JPH07191352A - Optical waveguide device - Google Patents
Optical waveguide deviceInfo
- Publication number
- JPH07191352A JPH07191352A JP33288493A JP33288493A JPH07191352A JP H07191352 A JPH07191352 A JP H07191352A JP 33288493 A JP33288493 A JP 33288493A JP 33288493 A JP33288493 A JP 33288493A JP H07191352 A JPH07191352 A JP H07191352A
- Authority
- JP
- Japan
- Prior art keywords
- optical
- optical waveguide
- substrate
- optical waveguides
- electro
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、光のスイッチング・分
配・干渉・変調・分岐・進路変更などの機能を有する光
導波路型デバイスに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical waveguide type device having functions such as light switching, distribution, interference, modulation, branching and diversion.
【0002】[0002]
【従来の技術】光導波路型デバイスは、光信号や導波エ
ネルギーを扱う素子であり、素子内の光導波路に入力さ
れた光線に対して制御電界を作用させ、複数の導波路間
でスイッチングや変調などの操作を行うものである。こ
の導波路間での導波エネルギーの授受や干渉の原理及び
操作を以下に概略的に述べる。2. Description of the Related Art An optical waveguide type device is an element that handles optical signals and guided energy. A control electric field is applied to a light beam input to an optical waveguide in the element to switch or switch between a plurality of waveguides. It is used to perform operations such as modulation. The principle and operation of transmission and reception of guided energy and interference between the waveguides will be briefly described below.
【0003】近接する2つの光導波路間では、両光導波
路を形成する物質の各々の伝搬定数が互いに同じ値や異
なる値となる様に変化するとき、光導波路に沿った結合
長と呼ばれる特定の距離において、一方の光導波路と他
方の光導波路との間で、導波エネルギーの移動や干渉が
生じる。この伝搬定数の値は、主に光導波路を形成する
物質の屈折率によって決定されるものである。一方、ポ
ッケルス効果やカー効果等の電気光学効果、または非線
形光学効果を示す結晶が知られている。このような結晶
は、該結晶の結晶軸のうち、特定の結晶軸に対して電界
を作用させると、その電界の方向と強さに応じて屈折率
が変化する性質を有する。即ち、外部から電界を作用さ
せることによって伝搬定数の値をコントロールできるの
である。従って、上記のような結晶を用いて基板を形成
し、該基板上に2つの光導波路を近接して形成すれば、
外部から電界を作用させて光導波路の伝搬定数を互いに
同じ値や異なる値になるよう操作することによって、光
導波路間のエネルギーの移動量や干渉の程度が制御でき
る。Between two adjacent optical waveguides, when the propagation constants of substances forming both optical waveguides change so as to have the same value or different values, a specific length called a coupling length along the optical waveguides. At a distance, movement or interference of guided energy occurs between one optical waveguide and the other optical waveguide. The value of this propagation constant is mainly determined by the refractive index of the substance forming the optical waveguide. On the other hand, crystals exhibiting electro-optical effects such as Pockels effect and Kerr effect, or nonlinear optical effects are known. Such a crystal has a property that when an electric field is applied to a specific crystal axis among the crystal axes of the crystal, the refractive index changes according to the direction and strength of the electric field. That is, the value of the propagation constant can be controlled by applying an electric field from the outside. Therefore, if a substrate is formed using the crystal as described above and two optical waveguides are formed close to each other on the substrate,
By operating an electric field from the outside so that the propagation constants of the optical waveguides have the same value or different values, the amount of energy transfer and the degree of interference between the optical waveguides can be controlled.
【0004】本明細書においては、上記のような電気光
学効果を示す性質を有する結晶を「電気光学結晶」とい
い、該電気光学結晶の結晶軸のうち電界を作用させるべ
き特定の結晶軸を「電気光学軸」といい、該電気光学軸
が所定の方向となる様に形成された電気光学結晶からな
る基板を「結晶基板」という。また、光導波路間で導波
エネルギーの移動や干渉が行われるのに必要な空間であ
って、制御電界を作用させる対象となる領域を「導波エ
ネルギー結合領域(以下、単に「結合領域」)という。
結合領域内には、制御対象となる光導波路が幅方向・深
さ方向共に含まれる。また、長手方向としては、光導波
路間で導波エネルギーの移動や干渉が行われるために必
要な特定の距離、例えば、方向性結合における結合長な
どが含まれる。さらに、光導波路間における導波エネル
ギーの一部又は全部の移動、干渉、分岐、方向変換など
を、「導波エネルギーの互いのやりとり」という。In the present specification, a crystal having the above-mentioned electro-optical effect is referred to as an "electro-optic crystal", and a specific crystal axis of the electro-optic crystal to which an electric field is applied is defined as It is called an "electro-optic axis", and a substrate made of an electro-optic crystal formed so that the electro-optic axis is in a predetermined direction is called a "crystal substrate". In addition, a space required for movement or interference of guided energy between the optical waveguides, and a region to which a control electric field is applied is referred to as a “guided energy coupling region (hereinafter, simply“ coupling region ”). Say.
An optical waveguide to be controlled is included in the coupling region in both the width direction and the depth direction. Further, the longitudinal direction includes a specific distance required for movement or interference of guided energy between the optical waveguides, for example, a coupling length in directional coupling. Furthermore, the movement, interference, branching, direction change, etc. of part or all of the guided energy between the optical waveguides is referred to as “exchange of guided energy with each other”.
【0005】上記のような電気光学効果を利用した従来
の光導波路型デバイスの構造とその問題点を以下に説明
する。ここでは、結晶基板をLi Nb O3 結晶からなる
ものとし、その表層に2つの光導波路を近接して平行に
形成した方向性結合型光スイッチを例として説明する。
Li Nb O3 結晶は、光導波路型デバイスに有用な電気
光学結晶の1つとして知られている強誘電体であり、そ
の光学軸である「Z軸」が、上述の電気光学結晶におけ
る「電気光学軸」に相当する。本例の結晶基板は、Li
Nb O3 結晶のZ軸に垂直な面(Z面)が基板の表裏面
となるように形成された基板(以下、「Z板Li Nb O
3 」という。)である。The structure of the conventional optical waveguide type device utilizing the electro-optical effect as described above and its problems will be described below. Here, the crystal substrate is made of Li Nb O 3 crystal, and a directional coupling type optical switch in which two optical waveguides are formed close to and parallel to each other on the surface layer will be described as an example.
The Li Nb O 3 crystal is a ferroelectric material known as one of the electro-optic crystals useful for the optical waveguide type device, and its optical axis “Z axis” is the “electro-optical crystal” in the electro-optic crystal described above. It corresponds to the "optical axis". The crystal substrate of this example is Li
Nb O 3 crystal substrate in a plane perpendicular to the Z axis (Z plane) is formed such that the front and back surfaces of the substrate (hereinafter, "Z plate Li Nb O
3 ”. ).
