Nothing Special   »   [go: up one dir, main page]

JPH07201620A - R-fe-b based bond magnet and production thereof - Google Patents

R-fe-b based bond magnet and production thereof

Info

Publication number
JPH07201620A
JPH07201620A JP5352055A JP35205593A JPH07201620A JP H07201620 A JPH07201620 A JP H07201620A JP 5352055 A JP5352055 A JP 5352055A JP 35205593 A JP35205593 A JP 35205593A JP H07201620 A JPH07201620 A JP H07201620A
Authority
JP
Japan
Prior art keywords
plating
magnet
resin
glass
bonded magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5352055A
Other languages
Japanese (ja)
Inventor
Michio Yamashita
三千雄 山下
Tomoyuki Shiotani
知之 塩谷
Tetsuharu Hayakawa
徹治 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP5352055A priority Critical patent/JPH07201620A/en
Publication of JPH07201620A publication Critical patent/JPH07201620A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To provide an R-Fe-B based bond magnet, and its production method, having such composition as the plating liquid and the like can be prevented from entering into a porous R-Fe-B based bond magnet and being left thereat and a plating layer of Ni, for example, is formed efficiently thus enhancing the corrosion resistance and heat resistance significantly. CONSTITUTION:A porous R-Fe-B based bond magnet is impregnated with an inorganic substance, e.g. glass, or a resin to fill the pores of magnet and then it is subjected to surface polishing, e.g. barrel polishing or sand blasting, thus reforming the surface while sustaining the impregnation effect. Even if it is subjected to direct electrolytic plating or electroless plating, deterioration of corrosion resistance due to exfoliation of plating layer caused by internal rusting can be prevented because intrusion of toxic plating liquid or cleaning liquid is prevented. Consequently, a general plating bath having high filming efficiency, e.g. Watt bath, can be employed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、リング状や円板状の
種々形状からなるゴム磁石あるいはプラスチック磁石と
称されるR−Fe−B系ボンド磁石の改良とその製造方
法に係り、特にガラス等の無機物または樹脂を含浸させ
て磁石空孔をなくして、ワット浴などの効率的なめっき
処理が可能なめっき液を用いて、耐食性、密着性を著し
く改善したNiめっきなどめっき層を量産性よく形成で
きるR−Fe−B系ボンド磁石とその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved R-Fe-B type bonded magnet called a rubber magnet or a plastic magnet having various shapes such as a ring shape and a disk shape and a method for producing the same, and particularly to a glass. Mass production of plating layer such as Ni plating with significantly improved corrosion resistance and adhesion by using a plating solution that can be efficiently plated with a Watts bath, etc. The present invention relates to a well-formed R-Fe-B based bonded magnet and a method for manufacturing the same.

【0002】[0002]

【従来の技術】今日、ゴム磁石あるいはプラスチック磁
石とよばれるボンド磁石には、従来の等方性ボンド磁石
から異方性ボンド磁石へ、また、フェライト系ボンド磁
石からより高磁力の希土類系ボンド磁石へと高性能化が
進み、さらに、Sm−Co系磁性材から焼結磁石では最
大エネルギー積が50MGOe以上の高磁気特性を発揮
するR−Fe−B系磁性材を用いるR−Fe−B系ボン
ド磁石へと高性能化が図られてきた。
2. Description of the Related Art Today, there are known bonded magnets called rubber magnets or plastic magnets, from conventional isotropic bonded magnets to anisotropic bonded magnets, and ferrite-based bonded magnets to rare-earth bonded magnets having a higher magnetic force. The performance of the R-Fe-B-based magnetic material is improved from Sm-Co-based magnetic material, and the sintered magnet has a maximum energy product of 50 MGOe or more and exhibits high magnetic characteristics. High performance has been achieved for bonded magnets.

【0003】R−Fe−B系ボンド磁石は、所要のR−
Fe−B系合金を溶解し鋳造後に粉砕する溶解・粉砕法
(特開昭60−63304号、特開昭60−11907
01号)、Ca還元にて直接粉末を得る直接還元拡散法
(特開昭59−219404号、特開昭60−7794
3号)、所要のR−Fe−B系合金を溶解しジェットキ
ャスターでリボン箔を得てこれを粉砕・焼鈍する急冷合
金法、及び所要のR−Fe−B系合金を水素中で加熱し
て分解並びに再結晶させる方法(HDDR法)(特開平
1−132106号、特開平2−4901号)等の各種
製法で得られた種々のR−Fe−B系磁性材粉を用いる
が、いずれもその組成に極めて酸化しやすい成分相及び
Feを多量にを含むため錆びやすい問題があり、表面に
種々組成からなる樹脂層を電着塗装、スプレー法、浸漬
法、含浸法等で被着していた(例えば、特開平1−16
6519号、特開平1−245504号)。
The R-Fe-B system bonded magnet has a required R-
A melting and crushing method of melting an Fe-B alloy and crushing it after casting (JP-A-60-63304, JP-A-60-11907).
No. 01), direct reduction diffusion method for directly obtaining powder by Ca reduction (JP-A-59-219404, JP-A-60-7794).
No. 3), a quenching alloy method in which a required R-Fe-B alloy is melted, a ribbon foil is obtained with a jet caster, and this is crushed and annealed, and a required R-Fe-B alloy is heated in hydrogen. Various R-Fe-B based magnetic material powders obtained by various production methods such as a method of decomposing and recrystallizing (HDDR method) (JP-A-1-132106, JP-A-2-4901) are used. However, there is a problem that it easily rusts because its composition contains a component phase that is extremely easy to oxidize and a large amount of Fe. A resin layer of various compositions is applied to the surface by electrodeposition coating, spraying, dipping, impregnation, etc. (For example, Japanese Patent Laid-Open No. 1-16
6519, JP-A-1-245504).

【0004】これまでの樹脂塗装方法、例えば、スプレ
ー法ではリング状場合、塗料のロスが大きく、裏、表を
反転する必要あるため工数が多く、また、膜厚の均一性
も劣る問題があった。また、電着法では、膜厚は均一で
あるが、電極部の補修、すなわち、タッチアップが必要
であり、1つずつ電極に取り付けるため、工数がかかり
小物には不適な問題がある。浸漬法では、一定の膜厚の
均一な塗膜を得るのはタレなどがあり困難で、またポー
ラスなボンド磁石では空孔が充分に埋まらず、乾燥時に
膨れたり、製品同志のくっつき等の問題がある。
In the conventional resin coating method, for example, in the case of a spray method, in the case of a ring shape, there is a problem that the loss of the coating material is large, the number of steps is large because the inside and the outside need to be reversed, and the uniformity of the film thickness is poor. It was Further, in the electrodeposition method, although the film thickness is uniform, repair of the electrode portion, that is, touch-up is required, and the electrodes are attached to the electrodes one by one, which requires a lot of man-hours and is not suitable for small articles. With the dipping method, it is difficult to obtain a uniform coating film with a constant film thickness due to sagging, etc. Also, pores are not filled up sufficiently with a porous bonded magnet, and swelling during drying and sticking between products There is.

