JPH07199205A - Liquid crystal display element - Google Patents
Liquid crystal display elementInfo
- Publication number
- JPH07199205A JPH07199205A JP33546093A JP33546093A JPH07199205A JP H07199205 A JPH07199205 A JP H07199205A JP 33546093 A JP33546093 A JP 33546093A JP 33546093 A JP33546093 A JP 33546093A JP H07199205 A JPH07199205 A JP H07199205A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- crystal layer
- crystal display
- electrodes
- electric field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Liquid Crystal (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、液晶表示素子に係わ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device.
【0002】[0002]
【従来の技術】液晶表示素子を光制御の観点から分類す
ると、明暗の変化を、液晶分子の偏光効果と偏光子を組
み合わせにより生じさせるもの、液晶の相転移を利用し
光の散乱と透過により生じさせるもの、および染料を添
加し染料の可視光吸収量を制御し、色の濃淡変化により
生じさせるもの等に分けられる。2. Description of the Related Art When a liquid crystal display element is classified from the viewpoint of light control, a change in brightness is caused by a combination of a polarization effect of liquid crystal molecules and a polarizer, and a phase transition of liquid crystal is used to scatter and transmit light. It can be classified into those which are caused and those which are caused by the change in color shade by controlling the visible light absorption amount of the dye by adding a dye.
【0003】前者の偏光効果と偏光子を組み合わせた液
晶表示素子は、例えば90°捻れた分子配列をもつツイ
ステッドネマティック(TN)型液晶であり、原理的に
薄い液晶層厚、低電圧で偏光制御できることから、早い
応答速度、低消費電力にて、高いコントラスト比を示
し、時計や電卓、単純マトリクス駆動や、スイッチング
素子を各画素ごとに具備したアクティブマトリクス駆動
で、また、カラーフィルターと組み合わせて、フルカラ
ーの表示の液晶TVなどに応用されている。A liquid crystal display element combining the former polarization effect and a polarizer is, for example, a twisted nematic (TN) type liquid crystal having a 90 ° twisted molecular arrangement, and in principle, polarization control is performed with a thin liquid crystal layer thickness and a low voltage. Therefore, it has a fast response speed, low power consumption, high contrast ratio, clock, calculator, simple matrix drive, active matrix drive with switching element for each pixel, and in combination with color filter, It is applied to LCD TVs with full-color display.
【0004】しかし、このような効果と偏光子を組み合
わせた液晶表示素子は、原理上偏光板を用いることから
素子の透過率が著しく低く、また分子配列の方位性によ
り見る角度・方位によって表示色やコントラスト比が大
きく変化するといった視角依存性を持ち陰極線管(CR
T)の表示性能を完全に越えるまでにはいたらない。However, a liquid crystal display device combining such an effect with a polarizer has a remarkably low transmittance since it uses a polarizing plate in principle, and the display color depends on the viewing angle and direction due to the orientation of the molecular arrangement. Has a viewing angle dependence such as a large change in the contrast ratio and the contrast ratio.
The display performance of T) cannot be completely exceeded.
【0005】一方、後者の液晶の相転移を利用したも
の、及び染料の可視光吸収量を制御した液晶表示素子
は、例えば、ヘリカル構造の分子配列をもつコレステリ
ック相からホメオトロピック分子配列のネマティック相
への相転移を電場印加で生じさせるPC型液晶及びこれ
に染料を添加してなるホワイト・テーラー(White
−Taylor)型GH液晶であり、偏光子を用いず、
原理的に偏光効果を用いないことから、明るく、広い視
認角を示し、自動車機器や、投影型表示器などに応用さ
れている。On the other hand, the latter one utilizing the phase transition of liquid crystal and the liquid crystal display element in which the visible light absorption amount of the dye is controlled are, for example, from a cholesteric phase having a helical molecular arrangement to a homeotropic molecular nematic phase. -Type liquid crystal that causes phase transition to liquid crystal by applying an electric field and a white tailor (White)
-Taylor) type GH liquid crystal, without using a polarizer,
Since it does not use the polarization effect in principle, it is bright and has a wide viewing angle, and is applied to automobile equipment and projection type displays.
【0006】しかし、充分な光の散乱を得るには、液晶
相厚を充分厚くしたり、散乱を生じさせるヘリカル強度
を強めたりする必要があり、高い駆動電圧を要し、応答
速度も極めて遅いといった問題点をもっているため表示
量(画素数)の多い表示素子への応用は困難とされてい
た。また、印加電圧の増加に伴い、透過率が急激に変化
するために階調性をもたらすことも困難とされていた。
さらに、その印加電圧−透過率特性にヒステリシスがあ
り、マルチプレクス駆動することが困難など実用的に問
題があった。However, in order to obtain sufficient light scattering, it is necessary to sufficiently thicken the liquid crystal phase and to increase the helical strength that causes the scattering, which requires a high driving voltage and a very slow response speed. Therefore, it has been difficult to apply it to a display element having a large display amount (number of pixels). In addition, it has been considered difficult to provide gradation because the transmittance changes abruptly as the applied voltage increases.
Further, the applied voltage-transmittance characteristic has a hysteresis, and there is a practical problem that it is difficult to perform multiplex driving.
【0007】また、散乱モードの液晶表示素子として図
10に示す様に基板1、2で挟んだ有機高分子3中に液
晶4を球状に保持したNCAP形液晶表示素子がある。
この素子は偏光板を用いないため、明るく広い視認角を
示し、自動車機器や、投影型表示器などに応用される。
しかしながら、外部から印加した電圧は有機高分子中と
液晶とに分圧され液晶には印加電圧の一部しか印加され
ず、実用的には動作電圧が高くなるという問題があっ
た。また、これにより充分な光の散乱を得るには、液晶
厚を充分厚くする必要があり、応答速度も極めて遅いと
いった問題点を持っているため表示量(画素数)の多い
表示素子への応用は困難とされていた。さらに、その印
加電圧−透過率特性にヒステリシスがあり、マルチプレ
クス駆動することが困難など実用的に問題があった。こ
れと同様の動作原理で動作する網目状有機高分子中に液
晶を保持した高分子分散形液晶表示素子においても、同
様の問題があった。Further, as a scattering mode liquid crystal display element, there is an NCAP type liquid crystal display element in which a liquid crystal 4 is spherically held in an organic polymer 3 sandwiched between substrates 1 and 2 as shown in FIG.
Since this element does not use a polarizing plate, it exhibits a bright and wide viewing angle and is applied to automobile equipment, projection type displays and the like.
However, the voltage applied from the outside is divided between the organic polymer and the liquid crystal, and only a part of the applied voltage is applied to the liquid crystal, so that there is a problem that the operating voltage is increased practically. Moreover, in order to obtain sufficient light scattering, it is necessary to make the liquid crystal thick enough, and the response speed is extremely slow. Therefore, it is applied to a display device with a large amount of display (number of pixels). Was considered difficult. Further, the applied voltage-transmittance characteristic has a hysteresis, and there is a practical problem that it is difficult to perform multiplex driving. The polymer dispersion type liquid crystal display device in which liquid crystal is held in a network organic polymer that operates according to the same operation principle has the same problem.
