 1993-12-29 Semiconductor device

Country Status (3)

Country Link
US (1) US5449939A (en)
JP (1) JP2638462B2 (en)
KR (1) KR0164908B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6320241B1 (en) 1998-08-17 2001-11-20 Nec Corporation Circuitry and method of forming the same
US6374391B1 (en) 1998-08-17 2002-04-16 Nec Corporation Method for estimating parasitic capacitance coupled to signal line longer than critical length at high-speed

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5757037A (en) * 1995-02-01 1998-05-26 Silicon Power Corporation Power thyristor with MOS gated turn-off and MOS-assised turn-on
US5516717A (en) * 1995-04-19 1996-05-14 United Microelectronics Corporation Method for manufacturing electrostatic discharge devices
JPH08316426A (en) * 1995-05-16 1996-11-29 Nittetsu Semiconductor Kk Mos semiconductor device and its manufacture
US5929491A (en) * 1995-07-20 1999-07-27 Siemens Aktiengesellschaft Integrated circuit with ESD protection
ATE213872T1 (en) * 1995-11-13 2002-03-15 Micron Technology Inc PROTECTIVE STRUCTURE WITH OFFSET CONTACTS TO PROTECT AGAINST ELECTROSTATIC DISCHARGE
JP3019760B2 (en) * 1995-11-15 2000-03-13 日本電気株式会社 Semiconductor integrated circuit device
US5910675A (en) * 1995-12-14 1999-06-08 Nec Corporation Semiconductor device and method of making the same
US5686751A (en) * 1996-06-28 1997-11-11 Winbond Electronics Corp. Electrostatic discharge protection circuit triggered by capacitive-coupling
JP3161508B2 (en) * 1996-07-25 2001-04-25 日本電気株式会社 Semiconductor device
US5910873A (en) * 1997-02-19 1999-06-08 National Semiconductor Corporation Field oxide transistor based feedback circuit for electrical overstress protection
JP3129223B2 (en) * 1997-02-28 2001-01-29 日本電気株式会社 Semiconductor device
US6061551A (en) * 1998-10-21 2000-05-09 Parkervision, Inc. Method and system for down-converting electromagnetic signals
US7515896B1 (en) 1998-10-21 2009-04-07 Parkervision, Inc. Method and system for down-converting an electromagnetic signal, and transforms for same, and aperture relationships
US7236754B2 (en) 1999-08-23 2007-06-26 Parkervision, Inc. Method and system for frequency up-conversion
US6370371B1 (en) 1998-10-21 2002-04-09 Parkervision, Inc. Applications of universal frequency translation
US7039372B1 (en) 1998-10-21 2006-05-02 Parkervision, Inc. Method and system for frequency up-conversion with modulation embodiments
US6879817B1 (en) * 1999-04-16 2005-04-12 Parkervision, Inc. DC offset, re-radiation, and I/Q solutions using universal frequency translation technology
US6853690B1 (en) 1999-04-16 2005-02-08 Parkervision, Inc. Method, system and apparatus for balanced frequency up-conversion of a baseband signal and 4-phase receiver and transceiver embodiments
US7110444B1 (en) 1999-08-04 2006-09-19 Parkervision, Inc. Wireless local area network (WLAN) using universal frequency translation technology including multi-phase embodiments and circuit implementations
US7693230B2 (en) 1999-04-16 2010-04-06 Parkervision, Inc. Apparatus and method of differential IQ frequency up-conversion
US7065162B1 (en) 1999-04-16 2006-06-20 Parkervision, Inc. Method and system for down-converting an electromagnetic signal, and transforms for same
US8295406B1 (en) 1999-08-04 2012-10-23 Parkervision, Inc. Universal platform module for a plurality of communication protocols
JP3942324B2 (en) * 1999-09-29 2007-07-11 Necエレクトロニクス株式会社 Input protection circuit
TW445627B (en) * 1999-10-04 2001-07-11 Winbond Electronics Corp Electrostatic discharge buffer apparatus
US6429491B1 (en) * 1999-10-20 2002-08-06 Transmeta Corporation Electrostatic discharge protection for MOSFETs
US7010286B2 (en) 2000-04-14 2006-03-07 Parkervision, Inc. Apparatus, system, and method for down-converting and up-converting electromagnetic signals
DE10022368A1 (en) * 2000-05-08 2001-11-29 Micronas Gmbh ESD protective structure
DE10022367C2 (en) * 2000-05-08 2002-05-08 Micronas Gmbh ESD protection structure and manufacturing method
US7454453B2 (en) 2000-11-14 2008-11-18 Parkervision, Inc. Methods, systems, and computer program products for parallel correlation and applications thereof
US7072427B2 (en) 2001-11-09 2006-07-04 Parkervision, Inc. Method and apparatus for reducing DC offsets in a communication system
US7379883B2 (en) * 2002-07-18 2008-05-27 Parkervision, Inc. Networking methods and systems
US7460584B2 (en) 2002-07-18 2008-12-02 Parkervision, Inc. Networking methods and systems
JP2004296998A (en) * 2003-03-28 2004-10-21 Matsushita Electric Ind Co Ltd Semiconductor device
DE10325718B4 (en) 2003-06-06 2006-07-06 Micronas Gmbh Semiconductor sensor with a FET and method for driving such a semiconductor sensor
FR2904473B1 (en) * 2006-07-27 2009-01-16 St Microelectronics Sa DEVICE FOR PROTECTING AN INTEGRATED CIRCUIT AGAINST ELECTROSTATIC DISCHARGES
CN102790050B (en) * 2011-12-12 2016-01-20 钜泉光电科技(上海)股份有限公司 Possesses the chip of antistatic protection function
TWI667765B (en) * 2015-10-15 2019-08-01 聯華電子股份有限公司 Electrostatic discharge protection semiconductor device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153761A (en) * 1984-08-24 1986-03-17 Hitachi Ltd Semiconductor device
JPH04122059A (en) * 1990-09-13 1992-04-22 Nissan Motor Co Ltd Output protecting circuit
US5291051A (en) * 1992-09-11 1994-03-01 National Semiconductor Corporation ESD protection for inputs requiring operation beyond supply voltages