【0005】[0005]

【発明が解決しようとする課題】量産性を考慮すると、
焼結型のR−Fe−B系磁石で行われている金属めっき
を施すこと(特開昭60−54406号、特開昭62−
120003号)が考えられるが、ポーラスなボンド磁
石に金属めっきを施すと、浸漬した表面洗浄剤やめっき
液が磁石に侵入、残留して溶損もしくは発錆により金属
めっきが不可能であった。
[Problems to be Solved by the Invention] Considering mass productivity,
Applying metal plating, which is performed with a sintered type R-Fe-B magnet (Japanese Patent Laid-Open No. 60-54406, Japanese Patent Laid-Open No. 62-62406).
No. 120003), but when metal plating is applied to a porous bonded magnet, the immersed surface cleaning agent or plating solution penetrates into the magnet and remains, so that metal plating is impossible due to melting damage or rusting.

【0006】そこで、ポーラスなボンド磁石に侵入、残
留しても無害なめっき液を選定するか(特開平4−27
6092号)、下地コーティングを施した後にめっきす
る(特開平3−11714号、特開平4−276095
号)方法が提案されている。しかし、めっき液のpH調
整や完全な無害化は困難であり、かつ成膜効率のよいめ
っき浴でない。また、下地の厚みのばらつきがめっき層
の不安定要素となり、十分な厚みの下地コーティングを
施すのであれば、表面のめっき層が不要になるという矛
盾がある。また、R−Fe−B系ボンド磁石に成膜効率
のよいNiめっきを施す方法として、特定組成のめっき
浴が提案(特開平4−99192号)されているが、や
はりボンド磁石に侵入、残留して発錆させる恐れがあ
る。
Therefore, is it possible to select a plating solution that is harmless even if it penetrates into and remains in the porous bonded magnet (JP-A-4-27).
No. 6092) and plating after applying a base coating (JP-A-3-11714, JP-A-4-276095).
No.) method has been proposed. However, it is difficult to adjust the pH of the plating solution and completely render it harmless, and the plating bath is not good in film formation efficiency. Further, there is a contradiction that the variation in the thickness of the underlayer becomes an unstable factor of the plating layer, and if the undercoating with a sufficient thickness is applied, the plating layer on the surface becomes unnecessary. A plating bath having a specific composition has been proposed as a method for performing Ni plating with good film formation efficiency on an R-Fe-B based bonded magnet (Japanese Patent Laid-Open No. 4-99192). May cause rusting.

【0007】この発明は、めっき液や洗浄液等がポーラ
スなR−Fe−B系ボンド磁石に侵入、残留するのを防
止して、効率よくNiめっき等のめっき層が形成でき、
耐食性及び耐熱性を大幅に向上させ得る構成からなるR
−Fe−B系ボンド磁石並びにその製造方法の提供を目
的としている。
According to the present invention, a plating solution, a cleaning solution, etc. can be prevented from invading and remaining in a porous R-Fe-B based bonded magnet, and a plating layer such as Ni plating can be efficiently formed.
R with a structure that can significantly improve corrosion resistance and heat resistance
It is intended to provide a —Fe—B based bonded magnet and a method for manufacturing the same.

【0008】[0008]

【課題を解決するための手段】発明者は、めっき液や洗
浄液等がポーラスなR−Fe−B系ボンド磁石に侵入、
残留するのを防止できる磁石の構成について種々検討し
た結果、当該磁石にガラス等の無機物または樹脂を含浸
処理して磁石の空孔にガラス等の無機物または樹脂を含
浸させ、さらにバレル研磨処理、サンドブラスト処理な
どの表面研磨処理を施すことによって、含浸効果を保持
したまま表面を改質でき、その後、直接、電解めっきあ
るいは無電解めっきしても、有害なめっき液、洗浄液の
侵入が防止されているため、内部より発錆してめっき層
が剥離するなどの耐食性の劣化がなく、ワット浴などの
一般的でかつ成膜効率の良いめっき浴が使用できること
を知見し、この発明を完成した。
Means for Solving the Problems The inventor has found that a plating solution, a cleaning solution, or the like penetrates into a porous R-Fe-B based bonded magnet,
As a result of various studies on the structure of a magnet that can prevent the residue from remaining, the magnet is impregnated with an inorganic material such as glass or a resin, and the holes of the magnet are impregnated with an inorganic material such as glass or a resin. By performing surface polishing treatment such as treatment, the surface can be modified while maintaining the impregnation effect, and even if it is directly electroplated or electroless plated, harmful plating solution and cleaning solution are prevented from entering. Therefore, the inventors have found that there is no deterioration in corrosion resistance such as rusting from the inside and peeling of the plating layer, and a general plating bath such as a Watt bath having a high film formation efficiency can be used, and the present invention has been completed.

【0009】すなわち、この発明は、R−Fe−B系ボ
ンド磁石の空孔に含浸させたガラス等の無機物または樹
脂を有したまま表面のガラス等の無機物または樹脂層を
除去した構成、さらに、磁石素材自体の裸表面に直接め
っき層が形成されたR−Fe−B系ボンド磁石である。
また、上記構成において、磁石の表層の空孔率が1%以
下であることを特徴とするR−Fe−B系ボンド磁石を
併せて提案する。
That is, the present invention has a structure in which the inorganic material such as glass or the resin layer on the surface is removed while the inorganic material such as glass or the resin impregnated in the pores of the R—Fe—B system bonded magnet is removed, and further, This is an R-Fe-B based bonded magnet in which a plating layer is directly formed on the bare surface of the magnet material itself.
In addition, in the above structure, an R—Fe—B based bonded magnet characterized in that the porosity of the surface layer of the magnet is 1% or less is also proposed.

【0010】この発明は、ボンド磁石の表層の空孔率が
3%以下であることを特徴とするが、空孔率とは、ポー
ラスなボンド磁石の表面より磁石内部に通じている空孔
の体積の割合であり、R−Fe−B系ボンド磁石では圧
縮成形法にて成形した場合の空孔率は5〜20%であ
る。また、空孔率が3%を越えると、めっき液が内部に
侵入し、残存して耐食性及び耐熱性を劣化させるため、
空孔率は3%を以下が望ましい。
The present invention is characterized in that the porosity of the surface layer of the bonded magnet is 3% or less. The porosity is the porosity of the pores which are communicated from the surface of the porous bonded magnet to the inside of the magnet. It is the ratio of the volume, and in the R—Fe—B based bonded magnet, the porosity when molded by the compression molding method is 5 to 20%. Also, when the porosity exceeds 3%, the plating solution penetrates inside and remains there to deteriorate the corrosion resistance and heat resistance.
The porosity is preferably 3% or less.