【0008】[0008]
【発明が解決しようとする課題】上述したように、現
在、液晶表示素子は透過率が低く、視角異存性を持つ
か、高い駆動電圧を要し、応答速度も遅いといった問題
点をもっていた。As described above, at present, liquid crystal display elements have problems that they have low transmittance, have different viewing angles, require high driving voltage, and have slow response speed.
【0009】こうした背景のもとに、発明者等は先願の
特願平5−184273号において、対向して複数の画
素を形成する電極をそれぞれ有する2枚の基板間にネマ
ティック液晶組成物からなる液晶層を狭持し、前記両基
板の電極が画素ごとに、微細な領域を単位とした導電体
部と非導電体部からなり、両基板間で一方の電極の導電
体部と他方の電極の非導電体部の少なくとも一部が対向
して配置されている液晶表示素子を提案している。Against this background, the inventors of the present invention, in Japanese Patent Application No. 5-184273, filed from a nematic liquid crystal composition between two substrates each having electrodes forming a plurality of pixels facing each other. The liquid crystal layer is sandwiched between the electrodes, and the electrodes of the both substrates are made up of a conductive portion and a non-conductive portion in units of a fine region for each pixel. A liquid crystal display element is proposed in which at least a part of the non-conductor parts of the electrodes are arranged to face each other.
【0010】この液晶表示素子は各画素において、実効
的に一様な分子配列にて光透過状態、2種以上の電界方
向をもって、その境界部にウォ−ル状の分子配列を形成
し、光散乱状態を得るものであり、前述した問題点を解
決しうるものである。In this liquid crystal display element, in each pixel, a light-transmitting state is formed by an effectively uniform molecular arrangement, and a wall-like molecular arrangement is formed at the boundary between the two or more electric field directions, and A scattering state is obtained, and the above-mentioned problems can be solved.
【0011】この液晶表示素子の分子配列構造の一例
は、いわゆるスプレイ配列およびそれに捩じれを加えた
分子配列であり、なおかつ上下基板表面における液晶分
子プレチルト角が上下でほぼ等しくなっている。こうし
た、分子配列では電界の印加の仕方によってはその分子
のチルト方向が2方向となる。これは電圧を印加しない
状態での液晶分子配列が液晶層の上半分と下半分で対称
な形をしていることによっている。これは、液晶分子の
チルト方向が2以上の自由度を持っていることによる。An example of the molecular arrangement structure of this liquid crystal display element is a so-called splay arrangement and a molecular arrangement in which twisting is added thereto, and the pretilt angles of liquid crystal molecules on the upper and lower substrate surfaces are substantially equal in the vertical direction. In such a molecular arrangement, the tilt directions of the molecules are two directions depending on how the electric field is applied. This is because the liquid crystal molecule arrangement in the state where no voltage is applied is symmetrical between the upper half and the lower half of the liquid crystal layer. This is because the tilt direction of the liquid crystal molecules has two or more degrees of freedom.
【0012】したがって、電圧を印加した際にのみ分子
のチルト方向の境界部にディスクリネーションラインが
電極の非導電体部に沿って液晶層内に壁状に発生する。
このディスクリネーションラインを「ウォール」と呼称
する。このウォールが入射光を散乱させる機能を得るこ
とができるわけである。このように液晶分子のチルト方
向が2以上の自由度を持たせるには以上の他例えば、液
晶組成物として負の誘電異方性を持つネマティック液晶
組成物を用い、液晶分子配列を上下基板におけるプレチ
ルト角が90°である完全な垂直配列としても同様の効
果を得ることができる。この場合、液晶分子のチルトダ
ウン方向の自由度が2以上となる。Therefore, only when a voltage is applied, a disclination line is formed like a wall in the liquid crystal layer along the non-conductor portion of the electrode at the boundary in the tilt direction of the molecule.
This disclination line is called a "wall". This wall can obtain the function of scattering incident light. In order to allow the liquid crystal molecules to have two or more degrees of freedom in the tilt direction, for example, a nematic liquid crystal composition having a negative dielectric anisotropy is used as the liquid crystal composition, and the liquid crystal molecule alignment is performed on the upper and lower substrates. The same effect can be obtained even with a completely vertical arrangement in which the pretilt angle is 90 °. In this case, the degree of freedom in the tilt-down direction of the liquid crystal molecules is 2 or more.
【0013】いずれにせよ、このように液晶分子が電圧
を印加していない状態で実効的に一様な分子配列であ
り、液晶分子のチルトアップ(チルト角が増加する)方
向、もしくはチルトダウン(チルト角が減少する)方向
の自由度が2以上である液晶分子配列に対し、斜め電界
が微細な領域毎に相反する2方向以上に印加されるよう
に考慮した電極であれば、前述した問題を解決した優れ
た表示性能を得ることができる。In any case, the liquid crystal molecules have an effectively uniform molecular arrangement in the state where no voltage is applied, and the liquid crystal molecules are tilted up (the tilt angle is increased) or tilted down (the tilt angle is increased). The above-mentioned problem is encountered in the case of an electrode in which the oblique electric field is applied in two or more directions which are contradictory to each other in a fine region with respect to the liquid crystal molecule array having two or more degrees of freedom in the direction in which the tilt angle is decreased). It is possible to obtain excellent display performance which is solved.
【0014】本発明は上述した先願の特願平5ー184
273号において提案した電極構造と同様にウォールを
発生させ光散乱の効果を得る新規な電極構造を提案し、
さらにこの液晶表示素子の生産性をより高めることを目
的とする。The present invention is the above-mentioned Japanese Patent Application No. 5-184.
In the same way as the electrode structure proposed in No. 273, a new electrode structure for generating a wall to obtain a light scattering effect is proposed,
Further, it is intended to further increase the productivity of this liquid crystal display device.
【0015】[0015]
【課題を解決するための手段】本発明は前記問題を解決
する手段として、対向して複数の画素を形成する電極を
それぞれ有する2枚の基板間にネマティック液晶組成物
からなる液晶層を狭持してなる液晶表示素子において、
一方の基板の電極が画素ごとに、非導電体部を挟むよう
に有する導電体部からなり、かつ少なくとも各画素ごと
に導電体部が電気的にひとつにつながった電極構造であ
り、前記非導電体部の存在により、前記液晶層に電界を
印加した際の液晶分子のチルト方向(液晶の誘電異方性
が正の場合チルトアップ方向、負の場合チルトダウン方
向)が2方向以上取り得る分子配列になることを特徴と
する液晶表示素子を得るものである。As a means for solving the above problems, the present invention sandwiches a liquid crystal layer made of a nematic liquid crystal composition between two substrates each having electrodes forming a plurality of pixels facing each other. In the liquid crystal display element formed by
The electrode of one of the substrates has an electrode structure in which each pixel is composed of a conductor portion having a non-conductor portion sandwiched therebetween, and at least the conductor portion is electrically connected to one for each pixel. Due to the presence of the body part, molecules in which the tilt directions of the liquid crystal molecules (tilt up direction when the dielectric anisotropy of the liquid crystal is positive, tilt down direction when the dielectric anisotropy of the liquid crystal is negative) can be two or more directions when an electric field is applied to the liquid crystal layer. A liquid crystal display device characterized by being arranged.