【0006】図6は、従来の光導波路型デバイスの結合
領域における光導波路に垂直な断面を模式的に示す図で
ある。同図において、aはZ板Li Nb O3 であり、そ
の表層に不純物拡散法などによって平行な光導波路1,
2が形成され、電極4,5による制御用の電界E1をこ
れらに対して各々逆方向に作用させることによって、両
光導波路1,2の伝搬定数を互いに異なる値に操作する
構成となっている。ただし、図中、sがZ軸を表現し、
矢印の示す方向がZ軸の正方向である。また、電極によ
る導波光の吸収を軽減するために、SiO2 膜などのバ
ッファ層3が保護膜として設けられる。上記構成におい
て、制御用の電界E1を光導波路1,2に対して各々逆
方向に作用させるためには、正負の平板電極4,5を基
板の同一面上に同一方向に向かって形成し、正の電極4
から負の電極5に向かう湾曲した電界E1を発生させて
いる。即ち、この構成によって電界E1は、光導波路1
のZ軸に対しては+Z方向、光導波路2のZ軸に対して
は−Z方向というように、各々の光導波路のZ軸に対し
ては近似的に逆方向に作用することになる。FIG. 6 is a diagram schematically showing a cross section perpendicular to the optical waveguide in the coupling region of the conventional optical waveguide type device. In the figure, a is Z plate Li Nb O 3, the optical waveguide 1 in parallel, such as by an impurity diffusion method to the surface layer,
2 is formed, and the electric fields E1 for control by the electrodes 4 and 5 are applied to these in opposite directions, whereby the propagation constants of the optical waveguides 1 and 2 are controlled to different values. . However, in the figure, s represents the Z axis,
The direction indicated by the arrow is the positive direction of the Z axis. A buffer layer 3 such as a SiO 2 film is provided as a protective film in order to reduce absorption of guided light by the electrodes. In the above structure, in order to apply the control electric field E1 to the optical waveguides 1 and 2 in opposite directions, positive and negative plate electrodes 4 and 5 are formed on the same surface of the substrate in the same direction, Positive electrode 4
To generate a curved electric field E1 from the negative electrode 5 to the negative electrode 5. That is, with this configuration, the electric field E1 is applied to the optical waveguide 1
The Z axis of the optical waveguide 2 acts in the + Z direction, the Z axis of the optical waveguide 2 operates in the −Z direction, and the optical waveguide 2 acts approximately in the opposite direction to the Z axis.
【0007】[0007]
【発明が解決しようとする課題】ところがこのような従
来の構成では、先ず、各々の光導波路のZ軸方向に対す
る電界E1の作用方向は、あくまで近似的に逆方向であ
って、完全な逆方向に比べて電界作用のロスが大きい。
また、両光導波路に電界を最も効果的に作用させるため
には、各光導波路に電界E1の密な部分が集中するよう
に、光導波路の各中心付近の最適位置の上に電極4,5
の各エッジ部分を一致させるなど精密な位置合わせが必
要となる。微細な光導波路に対するこのような高精度な
位置合わせは極めて困難であり、生産性向上の障害とな
っている。さらに、正負の両電極4,5が結晶基板aの
同一面上に並んで形成される構成であるために、両電極
4,5の間に存在するバッファ層3内及び結晶基板a内
での電荷移動により動作電圧が変動する現象(DCドリ
フト)が生じ、実用上大きな問題となっている。However, in such a conventional configuration, first, the action direction of the electric field E1 with respect to the Z-axis direction of each optical waveguide is merely approximately the opposite direction, and the complete opposite direction. The loss of electric field action is larger than that of.
Further, in order to make the electric field act most effectively on both optical waveguides, the electrodes 4, 5 are placed on the optimum positions near the respective centers of the optical waveguides so that the dense portions of the electric field E1 are concentrated on the respective optical waveguides.
Precise alignment is required, such as matching the edges of each. Such highly accurate alignment with a fine optical waveguide is extremely difficult, which is an obstacle to improving productivity. Furthermore, since both the positive and negative electrodes 4 and 5 are formed side by side on the same surface of the crystal substrate a, the buffer layer 3 existing between the electrodes 4 and 5 and the crystal substrate a are not formed. A phenomenon (DC drift) in which the operating voltage fluctuates due to charge transfer is a serious problem in practical use.
【0008】本発明の目的は上記問題を解消し、簡単な
電極構造で、光導波路と電極との位置合わせに従来のよ
うな精密さを必要とせず、低電圧で効果的な導波エネル
ギーの制御が可能な、光スイッチや光変調器などの光導
波路型デバイスを提供することである。The object of the present invention is to solve the above problems, to provide a simple electrode structure, which does not require precision as in the prior art for the alignment of the optical waveguide and the electrode, and which can provide effective waveguide energy at a low voltage. (EN) Provided are controllable optical waveguide devices such as optical switches and optical modulators.
【0009】[0009]
【課題を解決するための手段】本発明者は、導波エネル
ギーをやりとりする関係にある光導波路の各々の電気光
学軸を、互いに逆方向の関係となるよう形成することに
よって、対向する平行な平板電極間に形成されるような
直線的で一様な平行電界を、全ての光導波路に同様に作
用させるだけで、導波エネルギーのやりとりを効果的に
制御できることを見出し本発明を完成した。即ち、本発
明の光導波路型デバイスは、結晶基板に複数の光導波路
が形成されてなる光導波路型デバイスであって、該複数
の光導波路は結晶基板の結合領域内において導波エネル
ギーを互いにやりとりする1対の光導波路グループを形
成し、かつ、一方の光導波路グループに属する光導波路
の上記特定の結晶軸と他方の光導波路グループに属する
光導波路の上記特定の結晶軸とは互いに逆方向となるよ
うに形成され、平行で一様な電界が結合領域内の全ての
光導波路に同様に作用するよう正負の電極が結合領域を
該電極間に含んで配設される構成としてなるものであ
る。SUMMARY OF THE INVENTION The inventor has found that the electro-optic axes of optical waveguides that are in a relationship of exchanging guided energies are formed so as to be in an opposite relationship to each other so that they are parallel to each other. The present invention has been completed by finding that the exchange of waveguide energy can be effectively controlled only by applying a linear and uniform parallel electric field formed between plate electrodes to all optical waveguides in the same manner. That is, the optical waveguide type device of the present invention is an optical waveguide type device in which a plurality of optical waveguides are formed on a crystal substrate, and the plurality of optical waveguides exchange waveguide energy with each other in a coupling region of the crystal substrate. Forming a pair of optical waveguide groups, and the specific crystal axes of the optical waveguides belonging to one optical waveguide group and the specific crystal axes of the optical waveguides belonging to the other optical waveguide group are opposite to each other. The positive and negative electrodes are arranged so that the parallel and uniform electric field acts on all the optical waveguides in the coupling region in the same manner. .