【0011】また、この発明は、R−Fe−B系ボンド
磁石に樹脂を含浸処理して磁石の空孔にガラス等の無機
物または樹脂を含浸させ、かつ表面にガラス等の無機物
または樹脂層を形成する、R−Fe−B系ボンド磁石に
ガラス等の無機物または樹脂を含浸処理して磁石の空孔
にガラス等の無機物または樹脂を含浸させかつ表面にガ
ラス等の無機物または樹脂層を形成した後、ガラス等の
無機物または樹脂層上にめっき層を形成する。R−Fe
−B系ボンド磁石にガラス等の無機物または樹脂を含浸
処理して磁石の空孔にガラス等の無機物または樹脂を含
浸させた後、表面に形成されたガラス等の無機物または
樹脂層を除去する、R−Fe−B系ボンド磁石にガラス
等の無機物または樹脂を含浸処理して磁石の空孔にガラ
ス等の無機物または樹脂を含浸させた後、表面に形成さ
れたガラス等の無機物または樹脂層を除去し、さらに磁
石表面にめっき層を形成する、めっき層の形成手段が無
電解めっき法であること、めっき層の形成手段が電解め
っき法であること、無電解めっき法にてめっき層を形成
した後、さらに電解めっき法にてめっき層を形成するこ
と、をそれぞれ特徴とするR−Fe−B系ボンド磁石の
製造方法を提案する。
Further, according to the present invention, the R-Fe-B based bonded magnet is impregnated with a resin to impregnate the holes of the magnet with an inorganic material such as glass or a resin, and the surface is covered with an inorganic material such as glass or a resin layer. The R-Fe-B based bonded magnet to be formed is impregnated with an inorganic substance such as glass or a resin to impregnate pores of the magnet with the inorganic substance such as glass or a resin, and an inorganic substance such as glass or a resin layer is formed on the surface. After that, a plating layer is formed on the inorganic material such as glass or the resin layer. R-Fe
-B type bond magnet is impregnated with an inorganic material such as glass or a resin to impregnate pores of the magnet with the inorganic material such as glass or a resin, and then the inorganic material such as glass or a resin layer formed on the surface is removed. An R-Fe-B based bonded magnet is impregnated with an inorganic substance such as glass or a resin to impregnate pores of the magnet with the inorganic substance such as glass or a resin, and then an inorganic substance such as glass or a resin layer formed on the surface thereof. Remove and further form a plating layer on the magnet surface. The plating layer forming means is electroless plating. The plating layer forming means is electrolytic plating. The plating layer is formed by electroless plating. After that, a method for producing an R—Fe—B based bonded magnet is further characterized, in which a plating layer is further formed by an electrolytic plating method.

【0012】この発明において、R−Fe−B系ボンド
磁石は、等方性、異方性ボンド磁石いずれも対象とし、
例えば、圧縮成型の場合は、所要組成、性状の磁性粉末
に熱硬化性樹脂、カップリング剤、滑剤等を添加混練し
たのち、圧縮成型し加熱して樹脂を硬化して得られ、射
出成型、押し出し成型、圧延成型の場合は、磁性粉末に
熱可塑性樹脂、カップリング剤、滑剤等を添加混練した
のち、射出成型、押し出し成型、圧延成型のいずれかの
方法にて成型して得られる。R−Fe−B系磁性材粉に
は、所要のR−Fe−B系合金を溶解し鋳造後に粉砕す
る溶解・粉砕法、Ca還元にて直接粉末を得る直接還元
拡散法、所要のR−Fe−B系合金を溶解しジェットキ
ャスターでリボン箔を得てこれを粉砕・焼鈍する急冷合
金法、所要のR−Fe−B系合金を溶解し、これをガス
アトマイズで粉末化して熱処理するガスアトマイズ法、
所要原料金属を粉末化したのち、メカニカルアロイング
にて微粉末化して熱処理するメカニカルアロイ法及び所
要のR−Fe−B系合金を水素中で加熱して分解並びに
再結晶させる方法(HDDR法)等の各種製法で得た等
方性、異方性粉末が利用できる。また、バインダーに
は、射出成形では、6PA、12PA、PPS、PB
T、EVA等、押出成形、カレンダーロール、圧延成形
には、PVC、NBR、CPE、NR、ハイパロン等、
圧縮成形には、エポキシ樹脂、DAP、フェノール樹脂
等が利用でき、必要に応じて、公知の金属バインダーを
用いることができる。さらに、助材には成形を容易にす
る滑剤や樹脂と無機フィラーの結合剤、シラン系、チタ
ン系等のカップリング剤などを用いることができる。
In the present invention, the R—Fe—B based bonded magnet is intended for both isotropic and anisotropic bonded magnets.
For example, in the case of compression molding, a thermosetting resin, a coupling agent, a lubricant, etc. are added and kneaded to the magnetic powder of the required composition and properties, and then the mixture is compression-molded and heated to obtain a resin which is cured by injection molding. In the case of extrusion molding or rolling molding, it is obtained by kneading a magnetic powder with a thermoplastic resin, a coupling agent, a lubricant, etc., and then molding by any of injection molding, extrusion molding, and rolling molding. The R-Fe-B based magnetic material powder is a melting and pulverizing method in which a required R-Fe-B based alloy is melted and crushed after casting, a direct reduction diffusion method for directly obtaining a powder by Ca reduction, a required R- A quenching alloy method in which a Fe-B-based alloy is melted and a ribbon foil is obtained with a jet caster, and the ribbon foil is crushed and annealed. ,
Mechanical alloying method in which the required raw material metal is pulverized, then finely pulverized by mechanical alloying and heat treated, and a method of decomposing and recrystallizing the required R-Fe-B alloy by heating in hydrogen (HDDR method) Isotropic and anisotropic powders obtained by various production methods such as can be used. In addition, the binder is 6PA, 12PA, PPS, PB in injection molding.
PVC, NBR, CPE, NR, Hypalon, etc. for T, EVA, etc.
For the compression molding, epoxy resin, DAP, phenol resin, etc. can be used, and a known metal binder can be used if necessary. Further, as the auxiliary material, a lubricant that facilitates molding, a binder of a resin and an inorganic filler, a coupling agent such as a silane-based or titanium-based coupling agent, and the like can be used.

【0013】この発明において、含浸処理するガラス等
の無機物または樹脂には、無機系の水ガラス、各種低融
点金属や金属粉、含量、あるいは有機系のメタアクリル
酸エステル、エポキシ樹脂、ポリアセチレン、ポリアニ
リンなどの単独あるいは複合した樹脂が利用できる。
In the present invention, the inorganic material such as glass to be impregnated or the resin includes inorganic water glass, various low melting point metals and metal powders, content, or organic methacrylic acid ester, epoxy resin, polyacetylene, polyaniline. A single resin or a composite resin such as can be used.