【0016】また、各画素ごとの電極構造が導電体部と
非導電体部がストライプ状の形状となっていることを液
晶表示素子を得るものである。Further, a liquid crystal display device is obtained in which the electrode structure of each pixel has a stripe shape of a conductor portion and a non-conductor portion.
【0017】さらに、両基板間隙に前記基板の法線方向
の寸法が前記液晶層厚より短い微粒子を混入するか、も
しくは、前記基板の法線方向の寸法が前記液晶層厚より
低い突起を前記両基板の少なくとも一方に設けたてなる
液晶表示素子を得るものである。Further, fine particles having a dimension in the normal direction of the substrate shorter than the liquid crystal layer thickness are mixed in the gap between the substrates, or a protrusion having a dimension in the normal direction of the substrate lower than the liquid crystal layer thickness is provided. A liquid crystal display device provided on at least one of both substrates is obtained.
【0018】[0018]
【作用】本発明は、上記目的を達成するものであり以下
その達成原理及び手法について説明する。The present invention achieves the above object, and the principle and method of achieving the same will be described below.
【0019】図6に示すように、上基板11上に共通電
極13を、下基板12に複数個の画素電極14を形成
し、両電極13、14状に上下配向膜15、16を被着
して、上下配向膜15、16の間に液晶層20を充填し
た素子構造において、画素電極14に対面する共通電極
13を複数のストライプ状導電体部13aをこれら間を
非導電体部13bで離間させた形状にしている。すなわ
ち1画素に相当する領域内に複数のストライプ状導電体
部13aのパターンが形成される。ストライプ状導電体
部13aは各端部が共通接続されており、他の画素に対
応する領域の一体になって共通電極13を形成する。As shown in FIG. 6, a common electrode 13 is formed on an upper substrate 11 and a plurality of pixel electrodes 14 are formed on a lower substrate 12, and vertical alignment films 15 and 16 are formed on both electrodes 13 and 14, respectively. Then, in the device structure in which the liquid crystal layer 20 is filled between the upper and lower alignment films 15 and 16, the common electrode 13 facing the pixel electrode 14 is provided with a plurality of striped conductor portions 13a and the non-conductor portion 13b is provided between them. The shapes are separated. That is, a pattern of a plurality of stripe-shaped conductor portions 13a is formed in a region corresponding to one pixel. The striped conductor portions 13a are commonly connected at their ends, and the regions corresponding to other pixels are integrated to form the common electrode 13.
【0020】さらに,上配向膜15の配向処理方向a
と、下配向膜16の配向処理方向bを液晶層の分子Mに
対してスプレイ配列となるように交差させる(図では簡
略のため、交差角を零としている)。Further, the alignment treatment direction a of the upper alignment film 15
Then, the alignment processing direction b of the lower alignment film 16 is intersected with the molecules M of the liquid crystal layer so as to form a splay alignment (in the figure, the crossing angle is set to zero).
【0021】駆動電源21をスイッチ17をオンにし
て,電極13、14間に電圧を印加すると、電界は液晶
層厚方向に均一にかからずに,共通電極13の導電体部
13aに集中するように発生し、電気力線eで示すよう
に斜め電界となる。このため液晶分子Mの長軸は電界に
沿って傾く配列となり斜め電界の傾きが逆になる部分で
分子配列が乱れる境界が発生する。この境界をディスク
リネーションライン(図示DL1 、DL2 )と称してい
るが、本発明ではこのディスクリネーションラインが導
電体部13aのストライプに沿って延長して壁のように
形成されるため、ディスクリネーションウォール(略し
てウォールと称する)ができる。。このウォールDL1
、DL2 部分では偏光に対して制御ができず光散乱を
生じる。本発明ではこの光散乱現象を利用してウォール
の発生を電気的に制御することにより表示を行う。上述
した先願の特願平5−184273号の発明は、両電極
にストライプ状導電体部を設けてウォールを発生するも
のであるが、本発明はいずれか一方の電極にストライプ
状またはこれと同等の作用をもつ形状の導電体部を形成
するもので、製造プロセスの簡素化をはかることができ
る。When the driving power source 21 is turned on and the voltage is applied between the electrodes 13 and 14, the electric field is concentrated on the conductor portion 13a of the common electrode 13 without being uniformly applied in the thickness direction of the liquid crystal layer. Is generated as described above, and an oblique electric field is generated as indicated by the line of electric force e. For this reason, the long axis of the liquid crystal molecules M is arranged to be inclined along the electric field, and a boundary in which the molecular arrangement is disturbed occurs at the portion where the inclination of the oblique electric field is reversed. This boundary is referred to as a disclination line (DL1 and DL2 in the drawing), but in the present invention, the disclination line extends along the stripe of the conductor portion 13a and is formed like a wall. A Lining Wall (abbreviated as Wall) can be formed. . This wall DL1
, DL2 part cannot control the polarized light and causes light scattering. In the present invention, the display is performed by electrically controlling the generation of the wall by utilizing this light scattering phenomenon. In the invention of Japanese Patent Application No. 5-184273 of the above-mentioned prior application, a stripe-shaped conductor portion is provided on both electrodes to generate a wall. Since the conductor portion having the same function is formed, the manufacturing process can be simplified.
【0022】さらに以下にウォールの発生について説明
する。Further, the generation of the wall will be described below.
【0023】電圧を印加した場合、液晶層20には斜め
の電界がかかる。液晶分子はその電界eの方向に配向さ
れるので図のようにストライプ状導電体部13aとスペ
ースとなる非導電体部13b上の電極の中央で液晶分子
Mの方向は左右対称となる。この電極中央部分では液晶
分子の立上がりチルトが対立する状態になっているの
で、先に説明したようにこの部分でウォールDL1 、D
L2 が形成される。本発明の電極構造の場合、一方の電
極が平板構造になっているので、図に示す2つのウォー
ルDL1 、DL2 はその出現原理が異なる。ウォールD
L1 は電極の非導電体部13bの幅に関係なく、電界方
向が非導電体部13bの中央で割れることにより生ずる
ものである。これに対し、ウォールDL2 は前述した割
れた電界の端部同志が左右でほぼ重なった場合に生ずる
ものである。このため、あまり非導電体部の幅を広くす
ると出現しない。これら2種のウォールにより光散乱を
得ることが本発明の電極構成の特徴である。本発明の電
極構成の場合、2種のウォールにより光散乱を得ること
となるため、その電気光学特性は前述した先願の特願平
5−184273号に示した電極構成とは異なってく
る。具体的には前述の先願に示した電極構成のものより
なだらかな特性となる。このため、駆動電圧は先願に対
して若干高くなるが、階調表示をする際に駆動がやりや
すくなる。また、一方の電極が実質的に平板であるの
で、製造上、画素内における上下基板のアライメントを
必要としない。When a voltage is applied, an oblique electric field is applied to the liquid crystal layer 20. Since the liquid crystal molecules are oriented in the direction of the electric field e, the directions of the liquid crystal molecules M are bilaterally symmetrical at the centers of the electrodes on the striped conductor portion 13a and the non-conductor portion 13b which is a space as shown in the figure. Since the rising tilts of the liquid crystal molecules are opposite to each other in the central portion of this electrode, the walls DL1 and D1 are formed in this portion as described above.