【0010】[0010]
【作用】2つの光導波路の電気光学軸の方向を、互いに
逆方向となるように形成することによって、簡単な構造
の対向電極間に生じる直線的で一様な電界を、これらの
光導波路に同様に作用させるだけで、電気光学軸の方向
が等しい2つの光導波路に各々逆方向の電界が作用す
る。By forming the two optical waveguides so that the electro-optical axes thereof are opposite to each other, a linear and uniform electric field generated between opposing electrodes having a simple structure is applied to these optical waveguides. By just acting in the same manner, electric fields in opposite directions act on the two optical waveguides having the same electro-optic axis direction.
【0011】本発明が対象とする結晶基板上の光導波路
の数は複数である。光導波路が機械的に分離されない一
体的な状態であっても、電気光学効果等によって光導波
路内に光線が偏在し複数の光導波路が集合しているかの
ような場合は、これを複数の光導波路という。例えば、
Y字分岐における分岐前の部分や、X字交差における交
差部分などは、光導波路が一体となっていても2つの光
導波路である。また、光導波路の入口と出口が各々1つ
であっても、制御の対象となる領域において複数に分岐
するものであるならば、これも複数の光導波路である。The number of optical waveguides on the crystal substrate targeted by the present invention is plural. Even if the optical waveguides are in an integrated state in which they are not mechanically separated, if the light beams are unevenly distributed in the optical waveguides due to the electro-optical effect, etc. It is called a waveguide. For example,
A portion before Y-branching and an intersection at X-shaped intersection are two optical waveguides even if the optical waveguides are integrated. Further, even if each of the optical waveguide has one inlet and one outlet, this is also a plurality of optical waveguides as long as it is branched into a plurality of regions to be controlled.
【0012】導波エネルギーのやりとりは光導波路間で
行われるが、本発明が制御の対象とする導波エネルギー
のやりとりは、光導波路がどれほど多数形成されても、
1対の光導波路グループのいずれかに属するものとし、
この1対の光導波路グループ間で導波エネルギーが互い
にやりとりされるものとして考える。例えば、光導波路
が5本の場合は、1対4,2対3などの比をもって1対
の光導波路グループに別れ、該グループ間で導波エネル
ギーをやりとりするように制御する。また、結晶基板が
十分に広い場合や特殊な効果を得る目的で、結合領域内
に1対の光導波路グループを複数組形成させてもよい。
以下、便宜上、2つの光導波路について説明する。Although the waveguide energy is exchanged between the optical waveguides, the waveguide energy exchange controlled by the present invention is performed regardless of how many optical waveguides are formed.
Be one of a pair of optical waveguide groups,
It is assumed that the waveguide energy is exchanged between the pair of optical waveguide groups. For example, when there are five optical waveguides, they are divided into a pair of optical waveguide groups with a ratio of 1: 4, 2: 3, etc., and guided energy is controlled to be exchanged between the groups. Further, when the crystal substrate is sufficiently wide or for the purpose of obtaining a special effect, a plurality of pairs of optical waveguide groups may be formed in the coupling region.
Hereinafter, for convenience, the two optical waveguides will be described.
【0013】反転すべき光導波路の電気光学軸の方向
は、光導波路が2つの場合は互いに逆方向であるが、光
導波路が3つ以上の場合は、上記のように光導波路が属
する同じ光導波路グループ内では全て同一方向であり、
2つのグループ間で逆方向となるように形成される。換
言すれば、複数の光導波路が1対の光導波路グループの
どちらに属するかは、電気光学軸の方向によって知るこ
とができる。The directions of the electro-optical axes of the optical waveguides to be inverted are opposite to each other when there are two optical waveguides, but when there are three or more optical waveguides, the same optical waveguides belong to the optical waveguides as described above. All are in the same direction within the waveguide group,
The two groups are formed in opposite directions. In other words, which of the pair of optical waveguide groups the plurality of optical waveguides belong to can be known from the direction of the electro-optical axis.
【0014】正負の電極は、平行で一様な電界を作用さ
せ得るものであればどの様なものであってもよいが、特
に平板状の電極が好ましく、これらを平行に対向して配
設することによって、平行で一様な電界が電極間に容易
に形成される。正負の電極の面積は、導波路内を伝搬す
る光の電磁界と制御電界とのオーバラップが最も大きく
なるように該電極面積を設定することが好ましい。正負
の電極の配設位置は、電極間に結合領域を有し、結合領
域内の全ての光導波路に対して、平行で一様な電界が同
様に作用しうる位置に配設する。正負の電極の配設方向
は、 (1) 結晶基板の基板面拡張方向。 (2) 結晶基板の基板面に垂直な方向。 (3) 結晶基板の基板面に対して任意の角度をなす方向
(特殊な結晶軸や特殊な効果を目的とする場合)。 等が例示され、この方向に正負の電極が対向して配設さ
れる。The positive and negative electrodes may be of any type as long as they can apply a parallel and uniform electric field. However, flat plate electrodes are particularly preferable, and these electrodes are arranged in parallel to each other. By doing so, a parallel and uniform electric field is easily formed between the electrodes. The area of the positive and negative electrodes is preferably set such that the overlap between the electromagnetic field of light propagating in the waveguide and the control electric field is maximized. The positive and negative electrodes have a coupling region between the electrodes and are disposed at positions where a parallel and uniform electric field can act similarly on all the optical waveguides in the coupling region. The positive and negative electrodes are arranged in the following directions: (1) The crystal plane expansion direction of the crystal substrate. (2) The direction perpendicular to the substrate surface of the crystal substrate. (3) A direction that forms an arbitrary angle with the substrate surface of the crystal substrate (for the purpose of special crystal axis or special effect). Etc. are exemplified, and positive and negative electrodes are arranged facing each other in this direction.