【0014】この発明において、含浸処理方法として
は、ガラス等の無機物または樹脂に浸漬するか、密閉容
器内にボンド磁石を収納して、容器内を真空化してから
ガラス等の無機物または樹脂に浸漬し、続いて加圧す
る、容器内を真空化してからガラス等の無機物または樹
脂に浸漬し、再度真空化し、次いで加圧する、容器内の
ガラス等の無機物または樹脂に浸漬し、真空化し、次い
で加圧する、容器内のガラス等の無機物または樹脂に浸
漬し、真空化する、容器内を真空化してからガラス等の
無機物または樹脂に浸漬する、容器内を真空化してから
ガラス等の無機物または樹脂に浸漬し、再度真空化す
る、などの手順で含浸することができる。また、含浸処
理後の乾燥、硬化処理には、大気中、不活性ガス中また
は真空中で加熱する手段を用いることができる。さら
に、大きな空孔に含浸処理を施すために、金属粉や顔料
などをバレル中に挿入してボンド磁石表面にこすりつけ
たり、たたき込むなどの手段を用いることによって、よ
り効果的に含浸処理を施すことが可能である。
In the present invention, the impregnation treatment method includes dipping in an inorganic material such as glass or a resin, or housing a bond magnet in a closed container and evacuating the inside of the container before immersing in an inorganic material such as glass or a resin. Then, pressurize, evacuate the inside of the container and then immerse it in an inorganic material such as glass or resin, evacuate again, and then pressurize, immerse in an inorganic material such as glass or resin in the container, evacuate, and then add Press, soak in an inorganic material such as glass or resin in a container and evacuate, evacuate the inside of the container and then immerse in an inorganic material or resin such as glass, evacuate the inside of a container to an inorganic material or resin such as glass It can be impregnated by a procedure such as dipping and vacuuming again. Further, for the drying and curing treatments after the impregnation treatment, a means for heating in air, in an inert gas or in vacuum can be used. Furthermore, in order to impregnate large pores, it is possible to insert metal powder, pigment, etc. into the barrel and rub it against the surface of the bond magnet, or use a method such as tapping to make the impregnation treatment more effective. Is possible.

【0015】この発明において、含浸処理後に磁石表面
に形成されたガラス等の無機物または樹脂層の除去方法
としては、バレル研磨処理、サンドブラスト処理などの
表面研磨処理を施すことによって、含浸効果を保持した
まま表面を改質できる。バレル研磨としては、一般の回
転バレル、遠心回転研磨法、振動バレル研磨法などを採
用することができ、また、サンドブラストとしては、一
般に用いられる研磨砂による表面研磨法、及び被研磨物
を容器内に投入し、その容器を回転させながらサンドブ
ラストを行う回転サンドブラスト法等を採用することが
できる。上記の表面研磨処理によって、含浸処理により
磁石表面に形成されたガラスなどの無機物または樹脂層
を除去するのみならず、磁石の表面酸化層も除去して、
活性なR−Fe−B系磁性粉の表面を得ることができ、
良好な耐食性及び密着性にすぐれためっき層の形成が可
能となる。
In the present invention, as a method of removing the inorganic material such as glass or the resin layer formed on the surface of the magnet after the impregnation treatment, the surface impregnation treatment such as barrel polishing treatment or sandblasting treatment is performed to maintain the impregnation effect. The surface can be modified as it is. As the barrel polishing, a general rotary barrel, a centrifugal rotary polishing method, a vibrating barrel polishing method, or the like can be adopted.As the sand blast, a commonly used surface polishing method with polishing sand, and an object to be polished are stored in a container. It is possible to employ a rotary sandblast method or the like in which the container is put into a container and sandblasted while rotating the container. By the above surface polishing treatment, not only the inorganic material such as glass or resin layer formed on the magnet surface by the impregnation treatment is removed, but also the surface oxidized layer of the magnet is removed,
The surface of the active R-Fe-B magnetic powder can be obtained,
It is possible to form a plating layer having excellent corrosion resistance and adhesiveness.

【0016】この発明において、電解めっき方法として
は、Ni,Cu,Sn,Co,Zn等から選ばれた少な
くとも1種の卑金属またはそれらの合金層、B,S,P
が含有することのあるめっき法が好ましい。めっき厚み
は50μm以下、好ましくは20μm以下である。めっ
き浴はPH5.6以上が好ましい。この発明では、前述
の含浸処理が有効に作用するため、一般的なワット浴に
よってもめっき可能であり、十分な密着性、耐食性及び
耐熱性のあるめっき層が得られる。
In the present invention, as the electrolytic plating method, at least one base metal selected from Ni, Cu, Sn, Co, Zn, etc. or an alloy layer thereof, B, S, P is used.
The plating method which may be contained is preferable. The plating thickness is 50 μm or less, preferably 20 μm or less. The plating bath preferably has a pH of 5.6 or higher. In the present invention, since the above-mentioned impregnation treatment works effectively, plating can be performed by a general Watt bath, and a plating layer having sufficient adhesion, corrosion resistance and heat resistance can be obtained.

【0017】特に、Niめっき浴とめっき方法として
は、洗浄→電気Niめっき→洗浄→乾燥の工程で行うと
よい、Niめっき浴液に塩素イオンを含まない浴が好ま
しく、硫酸ニッケル、硫酸ナトリウム、硫酸マグネシウ
ム、クエン酸アンモニウムまたはクエン酸ナトリウム、
硫酸コバルト、ホウ酸の6成分を、R−Fe−B系ボン
ド磁石の組成に応じて適宜選定し、A成分(硫酸ニッケ
ル)を100g/l〜150g/lとして、B成分(硫
酸ナトリウム)、C成分(硫酸マグネシウム)との間
に、A=B+Cという関係が望ましく、B、Cの組成比
はB:C=3〜7:7〜3が好ましい。クエン酸アンモ
ニウムまたはクエン酸ナトリウムは、A成分の20〜2
5%が最適な組成範囲であり、この成分の1/3〜1/
2量のホウ酸が建浴時の添加量として適当である。硫酸
コバルトはA成分の1〜5%量が密着性を向上させる効
果を示すため好ましい。pH調整はアンモニア水にて行
いpH5.4〜6.8範囲で使用し、常温状態の浴温が
好ましい。
Particularly, as the Ni plating bath and the plating method, it is preferable to perform the steps of washing → electrical Ni plating → washing → drying. A bath containing no chloride ion in the Ni plating bath solution is preferable, and nickel sulfate, sodium sulfate, Magnesium sulfate, ammonium citrate or sodium citrate,
Six components of cobalt sulfate and boric acid are appropriately selected according to the composition of the R-Fe-B based bonded magnet, the component A (nickel sulfate) is set to 100 g / l to 150 g / l, the component B (sodium sulfate), The relationship of A = B + C with the C component (magnesium sulfate) is desirable, and the composition ratio of B and C is preferably B: C = 3 to 7: 7 to 3. Ammonium citrate or sodium citrate is 20 to 2 of the A component.
5% is the optimum composition range, and 1/3 to 1/1 of this component
Two amounts of boric acid are suitable as an addition amount at the time of building bath. Cobalt sulfate is preferable because 1 to 5% of the component A has the effect of improving the adhesiveness. The pH is adjusted with ammonia water, the pH is used in the range of 5.4 to 6.8, and the bath temperature at room temperature is preferable.