L2 is formed. In the case of the electrode structure of the present invention, since one electrode has a flat plate structure, the two walls DL1 and DL2 shown in the figure differ in the principle of appearance. Wall D
L1 is generated by breaking the electric field direction at the center of the non-conductor portion 13b regardless of the width of the non-conductor portion 13b of the electrode. On the other hand, the wall DL2 is generated when the ends of the cracked electric field described above substantially overlap on the left and right. Therefore, it does not appear if the width of the non-conductor part is too wide. It is a feature of the electrode structure of the present invention that light is scattered by these two types of walls. In the case of the electrode structure of the present invention, light scattering is obtained by two kinds of walls, and therefore, the electro-optical characteristics thereof are different from the electrode structure shown in the above-mentioned Japanese Patent Application No. 5-184273. Specifically, the characteristics are gentler than those of the electrode configuration shown in the above-mentioned prior application. Therefore, the driving voltage is slightly higher than that of the prior application, but the driving becomes easier when performing gradation display. Further, since one of the electrodes is substantially a flat plate, the alignment of the upper and lower substrates in the pixel is not required in manufacturing.
【0024】ウォールの発生は導電体部のストライプ形
状によって異なる。図7(a)に微細なパターンからな
る電極(上電極)の形状がジグザグストライプでなるも
のと、図8(a)に平行なストライプ形状からなるもの
を示す。図から明らかなように図8(a)の構成とした
場合、ウォールDL1 、DL2 の平面形状は直線とな
る。これに対し、図7(a)のようにジグザグストライ
プ形状とした場合、ウォールDL1 、DL2 の平面形状
は直線とはならない。これら2種の形状には、それぞれ
利点がある。ウォールの出現は液晶分子のチルト方向が
微細に180°異なる方向になるようになっているから
であるが、これを平面的に見ると分子のチルト方位は同
一方位となっている。つまり素子の上から観察すると分
子は一様な方位にチルトしていることとなる。したがっ
て、結果的に光の散乱方向というのは、平面的に見れば
殆どこの液晶分子配列方位のみとなる。図8(b)のよ
うに平行なストライプ形状からなるものは殆ど直線状の
光散乱となる。よって、入射光の内、一方の偏光成分は
強く散乱されるが、他方の偏光成分は弱くなってしま
う。これに対して図7(a)のようにジグザグストライ
プ形状の場合、光散乱形状は図7(b)に示すように種
々の方向となり、その分強い散乱が得られる。The generation of the wall depends on the stripe shape of the conductor portion. FIG. 7A shows an electrode having a fine pattern (upper electrode) having a zigzag stripe shape, and FIG. 8A shows an electrode having a parallel stripe shape. As is apparent from the figure, in the case of the configuration of FIG. 8A, the planar shapes of the walls DL1 and DL2 are straight lines. On the other hand, when the zigzag stripe shape is formed as shown in FIG. 7A, the planar shapes of the walls DL1 and DL2 are not straight lines. Each of these two shapes has advantages. The appearance of the wall is because the tilt directions of the liquid crystal molecules are slightly different by 180 °, but when viewed in plan, the tilt directions of the molecules are the same. That is, when observed from above the element, the molecules are tilted in a uniform azimuth. Therefore, as a result, the light scattering direction is almost only this liquid crystal molecule alignment direction in a plan view. As shown in FIG. 8B, light having a parallel stripe shape causes almost linear light scattering. Therefore, one polarization component of the incident light is strongly scattered, but the other polarization component is weak. On the other hand, in the case of the zigzag stripe shape as shown in FIG. 7A, the light scattering shape has various directions as shown in FIG. 7B, and accordingly strong scattering is obtained.
【0025】しかしながら、図8(a)のように平行な
ストライプ形状からなるものはウォールの平面形状は直
線であるため、ウォールの密度は図7(a)の構成より
高めることができる。これは、液晶の分子配列が平面的
にみて図7の構成より整然としているためである。した
がって、結果的には、図7の構成でも図8の構成でも高
い散乱特性が得られることになる。それぞれの特長はこ
れら液晶表示素子を投影型表示素子として用いる場合の
光学系に応じて使い分けるのが好ましい。However, as shown in FIG. 8A, the parallel stripes have a straight wall in plan view, and the wall density can be higher than that of the structure shown in FIG. 7A. This is because the molecular alignment of the liquid crystal is more orderly than the configuration of FIG. Therefore, as a result, high scattering characteristics can be obtained with both the configuration of FIG. 7 and the configuration of FIG. It is preferable to use the respective features properly according to the optical system when these liquid crystal display elements are used as projection display elements.
【0026】さて、これらの本発明の種々の電極構成、
分子配列にて前述したようなウォールを発生させた場
合、前記斜め電界が、微細な領域毎に相反するするよう
に構成されているため、電圧を印加しつづけても液晶分
子は、前記ウォールが発生した状態の分子配列を維持し
にくい。液晶分子配列というものはあまり微細に配列形
状を変化させることが困難であるからである。つまり
は、電界、磁界等の外力のみでは、こうした困難な分子
配列形態を維持する力が不足していることになる。こう
した、問題を解決するのに、発明者等は、両基板間隙に
前記液晶層厚方向の長さが前記液晶層厚dより短い微粒
子を混入させるか、液晶層厚方向の高さが液晶層厚dよ
り低い突起を両基板の少なくとも一方に設けると解決す
ることを見出だした。Now, these various electrode configurations of the present invention,
When the above-mentioned wall is generated in the molecular arrangement, since the oblique electric fields are configured to be reciprocal in each fine region, even if a voltage is continuously applied, the liquid crystal molecule is It is difficult to maintain the molecular arrangement in the generated state. This is because it is difficult to change the arrangement shape of the liquid crystal molecule array so finely. In other words, the force for maintaining such a difficult molecular arrangement form is insufficient only by the external force such as the electric field and the magnetic field. In order to solve such a problem, the inventors have mixed fine particles having a length in the thickness direction of the liquid crystal layer shorter than the thickness d of the liquid crystal layer into the gap between the substrates, or a height in the thickness direction of the liquid crystal layer of the liquid crystal layer. It has been found that providing protrusions with a thickness lower than the thickness d on at least one of both substrates solves the problem.