【0015】[0015]
【実施例】以下、本発明を実施例にもとづき、より具体
的に説明する。本実施例では、本発明による光導波路型
デバイスの一例として、Z板Li NbO3 結晶基板の表
層に2つの光導波路を形成し、導波エネルギーの種々の
やりとりを制御する構成を示す。図1は、本発明による
光導波路型デバイスの結合領域における光導波路に垂直
な断面を模式的に示す図である。同図に示すように、Z
板Li Nb O3 からなる結晶基板aの表層に光導波路
1,2が形成され、その上にバッファ層3が一種の保護
層として形成され、両光導波路を形成する結晶のZ軸方
向は互いに逆方向となるように形成され、平行で一様な
電界Eが結合領域全体に対して基板面に垂直方向に作用
するように、対向する平行で平板な正負の電極4,5が
結晶基板aの表裏に配設される構成となっている。ま
た、同図の例では、矢印sが電気光学軸であるZ軸を意
味し、該矢印の示す方向がZ軸の正方向である。このよ
うな構成によって、対向する平板電極4,5間に形成さ
れる直線的で一様な平行電界Eを作用させるだけで、両
光導波路1,2のZ軸に対しては、各々逆方向に作用す
ることになる。EXAMPLES The present invention will be described more specifically below based on examples. In this example, as an example of the optical waveguide type device according to the present invention, a configuration is shown in which two optical waveguides are formed in the surface layer of a Z plate Li NbO 3 crystal substrate to control various exchanges of waveguide energy. FIG. 1 is a diagram schematically showing a cross section perpendicular to an optical waveguide in a coupling region of an optical waveguide type device according to the present invention. As shown in the figure, Z
Optical waveguides 1 and 2 are formed on the surface layer of a crystal substrate a made of a plate Li Nb O 3 , and a buffer layer 3 is formed thereon as a kind of protective layer. The Z-axis directions of the crystals forming both optical waveguides are mutually The parallel and flat positive and negative electrodes 4 and 5 facing each other are formed so that the parallel and uniform electric field E acts in the direction opposite to the entire coupling region in the direction perpendicular to the substrate surface. It is configured to be arranged on the front and back. Further, in the example of the figure, the arrow s means the Z axis which is the electro-optic axis, and the direction indicated by the arrow is the positive direction of the Z axis. With such a configuration, a linear and uniform parallel electric field E formed between the flat plate electrodes 4 and 5 facing each other is merely applied, and the opposite directions with respect to the Z axes of the optical waveguides 1 and 2 are obtained. Will act on.
【0016】上記結晶基板に用いられる材料としては、
外部からの電圧,電界の作用によって屈折率が変化する
材料であればどのようなものであってもよく、Li Nb
O3の他に、Li Ta O3 ,KTi OPO4 等の無機光
学材料や、ポールドポリマ等の有機光学材料などが例示
される。特に、Li Nb O3 やLi Ta O3 などの強誘
電体は、著しい電気光学効果を示すものであって、本発
明の光導波路型デバイスに有用な基板材料である。結晶
基板の形成方法は、気相・液相のエピタキシャル成長法
など、材料に最も適した公知の結晶成長法を用いればよ
い。The material used for the crystal substrate is
Any material can be used as long as it has a refractive index that is changed by the action of an external voltage or electric field.
In addition to O 3, and Li Ta O 3, inorganic optical materials such KTi OPO 4, and organic optical materials such as Porudoporima are exemplified. In particular, ferroelectric materials such as Li Nb O 3 and Li Ta O 3 exhibit a remarkable electro-optical effect and are useful substrate materials for the optical waveguide device of the present invention. As a method of forming the crystal substrate, a known crystal growth method most suitable for the material such as a vapor phase / liquid phase epitaxial growth method may be used.
【0017】結晶基板に光導波路を形成する方法は公知
の方法でよい。例えば、結晶基板に対してTi等を拡散
する方法(不純物拡散法)やイオン交換法等による結晶
基板中の所定部分の屈折率を任意に変更して光導波路と
する方法や、光導波路とする部分だけに異なる成分組成
の結晶を成長させる方法などが挙げられる。A known method may be used to form the optical waveguide on the crystal substrate. For example, a method of diffusing Ti or the like into a crystal substrate (impurity diffusion method), a method of arbitrarily changing the refractive index of a predetermined portion in the crystal substrate by an ion exchange method or the like to form an optical waveguide, or an optical waveguide Examples include a method of growing a crystal having a different component composition only in a part.
【0018】結晶基板に形成される光導波路の態様とし
ては、上記例のように複数の光導波路が基板の同一面に
並ぶような態様の他、光導波路が層状に重なって形成さ
れ、異なる層間で導波エネルギーをやりとりする態様、
さらに、これら複合された態様などが挙げられる。これ
らの態様の中で特に、2つの光導波路が同一面上に並ぶ
ような場合の種々の導波路パターンを図3(a)〜
(d)に示す。同図において、一点鎖線で囲まれた領域
fが結合領域であり、電気光学軸が互いに逆方向である
ことをハッチングで区別することによって示している。
図3(a)は方向性結合器の例であり、光導波路1,2
の間で導波エネルギーのスイッチングや分配等の機能を
有する。図3(b)は干渉器の例であり、光導波路1,
2の間で波動の干渉を生じさせ、フィルター等の機能を
有する。これら図3(a)(b)では、両光導波路が平
行の場合を示しているが、意図的にある角度を設ける場
合もある。図3(c)は分岐の例、図3(d)は交差の
例であり、どちらも導波エネルギーの方向変換や分配等
の機能を有する。As the mode of the optical waveguide formed on the crystal substrate, in addition to the mode in which a plurality of optical waveguides are arranged on the same surface of the substrate as in the above-mentioned example, the optical waveguides are formed in a layered manner to form different layers. Mode of exchanging guided wave energy with
Furthermore, the combined aspect etc. are mentioned. Of these modes, in particular, various waveguide patterns in the case where two optical waveguides are arranged on the same plane are shown in FIGS.
It shows in (d). In the same figure, the region f surrounded by the alternate long and short dash line is the coupling region, and it is indicated by hatching that the electro-optic axes are in opposite directions.
FIG. 3A shows an example of the directional coupler, which includes the optical waveguides 1 and 2.
It has functions such as switching and distribution of guided wave energy. FIG. 3B shows an example of the interferometer, which includes the optical waveguides 1,
It causes wave interference between the two and has a function of a filter or the like. Although FIGS. 3A and 3B show the case where both optical waveguides are parallel to each other, a certain angle may be intentionally set. FIG. 3C shows an example of branching, and FIG. 3D shows an example of crossing, both of which have functions such as direction conversion and distribution of guided energy.
【0019】電気光学軸は、電気光学結晶ごとに固有の
性質を有するものであり、上述のように、電気光学軸に
作用する電界の方向と強さに応じて、結晶の屈折率は種
々の変化を示す。上記電気光学材料が有する種々の電気
光学軸の中でも、Li Nb O3 やLi Ta O3 などの強
誘電体におけるZ軸は最も有用な電気光学軸の例であ
る。この場合のZ軸は屈折率楕円体の主軸に相当し、外
部から作用させる電界に対して最大の電気光学効果を与
え、また、結晶の分極方向と一致するものである。この
ような電気光学軸を有する結晶としては、他にKTiO
PO4 などが例示される。The electro-optic axis has a unique property for each electro-optic crystal. As described above, the refractive index of the crystal varies depending on the direction and strength of the electric field acting on the electro-optic axis. Show changes. Among various electro-optic axes possessed by the electro-optic material, the Z-axis in ferroelectrics such as Li Nb O 3 and Li Ta O 3 is an example of the most useful electro-optic axis. The Z axis in this case corresponds to the main axis of the index ellipsoid, exerts the maximum electro-optical effect on the electric field applied from the outside, and coincides with the polarization direction of the crystal. Another crystal having such an electro-optic axis is KTiO.