【0018】Niめっきは上述しためっき浴を用い、陽
極板にSあるいはさらにCo成分を含有するニッケルチ
ップを使用して所要電流を流し、電気Niめっきする
が、上記Niめっき浴のNi成分の溶け出しを安定させ
るためは、電極にSを含有するエスランドニッケルチッ
プを使用することが望ましい。めっき浴槽には、ボンド
磁石形状に応じて種々浴槽を使用することができ、特に
リング状ボンド磁石の場合、バレルめっき処理が望まし
い。
For Ni plating, the above-mentioned plating bath is used, and a required current is applied to the anode plate by using a nickel chip containing S or further Co component to perform electric Ni plating. The Ni component in the Ni plating bath is melted. In order to stabilize the output, it is desirable to use an esland nickel tip containing S in the electrode. Various baths can be used in the plating bath depending on the shape of the bonded magnet, and particularly in the case of a ring-shaped bonded magnet, barrel plating treatment is desirable.

【0019】この発明において、無電解めっき方法とし
ては、Ni,Cu,Sn,Co等にB,S,Pが含有す
ることがあるめっき方が好ましく、めっき厚みは10μ
m以下が好ましく、めっき浴はpH5〜9が好ましい。
In the present invention, the electroless plating method is preferably a plating method in which B, S, and P may be contained in Ni, Cu, Sn, Co, etc., and the plating thickness is 10 μm.
m or less, and the plating bath preferably has a pH of 5 to 9.

【0020】[0020]

【作用】この発明は、R−Fe−B系ボンド磁石にガラ
ス等の無機物または樹脂を含浸処理して磁石の空孔にガ
ラス等の無機物または樹脂を含浸させることを特徴と
し、磁石の空孔が充填されているため有害なめっき液、
洗浄液の侵入が防止され、含浸ガラス等の無機物または
樹脂層の上に無電解めっきが可能で、耐食性、密着性を
著しく改善した耐食性被膜が得られる。さらに前記の含
浸処理後、バレル研磨処理、サンドブラスト処理などの
表面研磨処理を施して、表面に形成されたガラス等の無
機物または樹脂を除去することにより、磁石の空孔が封
孔された含浸効果を保持したまま表面を改質でき、その
後、直接、電解めっきあるいは無電解めっきしても、有
害なめっき液、洗浄液の侵入が防止されているため、内
部より発錆してめっき層が剥離するなどの耐食性の劣化
がなく、耐食性、密着性を著しく改善した耐食性被膜が
得られる。めっき層も無電解めっきの上に電解めっきす
る2層構成を取ることができる他、空孔が封孔されて有
害なめっき液、洗浄液の侵入が防止され、ワット浴など
の一般的でかつ成膜効率の良いめっき浴が使用できる。
The present invention is characterized in that an R-Fe-B based bonded magnet is impregnated with an inorganic substance such as glass or a resin to impregnate the holes of the magnet with the inorganic substance such as glass or a resin. Is filled with harmful plating solution,
Invasion of a cleaning liquid is prevented, electroless plating is possible on an inorganic material such as impregnated glass or a resin layer, and a corrosion resistant coating with significantly improved corrosion resistance and adhesion is obtained. Further, after the above-mentioned impregnation treatment, barrel polishing treatment, surface polishing treatment such as sandblasting treatment is performed to remove inorganic substances such as glass or resin formed on the surface, so that the pores of the magnet are sealed. The surface can be modified while retaining the above, and even if it is directly electroplated or electroless plated, harmful plating solution and cleaning solution are prevented from invading. A corrosion-resistant coating having significantly improved corrosion resistance and adhesion can be obtained without deterioration of corrosion resistance such as. The plating layer can also have a two-layer structure in which electroless plating is performed on top of electroless plating. In addition, the holes are sealed to prevent harmful plating solution and cleaning solution from entering, making it a common and effective solution for Watts baths. A plating bath with good film efficiency can be used.

【0021】[0021]

【実施例】【Example】

実施例1 超急冷法で作製したNd12at%、Fe77at%、
B6at%、Co5at%の組成からなる平均粒径15
0μmの合金粉末に、エポキシ樹脂2wt%を加えて混
練し、7Ton/cm2の圧力で圧縮成形した後、15
0℃で1時間の熱処理し、外径28×内径25×高さ5
のリング状ボンド磁石を作製した。得られたボンド磁石
の磁石の特性は、Br6.9kG、(BH)max9.
8MGOe、iHc9.5kOe、Hr3.5kOe、
密度5.95g/cm3であった。得られた磁石20ケ
を20wt%のケイ酸ナトリウム水溶液に5分間浸漬
後、150℃で1時間加熱し、水分除去、硬化処理を行
った。その後、5リットルの容積の回転バレルに一辺が
3mm程度のテトラ状メディアをバレル容積の60%投
入し、回転数20rpmにて10分間表面研磨を実施し
た。次いで、2〜3分水洗後に、バレル中で電気Niめ
っきを行った。Niめっきの膜厚は内径側20μm、外
径側30μmであった。なお、電気Niめっき条件は次
の通りである。 極電流密度 1A/dm2、 めっき時間 3.5時間 めっき液組成 硫酸Ni100g/l、硫酸ナトリウ
ム50g/l、硫酸Mg50g/l、クエン酸アンモニ
ウム25g/l、硫酸Co2g/l、ホウ酸12g/
l、 浴温20℃、pH6.6
Example 1 Nd12at%, Fe77at% produced by the ultra-quenching method,
Average particle size 15 consisting of B6 at% and Co5 at%
2 wt% of epoxy resin was added to 0 μm alloy powder, and the mixture was kneaded and compression-molded at a pressure of 7 Ton / cm 2 , then 15
Heat treated at 0 ℃ for 1 hour, outer diameter 28 × inner diameter 25 × height 5
A ring-shaped bonded magnet was manufactured. The magnet characteristics of the obtained bonded magnet were Br 6.9 kG, (BH) max 9.
8MGOe, iHc9.5kOe, Hr3.5kOe,
The density was 5.95 g / cm 3 . The obtained 20 magnets were immersed in a 20 wt% sodium silicate aqueous solution for 5 minutes and then heated at 150 ° C. for 1 hour to remove water and cure. Then, 60% of the barrel volume of tetra-shaped media having a side length of about 3 mm was put into a rotary barrel having a volume of 5 liters, and surface polishing was performed at a rotation speed of 20 rpm for 10 minutes. Then, after washing with water for 2 to 3 minutes, electric Ni plating was performed in the barrel. The film thickness of the Ni plating was 20 μm on the inner diameter side and 30 μm on the outer diameter side. The electric Ni plating conditions are as follows. Polar current density 1 A / dm 2 , plating time 3.5 hours Plating solution composition Ni sulfate 100 g / l, sodium sulfate 50 g / l, magnesium sulfate 50 g / l, ammonium citrate 25 g / l, sulfuric acid Co 2 g / l, boric acid 12 g /
1, bath temperature 20 ° C, pH 6.6