【0027】図9にこの構成の概略を示す。図示するよ
うに、液晶層厚より小さい微粒子を加えた構造からな
る。このように、液晶層中に微粒子、突起を設けた場
合、ウォールの出現場所にこの微粒子、突起があれば、
これらの存在によって、前述した微細に配列形状を変化
させ分子配列状態、つまりはウォールを多数出現させた
分子配列状態を維持することができる。本発明では、こ
うした微粒子、突起が多数のウォールを維持する機能を
もつことから「ウォール支持体」と称する。このような
機能を得る手段としては、上記図9で説明した方法の
他、液晶層厚に等しい大きさの微粒子を前記液晶層内に
必要以上に混入させる(つまりは基板間隙剤の混入)こ
とによっても得られる。FIG. 9 shows an outline of this configuration. As shown in the figure, it has a structure in which fine particles smaller than the liquid crystal layer thickness are added. In this way, when fine particles or protrusions are provided in the liquid crystal layer, if the fine particles or protrusions are present at the place where the wall appears,
Due to the presence of these, it is possible to maintain the above-mentioned molecular arrangement state by minutely changing the arrangement shape, that is, the molecular arrangement state in which a large number of walls appear. In the present invention, since such fine particles and projections have a function of maintaining a large number of walls, they are referred to as "wall supports". As means for obtaining such a function, in addition to the method described in FIG. 9, fine particles having a size equal to the thickness of the liquid crystal layer are mixed into the liquid crystal layer more than necessary (that is, a substrate gap agent is mixed). Can also be obtained by
【0028】しかしながら、この場合、多数のウォール
を維持するためには、多数の基板間隙剤を混入させる必
要が生じ、光透過状態を得る時に悪影響を及ぼす。具体
的にのべると基板間隙剤による光散乱、および基板間隙
剤表面の液晶分子配向による光散乱の影響があることで
ある。これらの影響を低減させるため、前記ウォール支
持体として、液晶層厚dより小さいことを特長とする微
粒子、突起を用いることが望ましい。このように液晶層
厚dより小さい微粒子、突起を用いることによってこれ
らに起因した光散乱は問題のないレベルとすることがで
きることを、発明者等は実験により確認している。However, in this case, in order to maintain a large number of walls, it is necessary to mix a large number of substrate gap agents, which adversely affects the light transmission state. Specifically, there is an influence of light scattering by the substrate interstitial agent and light scattering by the liquid crystal molecule alignment on the surface of the substrate interstitial agent. In order to reduce these influences, it is desirable to use, as the wall support, fine particles or protrusions having a smaller thickness than the liquid crystal layer thickness d. The inventors have confirmed through experiments that the light scattering caused by these particles and projections can be brought to a problem-free level by using the particles and projections smaller than the liquid crystal layer thickness d.
【0029】なお発明者等は、このウォール支持体の機
能を得るものとして、前述した微粒子、突起の他に、T
FT、MIM基板に必然的に設けられる段差(配線電極
や半導体層の厚みにより生じる段差)自体も、段差近傍
では同様の機能を得ることを確認している。In addition to the above-mentioned fine particles and projections, the present inventors have found that the function of this wall support is T.
It has been confirmed that the steps (steps caused by the thickness of the wiring electrodes and the semiconductor layer) inevitably provided on the FT and MIM substrates have similar functions in the vicinity of the steps.
【0030】[0030]
【実施例】以下本発明の液晶表示素子の実施例を詳細に
説明する。EXAMPLES Examples of the liquid crystal display device of the present invention will be described in detail below.
【0031】(実施例1)図1および図2は本発明を投
影型ディスプレー用液晶表示素子に適用した実施例を示
すもので、図1(a)、(b)において、ガラスの上基
板11は一方の面にITOのパターニングにより形成さ
れた上電極すなわち共通電極13と、その上に被着され
たポリイミドの上配向膜15を有している。上基板11
の非画素領域はクロムのブラックマトリクス(図示せ
ず)が形成されている。(Embodiment 1) FIGS. 1 and 2 show an embodiment in which the present invention is applied to a liquid crystal display device for a projection type display. In FIGS. 1 (a) and 1 (b), a glass upper substrate 11 is used. Has an upper electrode, that is, a common electrode 13 formed by patterning ITO on one surface and an upper alignment film 15 of polyimide deposited thereon. Upper substrate 11
A black matrix (not shown) of chrome is formed in the non-pixel region of the.
【0032】上基板11とともに表示素子のセルとなる
ガラスの下基板12はITOの多数の下電極すなわち画
素電極14がモザイク状に配置され。図2に示すように
各画素電極14はTFTスイッチング素子30を有し同
基板上に設けたアドレス線31および信号線32に接続
されている。A plurality of lower electrodes of ITO, that is, pixel electrodes 14 are arranged in a mosaic pattern on the lower substrate 12 of glass which serves as cells of the display element together with the upper substrate 11. As shown in FIG. 2, each pixel electrode 14 has a TFT switching element 30 and is connected to an address line 31 and a signal line 32 provided on the same substrate.
【0033】共通電極13は各画素電極14に対向する
領域に、複数の幅8μmのジグザグ状ストライプ導電体
部13aが形成されるように、これら間にスペースとし
て非導電体部13bを有して各導電体部13aを所定の
間隔で配置している。ジグザグ形状の山−山間の幅は1
0μmである。画素電極14は正方形の平板状形状をな
し、70μm×70μmの面積をもつ。この画素電極を
含む1画素分の領域は100μm×100μmであり、
対応する導電体部13aと非導電体部13bが形成する
窓格子状部分は70μm×70μmである。上下配向膜
15、16として測定値がプレチルト角6°のポリイミ
ド(商品名SE−7120、日産化学工業製)を形成
し、図2に示すように、表示素子の表示が面の水平方向
(左方向)に両基板11、12をラビング処理を施した
のち、下基板12側に、液晶層厚が7.5μmとなるよ
う基板間隙剤(積水ファインケミカル製の微粒子:ミク
ロパールSP、粒径7.5um)を分散密度100個/
mm2 となるよう乾式散布法にて散布した。これら基板
間に誘電異方性Δnが0.2030(正)の液晶材料(商品名
ZLI−3926、メルクジャパン製)を充填狭持して
液晶層20とし、基板をセルとして封止して液晶表示素
子を得た。ここで、液晶層厚を7.5μmと厚くし、液
晶組成物のΔnを大きくしたのは、光散乱状態における
光散乱性を高めるためである。The common electrode 13 has a non-conductor portion 13b as a space between them so that a plurality of zigzag stripe conductor portions 13a having a width of 8 μm are formed in a region facing each pixel electrode 14. The conductor portions 13a are arranged at predetermined intervals. Zigzag peak-to-peak width is 1
It is 0 μm. The pixel electrode 14 has a square flat plate shape and has an area of 70 μm × 70 μm. The area for one pixel including this pixel electrode is 100 μm × 100 μm,
The window grid portion formed by the corresponding conductor portion 13a and non-conductor portion 13b is 70 μm × 70 μm. A polyimide (trade name SE-7120, manufactured by Nissan Chemical Industries, Ltd.) having a pretilt angle of 6 ° is formed as the upper and lower alignment films 15 and 16, and as shown in FIG. After rubbing both substrates 11 and 12 in the direction), a substrate interstitial agent (fine particles made by Sekisui Fine Chemical: Micropearl SP, particle size 7.) is formed on the lower substrate 12 side so that the liquid crystal layer thickness is 7.5 μm. 5 um) with a dispersion density of 100 /
It was sprayed by a dry spraying method so as to have a size of mm 2 . A liquid crystal display device in which a liquid crystal material having a dielectric anisotropy Δn of 0.2030 (positive) (product name ZLI-3926, manufactured by Merck Japan) is sandwiched between these substrates to form a liquid crystal layer 20 and the substrate is sealed as a cell. Got Here, the reason why the liquid crystal layer thickness is increased to 7.5 μm and Δn of the liquid crystal composition is increased is to enhance the light scattering property in the light scattering state.