An example is PO 4 .
【0020】電気光学軸を反転する範囲は、結合領域に
おいて少なくとも一方の光導波路を含む範囲であればよ
いが、制御電界を全体に作用させたときに、周囲の結晶
からの導波エネルギーのやりとりを阻害するような悪影
響を抑制するため、該光導波路周囲の結晶も光導波路と
同じ方向となるよう反転することが好ましい。例えば、
図1のように、電気光学軸sが結晶基板に垂直である場
合、光導波路2側の電気光学軸を反転するのであれば、
幅方向には光導波路2を適度に包含し、深さ方向には基
板の表から裏まで全て反転するのが最も好ましい。The range in which the electro-optic axis is reversed may be a range including at least one optical waveguide in the coupling region, but when a control electric field is applied to the entire region, the waveguide energy is exchanged from surrounding crystals. In order to suppress an adverse effect that hinders the optical waveguide, it is preferable that the crystal around the optical waveguide is also inverted so as to be in the same direction as the optical waveguide. For example,
As shown in FIG. 1, when the electro-optical axis s is perpendicular to the crystal substrate, if the electro-optical axis on the optical waveguide 2 side is reversed,
Most preferably, the optical waveguide 2 is appropriately included in the width direction, and all the front and back sides of the substrate are inverted in the depth direction.
【0021】結晶基板面に対する電気光学軸の方向と光
導波路の方向とは、結晶の種類によって種々の組み合わ
せが可能である。図4は、結晶基板の電気光学軸方向
と、光導波路の態様との組み合わせを示す図である。図
中、矢印で示す方向が電気光学軸の正の方向である。図
4(a)は、図1と同じ構成であって、電気光学軸が結
晶基板面に垂直の場合である。図4(b)は、電気光学
軸が結晶基板の平面拡張方向と同じ場合であって、か
つ、光導波路の伝送方向に対して垂直方向の場合であ
る。図4(c)は、電気光学軸が結晶基板の平面拡張方
向と同じ場合であって、かつ、光導波路の伝送方向と同
じ場合である。これらは、光導波路が結晶基板の同一面
に形成される場合の例であるが、光導波路が層状に形成
される場合であっても、電気光学軸方向と光導波路との
関係は同様である。Various combinations of the direction of the electro-optic axis with respect to the surface of the crystal substrate and the direction of the optical waveguide are possible depending on the type of crystal. FIG. 4 is a diagram showing a combination of the electro-optical axis direction of the crystal substrate and the mode of the optical waveguide. In the figure, the direction indicated by the arrow is the positive direction of the electro-optic axis. FIG. 4A shows the case where the electro-optic axis is perpendicular to the crystal substrate surface, which has the same configuration as that in FIG. FIG. 4B shows a case where the electro-optic axis is the same as the plane expansion direction of the crystal substrate and is also perpendicular to the transmission direction of the optical waveguide. FIG. 4C shows the case where the electro-optic axis is the same as the plane expansion direction of the crystal substrate and the same as the transmission direction of the optical waveguide. These are examples of the case where the optical waveguide is formed on the same surface of the crystal substrate, but the relationship between the electro-optical axis direction and the optical waveguide is the same even when the optical waveguide is formed in layers. .
【0022】電気光学軸の方向を互いに逆方向にする方
法としては、以下の様に種々の方法が例示されるが、上
記Li Nb O3 やLi Ta O3 等のような強誘電体を用
いた結晶基板においては、2つの光導波路のうちの一方
の光導波路の結晶構造を分極反転構造とする方法が有用
である。強誘電体結晶における分極反転構造とは、強誘
電体結晶が有する自発分極の方向を外部から電界,熱,
圧力などの力を作用させ、反転させた構造である。例え
ば、Z板Li Nb O3 結晶のZ軸に関する分極反転構造
は、+Z面側に電極を設け基板の−Z面から適当な条件
下で電子ビーム照射を行うことによって得られる。また
この場合、基板表層だけでなく基板の裏面までを貫く深
い反転構造の形成が可能である。他の分極反転方法とし
ては、Li Nb O3 結晶基板にTi イオンを拡散させて
加熱処理する方法、基板の表・裏面に電極を配置し、高
圧電源などにより電界を与える方法、Si O2 膜を装荷
し熱処理する方法等が例示される。また、上記強誘電体
だけでなく、本発明に有用な全ての結晶基板の電気光学
軸を互いに反転する方法として、先ず結晶基板を機械的
に分割し、電気光学軸の方向が基板に垂直であるならば
他方の表裏を反転し、また、電気光学軸の方向が基板面
の拡張方向であるならば他方の軸方向を180度回転し
て再度接合する方法などが例示される。以上の例におい
て、光導波路の形成は、電気光学軸の反転に対して先ま
たは後のどちらに行なってもよい。As a method of making the directions of the electro-optic axes opposite to each other, various methods can be exemplified as follows. Ferroelectric materials such as Li Nb O 3 and Li Ta O 3 are used. In such a crystal substrate, a method in which the crystal structure of one of the two optical waveguides is a polarization inversion structure is useful. The polarization reversal structure in a ferroelectric crystal means that the direction of spontaneous polarization of the ferroelectric crystal is controlled by an external electric field, heat,
It is a structure that is reversed by applying force such as pressure. For example, the polarization inversion structure in the Z-axis of the Z-plate Li Nb O 3 crystal is obtained by performing electron beam irradiation under appropriate conditions from the -Z surface of the substrate provided with an electrode on the + Z side. Further, in this case, it is possible to form a deep inversion structure that penetrates not only the surface layer of the substrate but also the back surface of the substrate. Other polarization inversion method, Li Nb O 3 how crystal substrate by diffusing Ti ions heat treatment, the electrodes are arranged in front and back surface of the substrate, a method of applying an electric field due to the high voltage power source, Si O 2 film A method of loading and heat-treating is exemplified. Further, as a method of reversing the electro-optical axes of not only the above-mentioned ferroelectrics but all the crystal substrates useful in the present invention, first the crystal substrates are mechanically divided so that the electro-optical axes are perpendicular to the substrates. Examples include a method of reversing the other side if any, and a method of rotating the other axis direction by 180 degrees and joining again if the direction of the electro-optic axis is the extension direction of the substrate surface. In the above example, the optical waveguide may be formed either before or after the reversal of the electro-optical axis.