【0022】比較例 実施例1と同様方法で得たリング状ボンド磁石を浸漬処
理、研磨処理を行うことなく、直接、実施例1と同様の
電気Niめっき処理を行った。Niめっき処理後の磁石
特性を表1に示す。また、表1にはNiめっき前の磁石
の空孔率も示す。空孔率は油の中に磁石を入れ、真空
(0.1Torr以下)に10分間吸引による重量変化
より算定した含油量により測定した。なお、Hkは0.
9BrでのHcを示し、この値が低いと角形比の低下、
すなわち、めっき液による劣化の度合を表す。
Comparative Example The ring-shaped bonded magnet obtained by the same method as in Example 1 was directly subjected to the same electric Ni plating treatment as in Example 1 without dipping or polishing. Table 1 shows the magnet characteristics after the Ni plating treatment. Table 1 also shows the porosity of the magnet before Ni plating. The porosity was measured by the oil content calculated from the weight change by putting a magnet in oil and sucking it in vacuum (0.1 Torr or less) for 10 minutes. Hk is 0.
It shows Hc at 9Br, and if this value is low, the squareness ratio decreases,
That is, it represents the degree of deterioration due to the plating solution.

【0023】実施例2 実施例1において、浸漬処理、硬化処理として、純水に
水溶性アクリル樹脂成分を20%溶解した液に5分間浸
漬後、90℃で1時間加熱する処理を行った以外は、実
施例1と同様に製造したリング状ボンド磁石の特性を表
1に示す。
Example 2 In Example 1, except that the dipping treatment and the hardening treatment were performed by dipping in a liquid in which 20% of a water-soluble acrylic resin component was dissolved in pure water for 5 minutes and then heating at 90 ° C. for 1 hour. Table 1 shows the characteristics of the ring-shaped bonded magnet manufactured in the same manner as in Example 1.

【0024】実施例3 実施例1において、浸漬処理、硬化処理として、大日本
インキ製(商品名プライオーフェン)フェノール樹脂1
0%を含有するMEK溶液に5分間浸漬後、180℃で
2時間の加熱処理する処理を行った以外は、実施例1と
同様に製造したリング状ボンド磁石の特性を表1に示
す。
Example 3 Phenol resin 1 manufactured by Dainippon Ink (trade name: Praiophen) was used as the dipping treatment and the curing treatment in Example 1.
Table 1 shows the characteristics of the ring-shaped bonded magnet produced in the same manner as in Example 1 except that the MEK solution containing 0% was immersed for 5 minutes and then heat-treated at 180 ° C. for 2 hours.

【0025】実施例4 実施例1において、浸漬処理、硬化処理として、日東電
工製、ポリアニリン(商品名アニリ−ド)15%を含有
するNメチルー2ーピロリドン溶液に10分間浸漬後1
20℃に1時間加熱処理する処理を行った以外は、実施
例1と同様に製造したリング状ボンド磁石の特性を表1
に示す。
Example 4 In Example 1, as the dipping treatment and the hardening treatment, after dipping for 10 minutes in an N-methyl-2-pyrrolidone solution containing 15% of polyaniline (trade name: anilide) manufactured by Nitto Denko, 1
The characteristics of the ring-shaped bonded magnet manufactured in the same manner as in Example 1 except that the heat treatment at 20 ° C. for 1 hour was performed are shown in Table 1.
Shown in.

【0026】実施例5 実施例1において、浸漬処理、硬化処理として、油化シ
エル製常温液状の硬化剤入りエポキシ樹脂(商品名エピ
コート)に浸漬、10分間、真空含浸後、150℃で1
時間硬化処理する処理を行った以外は、実施例1と同様
に製造したリング状ボンド磁石の特性を表1に示す。
Example 5 In Example 1, the dipping treatment and the curing treatment were carried out by dipping in an epoxy resin (trade name Epicoat) manufactured by Yuka Shell Co., Ltd. containing a liquid at room temperature for 10 minutes, followed by vacuum impregnation for 1 minute at 150 ° C.
Table 1 shows the characteristics of the ring-shaped bonded magnet manufactured in the same manner as in Example 1 except that the time-hardening treatment was performed.

【0027】実施例6 実施例5と同様の方法で含浸処理、硬化処理、ついでバ
レルによる研磨処理を行った後、無電解Niめっきを3
μm行った後、電気Niめっきを行った。この場合、N
iめっき層の厚みは外径で25μm、内径で20μmで
あった。
Example 6 After performing impregnation treatment, curing treatment, and then barrel polishing treatment in the same manner as in Example 5, electroless Ni plating was applied to 3
After performing μm, electric Ni plating was performed. In this case, N
The i-plated layer had an outer diameter of 25 μm and an inner diameter of 20 μm.

【0028】以上の実施例1〜6のNiめっきを施した
リング状ボンド磁石は、フェロキシルテストによるピン
ホールは認められず、80℃×温度90%×500時間
の耐候性試験においても発錆が認められなかった。
The Ni-plated ring-shaped bonded magnets of Examples 1 to 6 above did not show pinholes by the ferroxyl test and rusted even in the weather resistance test at 80 ° C. × 90% temperature × 500 hours. Was not recognized.

【0029】[0029]

【表1】 [Table 1]