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6320241B1 (en) 1998-08-17 2001-11-20 Nec Corporation Circuitry and method of forming the same
US6374391B1 (en) 1998-08-17 2002-04-16 Nec Corporation Method for estimating parasitic capacitance coupled to signal line longer than critical length at high-speed

Also Published As

Publication number Publication date
KR0164908B1 (en) 1998-12-15
KR950021509A (en) 1995-07-26
US5449939A (en) 1995-09-12
JP2638462B2 (en) 1997-08-06

Similar Documents

Publication Publication Date Title
JP2638462B2 (en) Semiconductor device
US4509067A (en) Semiconductor integrated circuit devices with protective means against overvoltages
US7183612B2 (en) Semiconductor device having an electrostatic discharge protecting element
JP2706626B2 (en) Semiconductor device
US6605844B2 (en) Semiconductor device
JPH06104444A (en) Power mos fet circuit provided with active clamp
JPH0662529A (en) Protective device of integrated circuit against static discharge
JP2007235151A (en) Protection structure for integrated circuit
EP0253105B1 (en) Integrated circuit with improved protective device
EP0162460B1 (en) Integrated circuit with an input protective device
US5710452A (en) Semiconductor device having electrostatic breakdown protection circuit
JPH08191132A (en) Semiconductor device
JP3861426B2 (en) Semiconductor device protection circuit
KR100206675B1 (en) Semiconductor integrated circuit device
JP4995364B2 (en) Semiconductor integrated circuit device
JP2007287919A (en) Semiconductor device with temperature detection function
JP2004521477A (en) Multi-finger current ballasting ESD protection circuit for ESD-sensitive circuits and interleaved ballasting
JP3185723B2 (en) Semiconductor device
JP3574359B2 (en) Semiconductor device
JP2611639B2 (en) Semiconductor device
US5432369A (en) Input/output protection circuit
JP3706446B2 (en) MOS field effect transistor with protection circuit
JP3146650B2 (en) Power integrated circuit
JP3442331B2 (en) Semiconductor device
JP3409718B2 (en) IGBT with built-in circuit and power converter using the same

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080425

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 17

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term