【0023】電極の配設位置は、平行で一様な電界が結
合領域内の全ての光導波路に同様に作用するように、結
晶基板の基板面拡張方向、基板面に垂直な方向、又はこ
れらの中間的な方向等に対向して配設される。図5は、
光導波路の形成方向と電極の配設方向との組み合わせ例
を示す模式図である。図5(a)は、同一基板面に形成
される2つの光導波路に対して、電極が基板面に垂直な
方向、即ち、基板の表裏に配置される例である。図5
(b)は、電極が結晶基板の基板面拡張方向、即ち、基
板の任意の両端縁に配置される例である。The positions of the electrodes are arranged so that a parallel and uniform electric field acts on all the optical waveguides in the coupling region in the same manner, in the substrate surface extension direction of the crystal substrate, in the direction perpendicular to the substrate surface, or in these directions. Are arranged so as to face each other in an intermediate direction. Figure 5
It is a schematic diagram which shows the example of a combination of the formation direction of an optical waveguide, and the arrangement direction of an electrode. FIG. 5A is an example in which electrodes are arranged in a direction perpendicular to the substrate surface, that is, on the front and back surfaces of the substrate, with respect to two optical waveguides formed on the same substrate surface. Figure 5
(B) is an example in which the electrodes are arranged in the substrate surface expansion direction of the crystal substrate, that is, at both end edges of the substrate.
【0024】正負の電極の面積は、前記したように、導
波路内を伝搬する光の電磁界と制御電界とのオーバラッ
プが最も大きくなるように該電極面積を設定することが
好ましい。しかし実使用上においては、無限大に広がる
光の電磁界全体のうち、光導波路の中心軸付近の特定の
領域内に光の電磁界の有効な部分が集中していると考
え、この部分の結晶基板に対してのみ電界を集中的に作
用させることが効果的な場合がある。図2は、このよう
な光導波路の中心軸付近の特定の部分に対して電界を集
中させる電極の構造例を模式的に示す図である。同図は
図1と同様、光導波路型デバイスの結合領域における光
導波路に垂直な断面を示したものであり、電極構造以外
は全て同様である。同図に示すように、光導波路1上に
は電極4a、光導波路2上には電極4b(本例ではこれ
らは正極)が設けられ、これらの電極4a,4bに各々
対応するように異極の電極5a,5bが基板裏面に配設
される構成となっている。上記電極の構成によって、少
ない電力で最も効果的に導波エネルギーを制御しうるデ
バイス構造の1つとなり得る。As described above, the area of the positive and negative electrodes is preferably set so that the overlap between the electromagnetic field of the light propagating in the waveguide and the control electric field is maximized. However, in actual use, it is considered that the effective part of the electromagnetic field of light is concentrated in a specific area near the central axis of the optical waveguide in the entire electromagnetic field of light that spreads infinitely. It may be effective to concentrate the electric field only on the crystal substrate. FIG. 2 is a diagram schematically showing a structural example of an electrode that concentrates an electric field on a specific portion near the central axis of such an optical waveguide. Similar to FIG. 1, this figure shows a cross section perpendicular to the optical waveguide in the coupling region of the optical waveguide type device, and is the same except for the electrode structure. As shown in the figure, an electrode 4a is provided on the optical waveguide 1, and an electrode 4b (these are positive electrodes in this example) are provided on the optical waveguide 2, and different electrodes are provided so as to correspond to the electrodes 4a and 4b, respectively. The electrodes 5a and 5b are arranged on the back surface of the substrate. The above electrode configuration can be one of the device structures capable of controlling the guided energy most effectively with a small electric power.
【0025】上記、図5に示す光導波路の形成方向と電
極の配設方向との組み合わせに対して、さらに光導波路
が層状に形成される場合を加えて、これら各々に対し
て、図4(a)〜(c)に示す電気光学軸方向の組み合
わせが存在する。さらには、特殊な効果を目的として、
これらの組み合わせの複合、中間的な角度,構造が存在
する。これら組み合わせの決定には、電気光学結晶及び
電気光学軸の性質、素子に求められる形状,機能などが
参照される。In addition to the above-described combination of the optical waveguide forming direction and the electrode arranging direction shown in FIG. 5, the case where the optical waveguide is formed in a layered form is added. There are combinations of electro-optical axis directions shown in a) to (c). Furthermore, for the purpose of special effects,
There are compound, intermediate angles and structures of these combinations. To determine these combinations, the properties of the electro-optic crystal and the electro-optic axis, the shape and function required of the device, etc. are referred to.
【0026】〔性能比較実験〕本発明による光導波路型
デバイスと従来の光導波路型デバイスとを比較するた
め、Z板Li Nb O3 結晶基板上に方向性結合器を形成
し、動作を確認した。本発明による光導波路型デバイス
のサンプルとして図1に示すような構成のものを用い、
また、従来のサンプルとして図6に示す構成のものを用
いた。上記2つの方向性結合器を動作させ、同様のスイ
ッチング効果を得るために要した印加電圧を比較したと
ころ、本発明のデバイスが従来のデバイスの約75%の
印加電圧で同様の動作を示すことが確認できた。また、
これらサンプルを製作するにあたっては、従来のサンプ
ルが電極位置調整に長時間を要したのに対して、本発明
のサンプルでは電極の位置調整が従来ほどの精密さを必
要としない構造であるために、短時間で製作を完了し
た。[Performance Comparison Experiment] In order to compare the optical waveguide type device according to the present invention with a conventional optical waveguide type device, a directional coupler was formed on a Z plate Li Nb O 3 crystal substrate to confirm the operation. . As the sample of the optical waveguide type device according to the present invention, the one having the structure shown in FIG. 1 is used,
A conventional sample having the structure shown in FIG. 6 was used. Comparing the applied voltages required to operate the above two directional couplers and obtain the same switching effect, it is found that the device of the present invention shows similar operation at the applied voltage of about 75% of the conventional device. Was confirmed. Also,
In producing these samples, the conventional sample required a long time for the electrode position adjustment, whereas the sample of the present invention has a structure in which the electrode position adjustment does not require the precision as high as the conventional one. The production was completed in a short time.
【0027】[0027]
【発明の効果】本発明の光導波路型デバイスは、以下の
効果を奏する。簡単な構造の対向電極間に生じるような
直線的で一様な平行電界を2つの光導波路に同様に作用
させるだけで、これら光導波路間に伝搬定数差を生じさ
せ得るので、光導波路と電極との位置合わせ工程におい
て従来ほどの精密さを必要とせず、生産性が向上する。
また、従来の湾曲した制御電界が電気光学軸に対して角
度をもって作用していたのに比べて、本発明の構造では
制御電界の方向と電気光学軸の方向とが一致するため
に、制御電界が電気光学軸に対して最も効率よく作用
し、より低い電圧での動作が可能となる。さらに、電極
構造が誘電体を間に挟む対向構造となったことで、従来
問題となっていた電極間に生じるDCドリフト現象を抑
制することができる。The optical waveguide device of the present invention has the following effects. Since it is possible to cause a difference in propagation constant between the optical waveguides by simply applying a linear and uniform parallel electric field generated between the opposing electrodes having a simple structure to the two optical waveguides in the same manner, The precision of the conventional alignment process is not required, and the productivity is improved.