【0034】このようにして得られた液晶表示素子にT
FTスイッチング素子30を介して電源から電圧を印加
すると、図1(c)のようにウォールDL1 、DL2 が
発生する。この電気光学特性(透過率−印加電圧曲線)
を求めるために、液晶表示素子にHe-Ne レーザー光を入
射させ、透過率を測定した。光のスポット径は2mmで、
透過したレーザー光は液晶表示素子から距離20cmのと
ころにあるフォトダイオードにより検出した。The liquid crystal display device thus obtained has T
When a voltage is applied from the power source through the FT switching element 30, walls DL1 and DL2 are generated as shown in FIG. 1 (c). This electro-optical characteristic (transmittance-applied voltage curve)
In order to obtain, the He-Ne laser light was made incident on the liquid crystal display device and the transmittance was measured. The spot diameter of light is 2mm,
The transmitted laser light was detected by a photodiode located at a distance of 20 cm from the liquid crystal display device.
【0035】図5に0Vから徐々に印加電圧を3.3V
まで増加、3.3Vから徐々に0Vまで減少させていっ
たときの透過率−印加電圧曲線(実施例1)を示す。電
圧を印加していない状態(0V印加)では透過率約80
%と、明るい透過率特性を示した。また、印加電圧3.
3Vでは最小透過率0.4%と、良好な散乱状態が得ら
れた。また、図からあきらかなように電気光学特性にヒ
ステリシスは全くなかった。また、印加電圧3.3V及
び0Vにて、応答速度を測定したところ立上がり6ms
ec、立ち下がり18msecと極めて速い値を得た。In FIG. 5, the applied voltage is gradually changed from 0V to 3.3V.
3 shows a transmittance-applied voltage curve (Example 1) when the voltage was increased to 3.3 V and gradually decreased from 3.3 V to 0 V. The transmittance is about 80 when no voltage is applied (0 V is applied).
%, Showing a bright transmittance characteristic. In addition, the applied voltage 3.
At 3 V, the minimum transmittance was 0.4%, and a good scattering state was obtained. As is clear from the figure, there was no hysteresis in the electro-optical characteristics. Moreover, when the response speed was measured at an applied voltage of 3.3 V and 0 V, it rose to 6 ms.
ec, the fall was 18 msec, which was an extremely fast value.
【0036】次に電圧を印加して、ウォールの維持状態
を偏光顕微鏡による分子配列観察及び透過率測定による
光散乱状態測定によって調べた。本実施例においては印
加電圧3.3Vを印加しつづけた場合、1時間経過して
も初期のウォール配列を維持していることが確認され
た。Next, a voltage was applied and the maintenance state of the wall was examined by observing the molecular arrangement by a polarization microscope and measuring the light scattering state by measuring the transmittance. In this example, when the applied voltage of 3.3 V was continuously applied, it was confirmed that the initial wall arrangement was maintained even after 1 hour.
【0037】また、本実施例は画素電極内が非導電体部
をもたない平板電極となっているので共通電極の微細な
パターンとのアライメントは要さないため、製造プロセ
スが簡素化され生産性に優れている。Further, in this embodiment, since the pixel electrode is a flat plate electrode having no non-conductor portion, alignment with a fine pattern of the common electrode is not required, so that the manufacturing process is simplified and production is performed. It has excellent properties.
【0038】(実施例2)図3および図4に本実施例の
表示素子の構成を示す。なお、図1,2に示す実施例1
と同じ符号の部分は同様の部分であり説明を略す。図に
おいて上基板11に形成する共通電極23は画素電極1
4に対向する領域Aを画素ごとに複数の直線ストライプ
状導電体部23aとこれら導電体部を離す非導電体部2
3bとで形成する。導電体部23a、非導電体部23b
ともに8μm間隔であり、領域Aは70μm×70μm
で、画素電極も同寸法に形成される。Example 2 FIGS. 3 and 4 show the structure of the display device of this example. The first embodiment shown in FIGS.
The parts having the same reference numerals as those are the same parts and the explanations thereof are omitted. In the figure, the common electrode 23 formed on the upper substrate 11 is the pixel electrode 1
A plurality of straight stripe-shaped conductor portions 23a for each pixel in the region A opposed to the non-conductor portion 2 which separates these conductor portions from each other.
And 3b. Conductor portion 23a, non-conductor portion 23b
Both are 8 μm apart, and the area A is 70 μm × 70 μm
Thus, the pixel electrode is also formed to have the same size.
【0039】これら電極間にTFTスイッチング素子3
0を介して電源21から電圧を印加すると、図12に示
すようなウォールDL1 、DL2 が発生する。A TFT switching element 3 is provided between these electrodes.
When a voltage is applied from the power source 21 via 0, walls DL1 and DL2 as shown in FIG. 12 are generated.
【0040】実施例1と同じ方法で本実施例素子の電気
光学特性(透過率−印加電圧曲線)を測定した。図5に
0Vから徐々に印加電圧を3.2Vまで増加し、3.2
Vから徐々に0Vまで減少させていったときの透過率−
印加電圧曲線(実施例2)を示す。電圧を印加しない状
態(0V印加)では透過率焼く80%と明るい透過率特
性を示した。また、印加電圧3.2Vにて最小透過率
0.4%と、実施例1以上の良好な散乱状態が得られ
た。また図からあきらかなように電気光学特性にヒステ
リシスは全くなかった。また、印加電圧3.2Vおよび
0Vにて、応答速度特性を測定したところ立上り6ms
ec、立下がり18msecと極めて速い値を得た。The electro-optical characteristics (transmittance-applied voltage curve) of the device of this example were measured in the same manner as in Example 1. As shown in FIG. 5, the applied voltage is gradually increased from 3.2V to 3.2V.