【0030】実施例7 12.5Nd−11.5Co−6B−1Ga−69Fe
(at%)なる組成のインゴットをAr中高周波溶解し
た水冷銅鋳型に鋳造することによって得た後、水素吸蔵
粉砕法により35mesh以下に粗粉砕した。その後、
水素中800℃で2時間加熱した後、800℃に保存し
たまま10-6Torrまで真空処理後、室温まで冷却し
た。この粉末を150μm以下に整粒した後、エポキシ
樹脂2wt%を加えて混練し、10kOeの磁界中で6
Ton/cm2の圧力で成形した後、150℃で1時間
熱処理することにより、8×10×12mmの異方性ボ
ンド磁石を作成した。磁石特性は、Br8.6kG、
(BH)max17.5MGOe、iHc12.5kO
e、Hk5.5kOe、密度6.3g/cm3であっ
た。この磁石を実施例5と同様の方法で含浸処理、研磨
処理を行った後、Niめっきを施した。Niめっきの膜
厚は25μmであり、Niめっき前の空孔率は0.1%
であった。また、Niめっき後、80℃×温度90%×
500時間の耐候性試験においても発錆は認められなか
った。耐候性試験後の磁石特性は、Br8.5kG、
(BH)max17.3MGOe、iHc12.4kO
e、Hk5.2kOeであり、劣化は認められなかっ
た。
Example 7 12.5Nd-11.5Co-6B-1Ga-69Fe
An ingot having a composition of (at%) was obtained by casting in a water-cooled copper mold in which high frequency melting was performed in Ar, and then roughly crushed to 35 mesh or less by a hydrogen storage crushing method. afterwards,
After heating in hydrogen at 800 ° C. for 2 hours, it was vacuum treated to 10 −6 Torr while being stored at 800 ° C., and then cooled to room temperature. After sizing this powder to 150 μm or less, 2 wt% of epoxy resin was added and kneaded, and the mixture was mixed in a magnetic field of 10 kOe for 6 minutes.
After molding at a pressure of Ton / cm 2, the mixture was heat-treated at 150 ° C. for 1 hour to prepare an anisotropic bonded magnet of 8 × 10 × 12 mm. The magnet characteristics are Br8.6kG,
(BH) max17.5MGOe, iHc12.5kO
e, Hk 5.5 kOe, and density 6.3 g / cm 3 . This magnet was impregnated and polished in the same manner as in Example 5, and then Ni-plated. The film thickness of Ni plating is 25 μm, and the porosity before Ni plating is 0.1%.
Met. Also, after Ni plating, 80 ° C × temperature 90% ×
No rust was observed even in the weather resistance test for 500 hours. The magnet characteristics after the weather resistance test were Br8.5 kG,
(BH) max17.3MGOe, iHc12.4kO
e, Hk5.2 kOe, and no deterioration was observed.

【0031】[0031]

【発明の効果】この発明は、R−Fe−B系ボンド磁石
にガラス等の無機物または樹脂を含浸処理して磁石の空
孔にガラス等の無機物または樹脂を含浸させ、さらにバ
レル研磨処理、サンドブラスト処理などの表面研磨処理
を施すことによって、含浸効果を保持したまま表面を改
質でき、その後、直接、電解めっきあるいは無電解めっ
きしても、有害なめっき液、洗浄液の侵入が防止されて
いるため、内部より発錆してめっき層が剥離するなどの
耐食性の劣化がなく、研磨処理により磁石表面が露出
し、電気伝導度が改善されるとともに表面が均一化され
、めっき膜の密着度が向上し、また、研磨行程で磁石
エッジ部のバリ除去、R加工ができるため、全面に均一
なめっき膜が形成でき、耐食性及び耐熱性がさらに向上
する。さらに、無電解めっきを下地に施すことによっ
て、小さい穴や複雑な形状に均一なめっき処理が可能と
なり、電気めっき前の電導性改善のためリング形状での
内径、外径の膜厚差が小さくなる。また、樹脂層がない
ため耐熱性が向上する効果があり、めっき膜強度、硬度
が向上したことにより、機械的破壊強度が大幅に向上
し、外観性、取扱い、搬送等に種々の利点がある。めっ
き処理にバレルめっき、一般的なワット浴等が採用で
き、量産性よく安価に提供できる。
According to the present invention, the R-Fe-B based bonded magnet is impregnated with an inorganic material such as glass or a resin to impregnate the holes of the magnet with the inorganic material such as glass or a resin, and further subjected to barrel polishing and sand blasting. By performing surface polishing treatment such as treatment, the surface can be modified while maintaining the impregnation effect, and even if it is directly electroplated or electroless plated, harmful plating solution and cleaning solution are prevented from entering. Therefore, there is no deterioration of corrosion resistance such as rusting from the inside and peeling of the plating layer, and the magnet surface is exposed by the polishing process, improving the electrical conductivity and making the surface uniform, and the adhesion of the plating film is improved. Further, since the deburring of the magnet edge portion and R processing can be performed in the polishing process, a uniform plating film can be formed on the entire surface, and the corrosion resistance and heat resistance are further improved. Furthermore, by applying electroless plating to the base, it is possible to perform uniform plating on small holes and complex shapes, and to improve the electrical conductivity before electroplating, the difference in film thickness between the inner and outer diameters in the ring shape is small. Become. In addition, since there is no resin layer, it has the effect of improving heat resistance, and because the plating film strength and hardness are improved, the mechanical fracture strength is greatly improved, and there are various advantages in appearance, handling, transportation, etc. . Barrel plating, general watt bath, etc. can be adopted for the plating treatment, and it can be provided inexpensively with good mass productivity.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C23C 26/00 B C25D 7/00 K H01F 1/053 1/08 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication C23C 26/00 B C25D 7/00 K H01F 1/053 1/08

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 R−Fe−B系ボンド磁石の空孔に含浸
させたガラス等の無機物または樹脂を有し、磁石素材自
体の裸表面に直接めっき層が形成されたことを特徴とす
るR−Fe−B系ボンド磁石。
1. An R-Fe-B based bonded magnet having an inorganic material such as glass or a resin impregnated in the pores thereof, or a resin, wherein a plating layer is directly formed on the bare surface of the magnet material itself. -Fe-B based bonded magnet.
【請求項2】 磁石の空孔率が3%以下であることを特
徴とする請求項1のR−Fe−B系ボンド磁石。
2. The R—Fe—B based bonded magnet according to claim 1, wherein the porosity of the magnet is 3% or less.
【請求項3】 R−Fe−B系ボンド磁石に樹脂を含浸
処理して磁石の空孔にガラス等の無機物または樹脂を含
浸させかつ表面に樹脂層を形成した後、ガラス等の無機
物または樹脂層上にめっき層を形成することを特徴とす
るR−Fe−B系ボンド磁石の製造方法。
3. An R-Fe-B based bonded magnet is impregnated with a resin to impregnate pores of the magnet with an inorganic material such as glass or a resin, and a resin layer is formed on the surface of the magnet. A method for producing an R-Fe-B based bonded magnet, which comprises forming a plating layer on the layer.
【請求項4】 R−Fe−B系ボンド磁石にガラス等の
無機物または樹脂を含浸処理して磁石の空孔にガラス等
の無機物または樹脂を含浸させた後、表面に形成された
ガラス等の無機物または樹脂層を除去することを特徴と
するR−Fe−B系ボンド磁石の製造方法。
4. An R-Fe-B based bonded magnet is impregnated with an inorganic substance such as glass or a resin to impregnate pores of the magnet with the inorganic substance such as glass or a resin, and then a glass or the like formed on the surface of the magnet. A method for producing an R-Fe-B based bonded magnet, which comprises removing an inorganic material or a resin layer.
【請求項5】 R−Fe−B系ボンド磁石にガラス等の
無機物または樹脂を含浸処理して磁石の空孔にガラス等
の無機物または樹脂を含浸させた後、表面に形成された
ガラス等の無機物または樹脂層を除去し、さらに磁石表
面にめっき層を形成することを特徴とするR−Fe−B
系ボンド磁石の製造方法。
5. An R-Fe-B based bonded magnet is impregnated with an inorganic material such as glass or a resin to impregnate pores of the magnet with the inorganic material such as glass or a resin, and then the glass or the like formed on the surface of the magnet. R-Fe-B characterized by removing an inorganic material or a resin layer and further forming a plating layer on the magnet surface
-Based bonded magnet manufacturing method.
【請求項6】 めっき層の形成手段が無電解めっき法で
あることを特徴とする請求項5のR−Fe−B系ボンド
磁石の製造方法。
6. The method for producing an R—Fe—B based bonded magnet according to claim 5, wherein the means for forming the plating layer is an electroless plating method.
【請求項7】 めっき層の形成手段が電解めっき法であ
ることを特徴とする請求項5のR−Fe−B系ボンド磁
石の製造方法。
7. The method for producing an R—Fe—B based bonded magnet according to claim 5, wherein the plating layer forming means is an electrolytic plating method.
【請求項8】 無電解めっき法にてめっき層を形成した
後、さらに電解めっき法にてめっき層を形成することを
特徴とする請求項5のR−Fe−B系ボンド磁石の製造
方法。
8. The method for producing an R—Fe—B based bonded magnet according to claim 5, wherein the plating layer is formed by an electroless plating method, and then the plating layer is further formed by an electrolytic plating method.
JP5352055A 1993-12-29 1993-12-29 R-fe-b based bond magnet and production thereof Pending JPH07201620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5352055A JPH07201620A (en) 1993-12-29 1993-12-29 R-fe-b based bond magnet and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5352055A JPH07201620A (en) 1993-12-29 1993-12-29 R-fe-b based bond magnet and production thereof