Further, in contrast to the conventional curved control electric field acting at an angle with respect to the electro-optic axis, in the structure of the present invention, since the direction of the control electric field and the direction of the electro-optic axis coincide, the control electric field Acts most efficiently on the electro-optic axis, allowing operation at lower voltages. Furthermore, since the electrode structure has a facing structure with a dielectric material sandwiched between them, it is possible to suppress the DC drift phenomenon that occurs between the electrodes, which has been a problem in the related art.
【図1】本発明による光導波路型デバイスの結合領域に
おける光導波路に垂直な断面を模式的に示す図である。FIG. 1 is a diagram schematically showing a cross section perpendicular to an optical waveguide in a coupling region of an optical waveguide type device according to the present invention.
【図2】光導波路の中心軸付近の特定の部分に対して電
界を集中させる電極の構造例を模式的に示す図である。FIG. 2 is a diagram schematically showing a structural example of an electrode that concentrates an electric field on a specific portion near the central axis of an optical waveguide.
【図3】本発明による光導波路型デバイスにおいて、2
つの光導波路が同一面上に形成される場合の種々の構成
例を模式的に示す図である。FIG. 3 shows an optical waveguide device according to the present invention, in which 2
It is a figure which shows typically various structural examples in case two optical waveguides are formed on the same surface.
【図4】本発明による光導波路型デバイスにおいて、結
晶基板の電気光学軸方向と、電極の配設方向との組み合
わせ例を示す模式図である。FIG. 4 is a schematic diagram showing an example of a combination of an electro-optical axis direction of a crystal substrate and an arrangement direction of electrodes in an optical waveguide device according to the present invention.
【図5】本発明による光導波路型デバイスにおいて、結
晶基板に対する光導波路の形成方向と、電極の配設方向
の組み合わせ例を示す模式図である。FIG. 5 is a schematic view showing an example of a combination of an optical waveguide forming direction with respect to a crystal substrate and an electrode arranging direction in the optical waveguide type device according to the present invention.
【図6】従来の光導波路型デバイスにおいて、導波エネ
ルギーの結合部における光導波路に垂直な断面を模式的
に示す図である。FIG. 6 is a diagram schematically showing a cross section of a conventional optical waveguide type device, which is perpendicular to the optical waveguide in a coupling portion of guided wave energy.
a 結晶基板 s 電気光学軸 E 電界 1 光導波路 2 光導波路 4 正の電極 5 負の電極 a crystal substrate s electro-optic axis E electric field 1 optical waveguide 2 optical waveguide 4 positive electrode 5 negative electrode
Claims (3)
て屈折率が変化する電気光学結晶からなる基板に複数の
光導波路が形成されてなる光導波路型デバイスであっ
て、該複数の光導波路は基板の導波エネルギー結合領域
内において導波エネルギーを互いにやりとりする1対の
光導波路グループを形成し、かつ、一方の光導波路グル
ープに属する光導波路の上記特定の結晶軸と他方の光導
波路グループに属する光導波路の上記特定の結晶軸とは
互いに逆方向となるように形成され、平行で一様な電界
が導波エネルギー結合領域内の全ての光導波路に同様に
作用するよう正負の電極が導波エネルギー結合領域を電
極間に有して配設される構成としてなる光導波路型デバ
イス。1. An optical waveguide type device comprising a plurality of optical waveguides formed on a substrate made of an electro-optic crystal whose refractive index changes according to the strength of an electric field with respect to a specific crystal axis. A pair of optical waveguide groups for exchanging guided energies with each other are formed in the guided wave energy coupling region of the substrate, and the optical axes of the optical waveguides belonging to one of the optical waveguide groups are connected to the specific crystal axis and the other optical waveguide group. The positive and negative electrodes are formed such that parallel and uniform electric fields are formed so as to be opposite to the above-mentioned specific crystal axes of the optical waveguides to which the optical waveguides belong in the same manner to all optical waveguides in the waveguide energy coupling region. An optical waveguide type device having a wave energy coupling region between electrodes.
向に有するように形成されるものであって、正負の電極
が結晶基板の表面側および裏面側に各々配設されるもの
である請求項1記載の光導波路型デバイス。2. The substrate is formed so as to have a specific crystal axis in a direction perpendicular to the substrate surface, and positive and negative electrodes are provided on the front surface side and the back surface side of the crystal substrate, respectively. The optical waveguide device according to claim 1.