Transmittance when gradually decreasing from V to 0V-
The applied voltage curve (Example 2) is shown. When no voltage was applied (0 V was applied), the transmittance was 80%, which was a bright transmittance characteristic. Further, at the applied voltage of 3.2 V, the minimum transmittance was 0.4%, and the favorable scattering state of Example 1 or higher was obtained. As is clear from the figure, there was no hysteresis in the electro-optical characteristics. Moreover, when the response speed characteristics were measured at an applied voltage of 3.2 V and 0 V, the rising time was 6 ms.
A very fast value of ec and a fall of 18 msec was obtained.
【0041】次に電圧を印加中のウォールノ維持状態
を、偏光顕微鏡による分子配列観察および透過率測定に
よる光散乱状態測定によって調べたところ、本実施例に
おいては印加電圧3.2Vを印加しつづけた場合、1時
間経過しても初期のウォール配列を維持していることが
確認された。Next, the wall-maintaining state during voltage application was examined by observing the molecular arrangement by a polarization microscope and measuring the light-scattering state by transmittance measurement, and in this example, an applied voltage of 3.2 V was continuously applied. In this case, it was confirmed that the initial wall alignment was maintained even after 1 hour.
【0042】(実施例3)図9に示すように、実施例1
と同様の基板を用いて、同様の方法により配向膜15、
16に配向処理F、Rをほどことした後、上基板11側
に粒径5μmの微粒子からなるウォール支持体33(商
品名ミクロパール、積水ファインケミカル製)を分散密
度1000個/mm2 となるように乾式散布法により散
布し、以後の工程は実施例1同様の方法および材料を用
いて本実施例の素子を得た。諸特性を測定したところ、
実施例1と同様の特性が得られ、さらに印加電圧3.3
Vを印加しつづけた場合、10時間経過後も初期のウォ
ール配列を維持していることが確認された。(Embodiment 3) As shown in FIG.
Using the same substrate as the above, the alignment film 15,
After the alignment treatments F and R are applied to 16, the wall support 33 (trade name: Micropearl, manufactured by Sekisui Fine Chemical Co., Ltd.) made of fine particles having a particle size of 5 μm is provided on the side of the upper substrate 11 so that the dispersion density is 1000 pieces / mm 2. Then, the element was sprayed by the dry spraying method, and the subsequent steps were performed using the same method and materials as in Example 1 to obtain the device of this example. When various characteristics were measured,
The same characteristics as in Example 1 were obtained, and the applied voltage 3.3.
When V was continuously applied, it was confirmed that the initial wall alignment was maintained even after 10 hours had passed.
【0043】[0043]
【発明の効果】本発明によれば、偏光素子を用いる必要
がなく、散乱特性がすぐれ駆動電圧の低い、明るくコン
トラスト比の高い素子を得ることができる。また階調表
示でも表示反転視角を生じない非常に視角の広い素子が
得られる。しかもこのような素子を簡単な製造プロセス
で実用的に得ることができる。 さらに、TFT駆動に
よる大型表示容量のディスプレーに適し、また投影型デ
ィスプレーへの応用に適している。According to the present invention, it is not necessary to use a polarizing element, and it is possible to obtain a bright element having excellent scattering characteristics, a low driving voltage, and a high contrast ratio. In addition, even in gradation display, an element having a very wide viewing angle that does not cause a display reversal viewing angle can be obtained. Moreover, such an element can be practically obtained by a simple manufacturing process. Further, it is suitable for a display of a large display capacity driven by a TFT, and also suitable for application to a projection display.
【図1】本発明の一実施例を説明するもので、(a)は
一部斜視図、(b)は(a)をX−X´線で切断した断
面図、(c)は動作状態を説明する断面略図。1A and 1B are views for explaining an embodiment of the present invention, in which FIG. 1A is a partial perspective view, FIG. 1B is a sectional view taken along line XX ′ in FIG. 1A, and FIG. FIG.
【図2】本発明の一実施例を説明するもので、(a)は
共通電極の平面図、(b)は画素電極の平面図。2A and 2B are diagrams illustrating an embodiment of the present invention, in which FIG. 2A is a plan view of a common electrode, and FIG. 2B is a plan view of a pixel electrode.
【図3】本発明の他の実施例を説明するもので、(a)
は一部斜視図、(b)は(a)をX−X´線で切断した
断面図。FIG. 3 illustrates another embodiment of the present invention.
Is a partial perspective view, and (b) is a cross-sectional view of (a) taken along line XX ′.
【図4】本発明の他の実施例を説明するもので、(a)
は共通電極の平面図、(b)は画素電極の平面図。FIG. 4 illustrates another embodiment of the present invention.
Is a plan view of the common electrode, and (b) is a plan view of the pixel electrode.
【図5】本発明の実施例の透過率−印加電圧特性を示す
曲線図。FIG. 5 is a curve diagram showing a transmittance-applied voltage characteristic of the example of the present invention.
【図6】本発明の作用を説明する断面略図。FIG. 6 is a schematic cross-sectional view illustrating the operation of the present invention.
【図7】(a)、(b)は本発明の作用を説明する平面
図。7A and 7B are plan views illustrating the operation of the present invention.
【図8】(a)、(b)は本発明の作用を説明する平面
図。8A and 8B are plan views illustrating the operation of the present invention.
【図9】本発明の作用を説明する断面略面FIG. 9 is a schematic sectional view for explaining the operation of the present invention.
【図10】(a)は従来の構造を示す断面図。FIG. 10A is a sectional view showing a conventional structure.
11…上基板 12…下基板 13…共通電極 13a…導電体部 13b…非導電体部 14…画素電極 DL1 、DL2 …ウォール 11 ... Upper substrate 12 ... Lower substrate 13 ... Common electrode 13a ... Conductor part 13b ... Non-conductive part 14 ... Pixel electrodes DL1, DL2 ... Wall
───────────────────────────────────────────────────── フロントページの続き (72)発明者 石川 正仁 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 (72)発明者 羽藤 仁 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Masahito Ishikawa, No. 8 Shinsugita-cho, Isogo-ku, Yokohama-shi, Kanagawa Stock company, Toshiba Yokohama Works (72) Inventor, Hitoshi Hato, No. 8, Shinsugita-cho, Isogo-ku, Yokohama, Kanagawa Company Toshiba Yokohama Office
Claims (3)
れぞれ有する2枚の基板間にネマティック液晶組成物か
らなる液晶層を狭持してなる液晶表示素子において、 一方の基板の電極が画素ごとに、非導電体部を挟むよう
に有する導電体部からなり、かつ少なくとも各画素ごと
に導電体部が電気的にひとつにつながった電極構造であ
り、前記非導電体部の存在により、前記液晶層に電界を
印加した際の液晶分子のチルト方向が2方向以上取り得
る分子配列になることを特徴とする液晶表示素子。1. A liquid crystal display device comprising a liquid crystal layer made of a nematic liquid crystal composition sandwiched between two substrates each having electrodes facing each other to form a plurality of pixels. For each, it is an electrode structure consisting of a conductor part having a non-conductor part sandwiched between them, and at least each pixel has an electrically connected conductor part, and due to the presence of the non-conductor part, A liquid crystal display device characterized in that the tilt direction of liquid crystal molecules when an electric field is applied to the liquid crystal layer is a molecular arrangement in which two or more directions can be taken.
非導電体部がストライプ状の形状となっていることを特
徴とする請求項1に記載の液晶表示素子。2. The liquid crystal display element according to claim 1, wherein the electrode structure of each pixel is such that the conductor portion and the non-conductor portion have a stripe shape.
が前記液晶層厚より短い微粒子を混入するか、もしく
は、前記基板の法線方向の寸法が前記液晶層厚より低い
突起を前記両基板の少なくとも一方に設けたことを特徴
とする請求項1または請求項2に記載の液晶表示素子。3. A fine particle having a dimension in the normal direction of the substrate shorter than the liquid crystal layer thickness is mixed into the gap between both substrates, or a protrusion having a dimension in the normal direction of the substrate lower than the liquid crystal layer thickness is formed. The liquid crystal display device according to claim 1 or 2, wherein the liquid crystal display device is provided on at least one of both substrates.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33546093A JPH07199205A (en) | 1993-12-28 | 1993-12-28 | Liquid crystal display element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33546093A JPH07199205A (en) | 1993-12-28 | 1993-12-28 | Liquid crystal display element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07199205A true JPH07199205A (en) | 1995-08-04 |
Family
ID=18288810
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33546093A Pending JPH07199205A (en) | 1993-12-28 | 1993-12-28 | Liquid crystal display element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07199205A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19990070436A (en) * | 1998-02-20 | 1999-09-15 | 윤종용 | Liquid crystal display with a new electrode structure |
US6661488B1 (en) | 1997-06-12 | 2003-12-09 | Fujitsu Limited | Vertically-alligned (VA) liquid crystal display device |
US7570332B2 (en) | 1998-05-16 | 2009-08-04 | Samsung Electronics Co., Ltd. | Liquid crystal displays having multi-domains and a manufacturing method thereof |
US7583345B2 (en) | 1999-10-01 | 2009-09-01 | Samsung Electronics Co., Ltd. | Liquid crystal display |
JP2010015183A (en) * | 1999-02-15 | 2010-01-21 | Sharp Corp | Liquid crystal display |
US9041891B2 (en) | 1997-05-29 | 2015-05-26 | Samsung Display Co., Ltd. | Liquid crystal display having wide viewing angle |
-
1993
- 1993-12-28 JP JP33546093A patent/JPH07199205A/en active Pending
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9041891B2 (en) | 1997-05-29 | 2015-05-26 | Samsung Display Co., Ltd. | Liquid crystal display having wide viewing angle |
US7821603B2 (en) | 1997-06-12 | 2010-10-26 | Sharp Kabushiki Kaisha | Vertically-alligned (VA) liquid crystal display device |
US7167224B1 (en) | 1997-06-12 | 2007-01-23 | Sharp Kabushiki Kaisha | Vertically-aligned (VA) liquid crystal display device |
US6661488B1 (en) | 1997-06-12 | 2003-12-09 | Fujitsu Limited | Vertically-alligned (VA) liquid crystal display device |
US7760305B2 (en) | 1997-06-12 | 2010-07-20 | Sharp Kabushiki Kaisha | Liquid crystal display device with multiple alignment structures |
US7227606B2 (en) | 1997-06-12 | 2007-06-05 | Sharp Kabushiki Kaisha | Vertically-alligned (VA) liquid crystal display device |
US7304703B1 (en) | 1997-06-12 | 2007-12-04 | Sharp Kabushiki Kaisha | Vertically-aligned (VA) liquid crystal display device |
USRE43123E1 (en) | 1997-06-12 | 2012-01-24 | Sharp Kabushiki Kaisha | Vertically-aligned (VA) liquid crystal display device |
US7224421B1 (en) | 1997-06-12 | 2007-05-29 | Sharp Kabushiki Kaisha | Vertically-aligned (VA) liquid crystal display device |
US6724452B1 (en) | 1997-06-12 | 2004-04-20 | Fujitsu Display Technologies Corporation | Vertically aligned (VA) liquid crystal display device |
KR19990070436A (en) * | 1998-02-20 | 1999-09-15 | 윤종용 | Liquid crystal display with a new electrode structure |
US7573554B2 (en) | 1998-05-16 | 2009-08-11 | Samsung Electronics Co., Ltd. | Liquid crystal displays having multi-domains and a manufacturing method thereof |
US7570332B2 (en) | 1998-05-16 | 2009-08-04 | Samsung Electronics Co., Ltd. | Liquid crystal displays having multi-domains and a manufacturing method thereof |
JP2010015183A (en) * | 1999-02-15 | 2010-01-21 | Sharp Corp | Liquid crystal display |
US9557612B2 (en) | 1999-10-01 | 2017-01-31 | Samsung Display Co., Ltd. | Liquid crystal display |
US8174651B2 (en) | 1999-10-01 | 2012-05-08 | Samsung Electronics Co., Ltd. | Liquid crystal display |
US8456597B2 (en) | 1999-10-01 | 2013-06-04 | Samsung Display Co., Ltd. | Liquid crystal display |
US8817213B2 (en) | 1999-10-01 | 2014-08-26 | Samsung Display Co., Ltd. | Liquid crystal display |
US7583345B2 (en) | 1999-10-01 | 2009-09-01 | Samsung Electronics Co., Ltd. | Liquid crystal display |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR0148502B1 (en) | Lcd device | |
JP3529460B2 (en) | Liquid crystal display | |
US6678027B2 (en) | Fringe field switching mode LCD | |
JP3529434B2 (en) | Liquid crystal display device | |
JPH09160042A (en) | Liquid crystal display element | |
JPH09160041A (en) | Liquid crystal display element | |
US4068925A (en) | Liquid crystal display device | |
US20060250561A1 (en) | Liquid crystal display device | |
JPH06160878A (en) | Liquid crystal display device | |
EP1131671A1 (en) | Vertically aligned helix-deformed liquid crystal display | |
JPH0829812A (en) | Liquid crystal display device | |
JPH07181493A (en) | Liquid crystal display element | |
JP3130682B2 (en) | Liquid crystal display device | |
JP2523811B2 (en) | Liquid crystal light modulator | |
JPH07199205A (en) | Liquid crystal display element | |
JPH08136941A (en) | Liquid crystal display element | |
JP2001311969A (en) | Light modulating device | |
US5557435A (en) | Liquid crystal device and display apparatus | |
JPH0876077A (en) | Electric field control diffraction grating and liquid crystal element | |
JPH0756148A (en) | Liquid crystal display element | |
JPH0792458A (en) | Liquid crystal display element | |
JPH06281938A (en) | Liquid crystal display element | |
JPH09230364A (en) | Liquid crystal display device | |
JPH05107534A (en) | Liquid crystal display element | |
JPH06110068A (en) | Liquid crystal display device |