Publications (1)

Publication Number Publication Date
JPH07201620A true JPH07201620A (en) 1995-08-04

Family

ID=18421479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5352055A Pending JPH07201620A (en) 1993-12-29 1993-12-29 R-fe-b based bond magnet and production thereof

Country Status (1)

Country Link
JP (1) JPH07201620A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999023676A1 (en) * 1997-10-30 1999-05-14 Sumitomo Special Metals Co., Ltd. METHOD OF MANUFACTURING R-Fe-B BOND MAGNETS OF HIGH CORROSION RESISTANCE
JP2003073888A (en) * 2001-09-05 2003-03-12 Sumitomo Special Metals Co Ltd Method for preventing adhesiveness to nickel plating film from deteriorating
WO2004064086A1 (en) * 2003-01-10 2004-07-29 Neomax Co., Ltd. Oxidation-resistant rare earth based magnet powder and method for production thereof, compound for rare earth based bonded magnet, rare earth based bonded magnet and method for production thereof
JP2006148157A (en) * 2006-01-26 2006-06-08 Daido Electronics Co Ltd Rare-earth bonded magnet
KR101147571B1 (en) * 2007-03-16 2012-05-21 히타치 긴조쿠 가부시키가이샤 Iron-based soft magnetic alloy, thin ribbon of amorphous alloy, and magnetic part
JP2014120632A (en) * 2012-12-17 2014-06-30 Canon Electronics Inc Rare earth bond magnet and process of manufacturing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999023676A1 (en) * 1997-10-30 1999-05-14 Sumitomo Special Metals Co., Ltd. METHOD OF MANUFACTURING R-Fe-B BOND MAGNETS OF HIGH CORROSION RESISTANCE
US6365030B1 (en) * 1997-10-30 2002-04-02 Sumitomo Special Metals Co., Ltd. Method of manufacturing R-Fe-B bond magnets of high corrosion resistance
KR100371786B1 (en) * 1997-10-30 2003-02-12 스미토모 도큐슈 긴조쿠 가부시키가이샤 METHOD OF MANUFACTURING R-Fe-B BOND MAGNETS OF HIGH CORROSION RESISTANCE
JP2003073888A (en) * 2001-09-05 2003-03-12 Sumitomo Special Metals Co Ltd Method for preventing adhesiveness to nickel plating film from deteriorating
WO2004064086A1 (en) * 2003-01-10 2004-07-29 Neomax Co., Ltd. Oxidation-resistant rare earth based magnet powder and method for production thereof, compound for rare earth based bonded magnet, rare earth based bonded magnet and method for production thereof
JP2006148157A (en) * 2006-01-26 2006-06-08 Daido Electronics Co Ltd Rare-earth bonded magnet
KR101147571B1 (en) * 2007-03-16 2012-05-21 히타치 긴조쿠 가부시키가이샤 Iron-based soft magnetic alloy, thin ribbon of amorphous alloy, and magnetic part
JP2014120632A (en) * 2012-12-17 2014-06-30 Canon Electronics Inc Rare earth bond magnet and process of manufacturing the same

Similar Documents

Publication Publication Date Title
US7053745B2 (en) Rare earth metal-based permanent magnet, and process for producing the same
EP1028437B1 (en) HIGH CORROSION-RESISTANT R-Fe-B-BASE BONDED MAGNET AND METHOD OF MANUFACTURING THE SAME
JPH07201620A (en) R-fe-b based bond magnet and production thereof
KR100371786B1 (en) METHOD OF MANUFACTURING R-Fe-B BOND MAGNETS OF HIGH CORROSION RESISTANCE
JPH0927432A (en) Manufacture of highly anticorrosive r-fe-b bond magnet
JPH0927433A (en) Manufacture of highly acticorrosive r-fe-b bond magnet
US6423369B1 (en) Process for sealing pores in molded product, and bonded magnet with pores sealed by the process
JP2000133541A (en) Manufacture of corrosion-resistant r-fe-b bonded magnet
JP3028337B2 (en) Rare earth magnet alloy powder, method for producing the same, and polymer composite rare earth magnet using the same
WO2004064086A1 (en) Oxidation-resistant rare earth based magnet powder and method for production thereof, compound for rare earth based bonded magnet, rare earth based bonded magnet and method for production thereof
JP2003064454A (en) Corrosion resistant rare earth magnet, and production method therefor
JP3236813B2 (en) High corrosion resistance R-Fe-B bonded magnet and method for producing the same
JP3232037B2 (en) High corrosion resistance R-Fe-B bonded magnet with excellent crushing strength
JP3236816B2 (en) High corrosion resistance R-Fe-B bonded magnet and method for producing the same
JP3236815B2 (en) High corrosion resistance R-Fe-B bonded magnet and method for producing the same
JPH0613211A (en) Permanent magnet having excellent corrosion resistance and manufacture thereof
JP2631493B2 (en) Manufacturing method of corrosion resistant permanent magnet
JP3904062B2 (en) Rare earth sintered magnet
JPH0646603B2 (en) Permanent magnet having excellent corrosion resistance and method of manufacturing the same
JP2631492B2 (en) Manufacturing method of corrosion resistant permanent magnet
JP4296442B2 (en) Method for preventing hydrogen embrittlement of rare earth sintered magnets
JP2922601B2 (en) Resin molded magnet
JP3236814B2 (en) High corrosion resistance R-Fe-B-based bonded magnet and method for producing the same
JPH0545045B2 (en)
JPH0569283B2 (en)

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040414