とが、導波エネルギーの一部又は全部の移動、干渉、分
岐、又は進路変更である請求項1記載の光導波路型デバ
イス。3. The optical waveguide device according to claim 1, wherein exchanging guided energy with each other is movement, interference, branching, or diversion of a part or all of guided energy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33288493A JP3638300B2 (en) | 1993-12-27 | 1993-12-27 | Optical waveguide device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33288493A JP3638300B2 (en) | 1993-12-27 | 1993-12-27 | Optical waveguide device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07191352A true JPH07191352A (en) | 1995-07-28 |
JP3638300B2 JP3638300B2 (en) | 2005-04-13 |
Family
ID=18259879
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33288493A Expired - Fee Related JP3638300B2 (en) | 1993-12-27 | 1993-12-27 | Optical waveguide device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3638300B2 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6334008B2 (en) | 1998-02-19 | 2001-12-25 | Nec Corporation | Optical circuit and method of fabricating the same |
EP1271220A1 (en) * | 2001-06-28 | 2003-01-02 | Corning O.T.I. S.p.A. | Coplanar integrated optical waveguide electro-optical modulator |
EP1271221A1 (en) * | 2001-06-28 | 2003-01-02 | Corning O.T.I. S.p.A. | Integrated optical waveguide device |
EP1273960A1 (en) * | 2001-06-28 | 2003-01-08 | Corning O.T.I. S.p.A. | Integrated ferroelectric optical waveguide device |
US6760493B2 (en) | 2001-06-28 | 2004-07-06 | Avanex Corporation | Coplanar integrated optical waveguide electro-optical modulator |
KR100472056B1 (en) * | 2002-10-31 | 2005-03-11 | 한국전자통신연구원 | Polarization-independent optical polymeric intensity modulator |
JP2008107518A (en) * | 2006-10-25 | 2008-05-08 | Fuji Xerox Co Ltd | Optical add-drop multiplexer and optical communication system |
JP2008139671A (en) * | 2006-12-04 | 2008-06-19 | Fuji Xerox Co Ltd | Optical modulator |
WO2008120718A1 (en) * | 2007-03-30 | 2008-10-09 | Sumitomo Osaka Cement Co., Ltd. | Light control element |
WO2009078248A1 (en) * | 2007-12-14 | 2009-06-25 | Nec Corporation | Waveguide type optical device |
JP2011075928A (en) * | 2009-09-30 | 2011-04-14 | Sumitomo Osaka Cement Co Ltd | Directional coupler |
CN103513445A (en) * | 2012-06-25 | 2014-01-15 | 鸿富锦精密工业(深圳)有限公司 | Electro-optic modulator |
JP2017187398A (en) * | 2016-04-06 | 2017-10-12 | 日本電信電話株式会社 | Field intensity measurement instrument |
CN113671767A (en) * | 2020-05-15 | 2021-11-19 | 富士通光器件株式会社 | Optical device and optical transceiver using the same |
WO2024202247A1 (en) * | 2023-03-28 | 2024-10-03 | 株式会社村田製作所 | Optical modulator |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8644647B2 (en) | 2006-03-31 | 2014-02-04 | Sumitomo Osaka Cement Co., Ltd. | Optical control device |
JP4110182B2 (en) | 2006-09-30 | 2008-07-02 | 住友大阪セメント株式会社 | Light control element |
JP4589354B2 (en) | 2007-03-30 | 2010-12-01 | 住友大阪セメント株式会社 | Light modulation element |
JP4445977B2 (en) | 2007-03-30 | 2010-04-07 | 住友大阪セメント株式会社 | Light control element |
-
1993
- 1993-12-27 JP JP33288493A patent/JP3638300B2/en not_active Expired - Fee Related
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6334008B2 (en) | 1998-02-19 | 2001-12-25 | Nec Corporation | Optical circuit and method of fabricating the same |
EP1271220A1 (en) * | 2001-06-28 | 2003-01-02 | Corning O.T.I. S.p.A. | Coplanar integrated optical waveguide electro-optical modulator |
EP1271221A1 (en) * | 2001-06-28 | 2003-01-02 | Corning O.T.I. S.p.A. | Integrated optical waveguide device |
EP1273960A1 (en) * | 2001-06-28 | 2003-01-08 | Corning O.T.I. S.p.A. | Integrated ferroelectric optical waveguide device |
US6760493B2 (en) | 2001-06-28 | 2004-07-06 | Avanex Corporation | Coplanar integrated optical waveguide electro-optical modulator |
KR100472056B1 (en) * | 2002-10-31 | 2005-03-11 | 한국전자통신연구원 | Polarization-independent optical polymeric intensity modulator |
JP2008107518A (en) * | 2006-10-25 | 2008-05-08 | Fuji Xerox Co Ltd | Optical add-drop multiplexer and optical communication system |
JP2008139671A (en) * | 2006-12-04 | 2008-06-19 | Fuji Xerox Co Ltd | Optical modulator |
EP2133733A1 (en) * | 2007-03-30 | 2009-12-16 | Sumitomo Osaka Cement Co., Ltd. | Light control element |
WO2008120718A1 (en) * | 2007-03-30 | 2008-10-09 | Sumitomo Osaka Cement Co., Ltd. | Light control element |
EP2133733A4 (en) * | 2007-03-30 | 2012-06-13 | Sumitomo Osaka Cement Co Ltd | Light control element |
US8600197B2 (en) | 2007-03-30 | 2013-12-03 | Sumitomo Osaka Cement Co., Ltd. | Optical control device |
WO2009078248A1 (en) * | 2007-12-14 | 2009-06-25 | Nec Corporation | Waveguide type optical device |
US8358891B2 (en) | 2007-12-14 | 2013-01-22 | Nec Corporation | Waveguide type optical device |
JP2011075928A (en) * | 2009-09-30 | 2011-04-14 | Sumitomo Osaka Cement Co Ltd | Directional coupler |
CN103513445A (en) * | 2012-06-25 | 2014-01-15 | 鸿富锦精密工业(深圳)有限公司 | Electro-optic modulator |
JP2017187398A (en) * | 2016-04-06 | 2017-10-12 | 日本電信電話株式会社 | Field intensity measurement instrument |
CN113671767A (en) * | 2020-05-15 | 2021-11-19 | 富士通光器件株式会社 | Optical device and optical transceiver using the same |
CN113671767B (en) * | 2020-05-15 | 2024-04-26 | 富士通光器件株式会社 | Optical device and optical transceiver using the same |
US12019349B2 (en) | 2020-05-15 | 2024-06-25 | Fujitsu Optical Components Limited | Optical device and optical transceiver using the same |
WO2024202247A1 (en) * | 2023-03-28 | 2024-10-03 | 株式会社村田製作所 | Optical modulator |
Also Published As
Publication number | Publication date |
---|---|
JP3638300B2 (en) | 2005-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3638300B2 (en) | Optical waveguide device | |
JP4313798B2 (en) | Light switch | |
US3874782A (en) | Light-guiding switch, modulator and deflector employing antisotropic substrate | |
US6842569B2 (en) | Polarization independent broad wavelength band optical switches/modulators | |
JPS6220532B2 (en) | ||
US4262993A (en) | Electrooptically balanced alternating Δβ switch | |
KR19990010058A (en) | Integrated optical light intensity modulator and method of manufacturing the same | |
JP2003066394A (en) | Coplanar integrated optical waveguide electro-optical modulator | |
US20210223657A1 (en) | Active photonic networks on integrated lithium niobate platforms | |
JP3272064B2 (en) | 4-section optical coupler | |
US6363189B1 (en) | Directional coupler | |
JPS623785Y2 (en) | ||
US20040047533A1 (en) | Device for contolling polarisation in an optical connection | |
Yamamoto et al. | Electrooptic control of radiation loss in off-axial propagation in a LiTaO3 waveguide | |
JPH01246529A (en) | Waveguide type optical switch | |
JP2534710B2 (en) | Polarization control device | |
JPH0688974A (en) | Electric field applying method for optical waveguide type electro-optical element | |
JPS6038689B2 (en) | Method for manufacturing waveguide electro-optic light modulator | |
JPH02262129A (en) | Waveguide type optical switch | |
Betts et al. | Tunable couplers fabricated in K+/Na+ ion exchanged glass | |
JP2004333949A (en) | Optical waveguide element | |
JPH06265944A (en) | Integrated optical circuit | |
JPH07244301A (en) | Optical waveguide device and method for impressing electric field to optical waveguide device | |
JPH01118821A (en) | Waveguide type optical switch | |
CN103513445A (en) | Electro-optic modulator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A61 | First payment of annual fees (during grant procedure) |
Effective date: 20050111 Free format text: JAPANESE INTERMEDIATE CODE: A61 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |