JPH07180529A - Exhaust emission control device for diesel engine - Google Patents
Exhaust emission control device for diesel engineInfo
- Publication number
- JPH07180529A JPH07180529A JP5322661A JP32266193A JPH07180529A JP H07180529 A JPH07180529 A JP H07180529A JP 5322661 A JP5322661 A JP 5322661A JP 32266193 A JP32266193 A JP 32266193A JP H07180529 A JPH07180529 A JP H07180529A
- Authority
- JP
- Japan
- Prior art keywords
- filter
- flow rate
- exhaust
- exhaust flow
- exhaust gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B3/00—Engines characterised by air compression and subsequent fuel addition
- F02B3/06—Engines characterised by air compression and subsequent fuel addition with compression ignition
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Exhaust Gas After Treatment (AREA)
- Processes For Solid Components From Exhaust (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、ディーゼル機関から排
出される排気微粒子をフィルタにより捕集し、フィルタ
に堆積した排気微粒子が所定量に達した時、堆積した排
気微粒子を燃焼除去するフィルタ再生機能を備えたディ
ーゼル機関の排気浄化装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a filter regeneration that collects exhaust particulates discharged from a diesel engine by a filter and burns and removes the exhaust particulates deposited when the exhaust particulates deposited on the filter reach a predetermined amount. The present invention relates to an exhaust emission control device for a diesel engine having a function.
【0002】[0002]
【従来の技術】従来、ディーゼル機関から排出される微
粒子をフィルタにより捕集し、捕集した微粒子を電気ヒ
ータにより燃焼除去してフィルタを再生するフィルタ再
生機能を備えたディーゼル機関の排気浄化装置として
は、例えば、SAE920139に示されるようなもの
がある。2. Description of the Related Art Conventionally, as an exhaust emission control device of a diesel engine having a filter regeneration function of collecting fine particles discharged from a diesel engine with a filter and burning and removing the collected fine particles with an electric heater to regenerate the filter. Is, for example, as shown in SAE920139.
【0003】かかる従来装置は、排気通路を4分割し、
各通路に再生用の電気ヒータにフィルタ材のセラミック
繊維を巻いたヒータ一体型のフィルタを設け、各フィル
タと直列にポペット弁を設け、そのポペット弁のバルブ
シートに、再生時にフィルタへ排気を供給するためのオ
リフィスを設けてある。そして、再生時は再生するフィ
ルタと直列のポペット弁を閉め、ヒータに所定時間通電
する。In such a conventional device, the exhaust passage is divided into four,
An electric heater for regeneration is provided in each passage with a heater-integrated filter wound with ceramic fiber as a filter material, a poppet valve is provided in series with each filter, and exhaust gas is supplied to the filter seat of the poppet valve during regeneration. An orifice is provided for this purpose. Then, during regeneration, the poppet valve in series with the filter to be regenerated is closed and the heater is energized for a predetermined time.
【0004】しかし、このような従来のディーゼル機関
の排気浄化装置にあっては、再生時のフィルタへの排気
供給を行う場合、ヒータによるフィルタ昇温を効率的に
行うために、再生中のフィルタへ流れる排気漏れ流量を
適切な量に絞る必要があるが、その漏れ流量を調整する
手段を備えていないため、必要量以上の多量の排気がフ
ィルタへ流入し、再生に必要な時間が延長したり、若し
くは、確実な再生を行えないという問題点があった。However, in such a conventional exhaust gas purification apparatus for a diesel engine, when the exhaust gas is supplied to the filter at the time of regeneration, in order to efficiently raise the temperature of the filter by the heater, the filter being regenerated It is necessary to limit the amount of exhaust leakage flow to the appropriate amount, but since there is no means to adjust the leakage flow, a large amount of exhaust exceeding the required amount flows into the filter and the time required for regeneration is extended. Or, there is a problem that reliable reproduction cannot be performed.
【0005】このような問題点を解決するものとして、
例えば、機関運転条件によって再生中のフィルタへの流
入排気流量を排気流量制御弁で制御する方式が提案され
ている(例えば特願平5−224501号等)。ここ
で、捕集された排気微粒子を燃焼させるためには再生す
るフィルタへ酸素を供給する必要があるが、必要な酸素
量を確保するため排気流量が多くなった場合、ヒータに
よってフィルタへ与えられた熱が奪われ、再生に必要な
時間が延長し、再生に用いるエネルギ量が増加する。こ
の排気流によるエネルギ・ロスは、フィルタへ流れる排
気流量、排気温度、フィルタ温度によって決定されるの
で、従来装置ではこれらから求められる排気流量となる
よう排気流量特性を設定していた。As a means for solving such a problem,
For example, a method has been proposed in which the exhaust flow rate control valve controls the flow rate of exhaust gas flowing into the filter during regeneration according to engine operating conditions (for example, Japanese Patent Application No. 5-224501). Here, in order to burn the collected exhaust particulates, it is necessary to supply oxygen to the filter to be regenerated, but when the exhaust gas flow rate increases to secure the required oxygen amount, it is given to the filter by the heater. Heat is taken away, the time required for regeneration is extended, and the amount of energy used for regeneration is increased. Since the energy loss due to the exhaust flow is determined by the exhaust flow rate flowing to the filter, the exhaust temperature, and the filter temperature, the exhaust flow rate characteristic is set in the conventional device so that the exhaust flow rate is obtained from these.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、上記従
来装置では、フィルタの冷却を防ぐという観点のみで排
気流量の設定がなされていたため、再生中のフィルタへ
供給される排気流量はエンジンから排出される排気流量
に略比例した流量に管理されていた。つまり、ある一定
エンジン回転数では、排気温度の低い低負荷でフィルタ
へ流れる空気流量を設定しておけば良く、負荷が高くな
るにつれて排気温度は高くなるのでフィルタの冷却は問
題ないとされていた。そのため、低回転・高負荷のよう
に排気温度は高いが排気流量が少なく、排気中の酸素濃
度が低い条件では再生中のフィルタへ供給される酸素量
が不足するためフィルタに堆積した微粒子の燃焼が良好
になされず、再生に必要なヒータ通電時間が延長した
り、若しくは、再生が不良になり、圧損が回復しないと
いう問題があった。However, in the above-mentioned conventional apparatus, the exhaust flow rate is set only from the viewpoint of preventing the cooling of the filter, so the exhaust flow rate supplied to the filter being regenerated is exhausted from the engine. The flow rate was controlled to be approximately proportional to the exhaust flow rate. In other words, at a certain engine speed, it is sufficient to set the flow rate of the air flowing to the filter at a low load with a low exhaust temperature, and the exhaust temperature rises as the load increases, so cooling of the filter is said to be no problem. . Therefore, the exhaust temperature is high, such as low rotation and high load, but the exhaust flow rate is low, and under conditions where the oxygen concentration in the exhaust is low, the amount of oxygen supplied to the filter being regenerated is insufficient, so the combustion of particulates deposited on the filter However, there was a problem that the heater energization time required for regeneration was extended or regeneration was defective and the pressure loss was not recovered.
【0007】本発明は、このような従来の問題点に着目
してなされたものであり、フィルタの冷却を防止し、し
かも、必要酸素量を確保できるよう排気流量を制御する
ことにより、再生の確実化及び再生に要する電力の低減
を図ることができるディーゼル機関の排気浄化装置を提
供することを目的とする。The present invention has been made by paying attention to such a conventional problem, and it is possible to prevent regeneration of the filter and to control the exhaust flow rate so as to secure the required oxygen amount, thereby regenerating the regeneration. An object of the present invention is to provide an exhaust emission control device for a diesel engine, which is capable of ensuring and reducing electric power required for regeneration.
【0008】[0008]
【課題を解決するための手段】このため、本発明のディ
ーゼル機関の排気浄化装置では、図1に示すように、デ
ィーゼル機関の排気通路を複数に分岐し、各分岐通路内
に、機関から排出される微粒子を捕集するフィルタと、
該フィルタに捕集された微粒子を燃焼除去するための電
気ヒータと、前記フィルタと直列に設けられ当該フィル
タを流れる排気流量を制御する排気流量制御弁とを設け
る一方、機関運転状態検出手段と、排気温度検出手段
と、前記各フィルタ再生時に、再生するフィルタが過冷
却とならない範囲で当該フィルタ側に流せる最大排気流
量を前記排気温度検出手段の検出値に基づいて演算する
最大排気流量演算手段と、前記機関運転状態検出手段で
検出される機関運転状態に応じて排気中の酸素濃度を算
出する酸素濃度算出手段と、該酸素濃度算出手段の算出
値に基づいて再生に必要な酸素量を確保するのに必要な
再生用の排気流量を演算する再生用排気流量演算手段
と、前両排気流量演算手段の演算値に基づいて再生する
フィルタ側の分岐通路の排気流量制御弁開度を制御する
弁開度制御手段と、フィルタ再生時に再生するフィルタ
側の電気ヒータに通電するヒータ通電制御手段とを備え
て構成した。Therefore, in the exhaust emission control system for a diesel engine of the present invention, as shown in FIG. 1, the exhaust passage of the diesel engine is branched into a plurality of exhaust passages, and the exhaust passage is exhausted from the engine into each branch passage. A filter for collecting fine particles to be collected,
An electric heater for burning and removing the particulates trapped by the filter, and an exhaust flow rate control valve that is provided in series with the filter and controls the exhaust flow rate that flows through the filter are provided, while the engine operating state detection means is provided, Exhaust temperature detecting means, and a maximum exhaust flow rate calculating means for calculating the maximum exhaust flow rate that can be flown to the filter side in a range where the filter to be regenerated does not become supercooled when the filters are regenerated, based on the detection value of the exhaust temperature detecting means. An oxygen concentration calculating means for calculating the oxygen concentration in the exhaust gas according to the engine operating state detected by the engine operating state detecting means, and an oxygen amount necessary for regeneration based on the calculated value of the oxygen concentration calculating means Regeneration exhaust flow rate calculation means for calculating the regeneration exhaust flow rate necessary for the regeneration, and a branch passage on the filter side for regeneration based on the calculation values of the front and rear exhaust flow rate calculation means And valve opening control means for controlling the exhaust gas flow rate control valve opening, constructed by a heater energization control means for energizing the filter side of the electric heater to be played during filter regeneration.
【0009】また、前記再生用排気流量演算手段で演算
された排気流量が、前記最大排気流量演算手段で演算さ
れた排気流量より多い時に、前記排気流量制御弁を所定
時間全閉とする制御手段を備える構成とするとよい。Further, when the exhaust flow rate calculated by the regeneration exhaust flow rate calculation means is larger than the exhaust flow rate calculated by the maximum exhaust flow rate calculation means, the exhaust flow rate control valve is fully closed for a predetermined time. It is preferable to have a configuration including.
【0010】[0010]
【作用】かかる構成において、再生するフィルタの冷却
防止の観点から、排気温度に基づいてフィルタが過冷却
とならない範囲で流せる最大排気流量を演算すると共
に、排気微粒子を良好に燃焼させるという観点から、排
気中の酸素濃度を算出し、この排気中酸素濃度値から必
要最低限の再生用排気流量を演算する。そして、両方の
排気流量値に基づいて再生するフィルタ側の排気流量制
御弁の開度を決定する。In such a construction, from the viewpoint of preventing the cooling of the filter to be regenerated, from the viewpoint of calculating the maximum exhaust flow rate that can flow in the range where the filter does not become supercooled, based on the exhaust temperature, and in order to satisfactorily burn the exhaust particulates, The oxygen concentration in the exhaust gas is calculated, and the minimum required regeneration exhaust gas flow rate is calculated from this oxygen concentration value in the exhaust gas. Then, the opening degree of the exhaust gas flow rate control valve on the filter side to be regenerated is determined based on both the exhaust gas flow rate values.
【0011】このように、本発明では、フィルタの過冷
却と排気微粒子の燃焼性の両方の観点から排気流量を制
御するので、フィルタの過冷却を防止しつつフィルタに
堆積した排気微粒子を良好に燃焼させることができ、ヒ
ータ通電時間が必要以上に延びず電力の無駄を防止でき
る。また、良好なフィルタ再生により圧損の回復が図れ
るようになる。As described above, according to the present invention, the exhaust gas flow rate is controlled from the viewpoints of both the supercooling of the filter and the combustibility of the exhaust particulates, so that the exhaust particulates deposited on the filter can be favorably prevented while preventing the supercooling of the filter. It is possible to combust, and it is possible to prevent waste of electric power because the heater energization time is not extended more than necessary. Further, the pressure loss can be recovered by the good filter regeneration.
【0012】また、本発明では、排気微粒子を良好に燃
焼させるという観点から演算された必要最低限の再生用
排気流量が、再生するフィルタの冷却防止の観点から演
算された最大排気流量を上回る時に、再生するフィルタ
側の排気流量制御弁を所定時間全閉に制御する。これに
より、フィルタの冷却防止を考慮した最大排気流量を上
回る排気流量がフィルタに供給されることはなく、フィ
ルタの冷却防止の確実性を高めることができるようにな
る。Further, according to the present invention, when the minimum required exhaust flow rate for regeneration calculated from the viewpoint of excellent combustion of exhaust particulates exceeds the maximum exhaust flow rate calculated from the viewpoint of preventing cooling of the filter to be regenerated. , The exhaust flow rate control valve on the filter side for regeneration is controlled to be fully closed for a predetermined time. As a result, the exhaust flow rate exceeding the maximum exhaust flow rate in consideration of the filter cooling prevention is not supplied to the filter, and the reliability of the filter cooling prevention can be enhanced.
【0013】[0013]
【実施例】以下に本発明の実施例を図面に基づいて説明
する。図2は本発明の一実施例のシステム構成を示す図
である。図2において、エンジン本体1には、吸気通路
2及び排気通路3が接続されている。排気通路3は、途
中で2つの分岐通路11,21に分岐している。各分岐
通路11,21内には、通路面積を拡大した上で上流側
から順次ヒータ12,22及び排気微粒子捕集用のフィ
ルタ13,23を介装してある。また、各フィルタ1
3,23の更に下流側にはそれぞれ排気流量制御弁1
4,24を介装してある。そして、排気流量制御弁1
4,24の下流側で再び排気通路3を合流させてある。
前記各ヒータ12,22は、コントロールユニット30
によってON/OFF制御されるヒータリレー15,2
5を介して通電制御される。また、前記排気流量制御弁
14,24は、同じくコントロールユニット30によっ
て制御される駆動アクチュエータ16,26を介して開
度が制御される。ここで、フィルタ13,23の素材と
しては、セラミック繊維、セラミックフォーム、メタル
フォーム、焼結金属のいずれを使用してもよい。また、
前記排気流量制御弁14,24としては、バタフライ・
バルブ、スライド式バルブ、ポペット式バルブ等を用い
ることができる。Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 is a diagram showing the system configuration of an embodiment of the present invention. In FIG. 2, an intake passage 2 and an exhaust passage 3 are connected to the engine body 1. The exhaust passage 3 branches into two branch passages 11 and 21 on the way. Inside each of the branch passages 11 and 21, heaters 12 and 22 and filters 13 and 23 for collecting exhaust particulates are sequentially provided from the upstream side after enlarging the passage area. In addition, each filter 1
Exhaust flow control valve 1 is provided on the further downstream side of 3, 23, respectively.
4, 24 are interposed. Then, the exhaust flow control valve 1
The exhaust passages 3 are joined again on the downstream side of 4, 24.
Each of the heaters 12 and 22 has a control unit 30.
ON / OFF controlled heater relays 15 and 2
Energization is controlled via 5. Further, the opening degree of the exhaust flow rate control valves 14 and 24 is controlled via drive actuators 16 and 26 that are also controlled by the control unit 30. Here, as the material of the filters 13 and 23, any of ceramic fiber, ceramic foam, metal foam, and sintered metal may be used. Also,
The exhaust flow rate control valves 14 and 24 are butterfly
A valve, a slide valve, a poppet valve, etc. can be used.
【0014】また、排気通路3は、分岐通路11,21
の上流側で分岐して吸気通路2に接続する排気還流通路
(以下、EGR通路とする)4が設けられ、該EGR通
路4には、EGR弁5が介装されコントロールユニット
30からの信号に基づいて駆動アクチュエータ6を介し
て駆動制御される。排気通路3のEGR通路4と分岐通
路11,21との間には、排気温度検出手段としての排
温センサ31が設けられている。また、エンジン本体1
には、エンジン回転数Nを検知する回転数センサ32及
びエンジンの負荷Qを燃料噴射ポンプのコントロールレ
バー開度から検知するコントロールレバーセンサ33、
エンジン水温を検知する水温センサ34が設けられてい
る。The exhaust passage 3 has branch passages 11 and 21.
An exhaust gas recirculation passage (hereinafter referred to as an EGR passage) 4 that branches on the upstream side of the EGR passage 4 and is connected to the intake passage 2 is provided, and an EGR valve 5 is provided in the EGR passage 4 to receive a signal from the control unit 30. Based on this, drive control is performed via the drive actuator 6. An exhaust temperature sensor 31 as exhaust temperature detecting means is provided between the EGR passage 4 and the branch passages 11 and 21 of the exhaust passage 3. Also, the engine body 1
Includes a rotation speed sensor 32 for detecting the engine rotation speed N, a control lever sensor 33 for detecting the engine load Q from the control lever opening of the fuel injection pump,
A water temperature sensor 34 for detecting the engine water temperature is provided.
【0015】そして、コントロールユニット30には、前
記各センサからの信号に加えて車速センサ35からの信
号が入力し、これら機関運転状態検出手段を構成する各
センサから入力する各信号に基づいて、後述するフロー
チャートに示すように、排気中酸素濃度、再生用排気流
量、最大排気流量の各演算等を実行し、また、各フィル
タの再生時期を判断し、再生するフィルタ13又は23
側のヒータ12又は22への通電及び排気流量制御弁1
4又は24の開度の制御を行う。従って、コントロール
ユニット30が、最大排気流量演算手段、酸素濃度算出
手段、再生用排気流量演算手段、弁開度制御手段及びヒ
ータ通電制御手段の機能を有し、これら機能は、後述す
るフローチャートに示すようにソフトウエア的に備えら
れている。The control unit 30 receives the signals from the vehicle speed sensor 35 in addition to the signals from the sensors, and based on the signals input from the sensors constituting the engine operating state detecting means, As shown in the flow chart described later, the filter 13 or 23 for performing regeneration such as calculation of oxygen concentration in exhaust gas, regeneration exhaust flow rate, maximum exhaust flow rate, etc., and determining regeneration time of each filter.
For energizing the exhaust side heater 12 or 22 and the exhaust flow control valve 1
The opening degree of 4 or 24 is controlled. Therefore, the control unit 30 has the functions of the maximum exhaust flow rate calculation means, the oxygen concentration calculation means, the regeneration exhaust flow rate calculation means, the valve opening control means, and the heater energization control means, and these functions are shown in the flowchart described later. It is provided as software.
【0016】次に、図3〜図6に示すフローチャートに
基づいて本実施例の排気浄化装置の動作を説明する。図
3及び図4は、本実施例装置のフィルタによる微粒子の
捕集動作及びフィルタ再生動作の制御基本フローチャー
トである。尚、ここでフィルタの再生動作は交互に行う
ので、便宜的に、分岐通路11側のヒータ12,フィル
タ13,排気流量制御弁14を、それぞれ第1ヒータ,
第1フィルタ,第1制御弁と呼び、分岐通路21側のヒ
ータ22,フィルタ23,排気流量制御弁24を、それ
ぞれ第2ヒータ,第2フィルタ,第2制御弁と呼ぶこと
とする。Next, the operation of the exhaust gas purification apparatus of this embodiment will be described based on the flow charts shown in FIGS. FIG. 3 and FIG. 4 are basic control flowcharts of the particulate collection operation and the filter regeneration operation by the filter of the apparatus of this embodiment. Since the filter regeneration operation is alternately performed here, for convenience, the heater 12 on the side of the branch passage 11, the filter 13, and the exhaust flow control valve 14 are connected to the first heater,
The heater 22, the filter 23, and the exhaust flow rate control valve 24 on the side of the branch passage 21 will be referred to as a first heater and a second control valve, respectively.
【0017】まず、ステップ1(図中S1で示し、以下
同様とする)では、回転数センサ32、コントロールレ
バーセンサ33から、エンジン回転数Nとエンジン負荷
Qを読み込む。ステップ2では、ステップ1で読み込ん
だエンジン回転数Nとエンジン負荷Qに基づいて、図1
1のマップから単位時間当たりの排気微粒子排出量ΔP
Mを算出する。First, in step 1 (indicated by S1 in the drawing, the same applies hereinafter), the engine speed N and the engine load Q are read from the speed sensor 32 and the control lever sensor 33. In Step 2, based on the engine speed N and the engine load Q read in Step 1,
Emission amount of exhaust particulate per unit time ΔP
Calculate M.
【0018】ステップ3では、再生フラグ1がONであ
るか否かを判定する。再生フラグ1がONの時は、第1
フィルタが再生中であると判断し、排気微粒子を第2フ
ィルタのみで捕集するとして、ステップ7で、ステップ
2で算出した排気微粒子量ΔPMに予め設定されたフィ
ルタ捕集効率を乗じた値を第2フィルタの現在の堆積量
に加算して第2フィルタの総堆積量β2 の検出を行い、
更に、ステップ9で再生中の第1フィルタ側の第1制御
弁の開度を再生中の運転条件変化に対応して後述の図6
に示すフローチャートの如く調節する。In step 3, it is determined whether the reproduction flag 1 is ON. When the reproduction flag 1 is ON, the first
It is determined that the filter is being regenerated, and exhaust particulate matter is collected only by the second filter. In step 7, a value obtained by multiplying the exhaust particulate quantity ΔPM calculated in step 2 by a preset filter collection efficiency is used. The total deposition amount β 2 of the second filter is detected by adding to the current deposition amount of the second filter,
Further, the opening degree of the first control valve on the side of the first filter which is being regenerated in step 9 corresponds to the change in the operating condition during the regeneration as shown in FIG.
Adjust as shown in the flow chart.
【0019】ステップ3の判定がNO(再生フラグ1が
OFF)の時は、ステップ4に進み、再生フラグ2がO
Nか否かを判定する。再生フラグ2がONの時は、第2
フィルタ再生中と判断し、ステップ7,9と同様にし
て、ステップ6で第1フィルタの総堆積量β1 の検出を
行い、ステップ8で第2制御弁の開度調整を行う。ステ
ップ4で再生フラグ2がONでないと判断された場合
は、ステップ5において、第1及び第2フィルタともに
再生中でないと判断し、排気微粒子の堆積量ΔPMを、
第1及び第2フィルタに分配して加算し、両フィルタの
総堆積量β1とβ2 の検出を行う。If the determination in step 3 is NO (reproduction flag 1 is OFF), the process proceeds to step 4 and reproduction flag 2 is set to 0.
It is determined whether it is N or not. When the reproduction flag 2 is ON, the second
It is determined that the filter is being regenerated, and in the same manner as in steps 7 and 9, the total deposition amount β 1 of the first filter is detected in step 6, and the opening degree of the second control valve is adjusted in step 8. When it is determined in step 4 that the regeneration flag 2 is not ON, it is determined in step 5 that neither the first filter nor the second filter is being regenerated, and the exhaust particulate deposition amount ΔPM is set to
The total deposition amounts β 1 and β 2 of both filters are detected by dividing and adding to the first and second filters.
【0020】次に、ステップ10、11において、各フ
ィルタの総堆積量β1 、β2 が、再生時期と判断される
所定量βRe に達したか否かをそれぞれ判定する。そし
て、β1 ≧βRe の時、即ち第1フィルタ側が再生時期
であると判断されたら、ステップ13、15、17で、
再生フラグ1をONとし、第1制御弁の開度調整を実行
し、第1ヒータをON(通電)とする。また、β2 ≧β
Re の時、即ち第2フィルタ側が再生時期と判断された
場合は、ステップ12、14、16で、再生フラグ2を
ONとし、第2制御弁の開度調整を実行し、第2ヒータ
をON(通電)とする。Next, in steps 10 and 11, it is judged whether or not the total accumulation amounts β 1 and β 2 of the respective filters have reached a predetermined amount βRe which is judged to be the regeneration time. Then, when β 1 ≧ βRe, that is, when it is determined that the regeneration time is on the first filter side, in steps 13, 15, and 17,
The regeneration flag 1 is turned on, the opening degree of the first control valve is adjusted, and the first heater is turned on (energized). Also, β 2 ≧ β
When Re, that is, when it is determined that the second filter side is the regeneration time, the regeneration flag 2 is set to ON in steps 12, 14 and 16, the opening degree of the second control valve is adjusted, and the second heater is turned on. (Energized).
【0021】そして、ステップ16又は17でヒータが
ONされた時点から、ヒータ通電時間の計時を開始し、
ステップ18又は19の判定がYESとなるまで、即
ち、再生中のフィルタ側のヒータ通電時間Th2(第2ヒ
ータ側)又はTh1(第1ヒータ側)が所定時間Treに達
するまで通電を行う。ステップ18又は19で、ヒータ
通電時間が所定時間に達したと判定された時には、再生
終了と判断し、再生が第1フィルタであれば、ステップ
21,23,25,27で、第1ヒータをOFFにし、
第1制御弁を全開にし、再生フラグ1をOFFとし、排
気微粒子の総堆積量β1 の値を0にクリアし、再生動作
を終了する。また、再生が第2フィルタであれば、ステ
ップ20,22,24,26で、第2ヒータをOFFに
し、第2制御弁を全開にし、再生フラグ2をOFFと
し、排気微粒子の総堆積量β2 の値を0にクリアし、再
生動作を終了する。Then, when the heater is turned on in step 16 or 17, the heater energization time starts to be measured,
Energization is performed until the determination in step 18 or 19 is YES, that is, until the heater energization time Th 2 (second heater side) or Th 1 (first heater side) on the filter side during regeneration reaches a predetermined time Tre. . When it is determined in step 18 or 19 that the heater energization time has reached the predetermined time, it is determined that the regeneration is finished, and if the regeneration is the first filter, the first heater is turned on in steps 21, 23, 25 and 27. Turn it off,
The first control valve is fully opened, the regeneration flag 1 is turned off, the value of the total deposition amount β 1 of exhaust particulates is cleared to 0, and the regeneration operation is ended. If the regeneration is the second filter, in steps 20, 22, 24, and 26, the second heater is turned off, the second control valve is fully opened, the regeneration flag 2 is turned off, and the total accumulation amount β of exhaust particulates β a value of 2 is cleared to 0, the reproduction operation is ended.
【0022】上述した再生動作において、フィルタの再
生時期と判断した時に、制御弁の開度を調整する(図3
のフローチャートのステップ14、16)のは、再生に
際し、再生する側のフィルタの冷却防止と微粒子の燃焼
において要求される必要酸素量とに応じた排気流量を、
再生側のフィルタに供給するためである。かかる制御弁
の開度調整動作の詳細を、図5に示すフローチャートを
参照して説明する。In the above-mentioned regeneration operation, when it is judged that it is time to regenerate the filter, the opening of the control valve is adjusted (see FIG. 3).
Steps 14 and 16) of the flow chart of the above are, when regenerating, the exhaust flow rate according to the cooling prevention of the filter on the regenerating side and the required oxygen amount required for combustion of fine particles,
This is for supplying to the filter on the reproduction side. Details of the opening degree adjusting operation of the control valve will be described with reference to the flowchart shown in FIG.
【0023】まず、ステップ31では、回転数センサ3
2と、コントロールレバーセンサ33から、エンジン回
転数Nとエンジン負荷Qを読み込む。ステップ32で、
ステップ31で読み込んだエンジン回転数Nに基づい
て、図8に示すマップから排気流量を算出する。ステッ
プ33では、排温センサ31から排気温度Texを読み込
む。尚、排気温度Texは、排温センサから読み込む代わ
りに図7に示すようなマップを用いて算出してもよい。First, in step 31, the rotation speed sensor 3
2, the engine speed N and the engine load Q are read from the control lever sensor 33. In step 32,
The exhaust flow rate is calculated from the map shown in FIG. 8 based on the engine speed N read in step 31. In step 33, the exhaust temperature Tex is read from the exhaust temperature sensor 31. The exhaust temperature Tex may be calculated using a map as shown in FIG. 7 instead of being read from the exhaust temperature sensor.
【0024】ステップ34では、ステップ33で読み込
んだ排気温度Texから決定されるフィルタの冷却防止を
考慮した最大排気流量Vmax を算出する。最大排気流量
Vmax は、フィルタがヒータによって昇温される条件の
温度である700℃と排気温度Texの差に基づいて演算
され、次の式で求める。 Vmax =K1 +K2(Tex−700) K1 ,K2 は
定数 ステップ35では、ステップ32で求めた排気流量とス
テップ34で算出した最大排気流量Vmax からフィルタ
冷却防止を考慮した制御弁の開度Otpを図12に示すマ
ップから算出する。In step 34, the maximum exhaust flow rate Vmax which is determined from the exhaust temperature Tex read in step 33 and which takes into account the cooling prevention of the filter is calculated. The maximum exhaust flow rate Vmax is calculated based on the difference between 700 ° C., which is the temperature under which the filter is heated by the heater, and the exhaust temperature Tex, and is calculated by the following equation. Vmax = K 1 + K 2 ( Tex-700) K 1, K 2 is the constant step 35, it opens up the exhaust flow control valve in consideration of the filter cooling prevention from Vmax calculated by the exhaust flow rate and the step 34 obtained at step 32 The degree Otp is calculated from the map shown in FIG.
【0025】次に、ステップ36では、機関の運転状態
からEGR条件を判定し、ステップ37で、ステップ3
6のEGR条件判定に基づいて、EGR条件を考慮した
排気中酸素濃度を算出する。ここで、EGRは、エンジ
ン回転数、エンジン負荷、水温、車速等に応じて設定さ
れているが、EGR有りの時には目標とするEGR率が
設定されているのが一般的であり、EGRの有無によっ
て、図9と図10のマップを切替えて排気中の酸素濃度
の算出を行う。Next, in step 36, the EGR condition is judged from the operating state of the engine, and in step 37, step 3
On the basis of the EGR condition determination of No. 6, the exhaust gas oxygen concentration in consideration of the EGR condition is calculated. Here, the EGR is set according to the engine speed, the engine load, the water temperature, the vehicle speed, etc. However, when the EGR is present, the target EGR rate is generally set. By switching the maps of FIGS. 9 and 10, the oxygen concentration in the exhaust gas is calculated.
【0026】ステップ38では、ステップ37で求めた
排気中酸素濃度から決定される、微粒子の燃焼に要求さ
れる必要酸素量を確保するための最小排気流量Vmin を
算出する。この最小排気流量Vmin は、次の式で演算さ
れる。 Vmin =(AIR/Rt)×(0.21/EO2 ) ここで、AIR: βRe の排気微粒子を燃焼させるの
に必要な大気条件(21%O2 ) Rt : 再生時間(例えば5分) EO2 : 排気中酸素濃度ステップ39では、ステップ
32で求めた排気流量とステップ38で求めた最小排気
流量Vmin から微粒子の燃焼性を考慮した制御弁の開度
Oo2を、ステップ35と同様に図12に示すマップから
算出する。In step 38, the minimum exhaust flow rate Vmin for securing the required oxygen amount required for combustion of fine particles, which is determined from the oxygen concentration in the exhaust gas obtained in step 37, is calculated. This minimum exhaust flow rate Vmin is calculated by the following equation. Vmin = (AIR / Rt) × (0.21 / EO 2 ), where AIR: Atmospheric condition necessary to burn the exhaust gas particles of βRe (21% O 2 ) Rt: Regeneration time (for example, 5 minutes) EO 2 : In step 39 of the oxygen concentration in exhaust gas, the opening degree Oo 2 of the control valve considering the combustibility of fine particles is calculated from the exhaust flow rate obtained in step 32 and the minimum exhaust flow rate Vmin obtained in step 38 in the same manner as in step 35. It is calculated from the map shown in FIG.
【0027】ステップ40では、ステップ35とステッ
プ39でそれぞれ求めた制御弁開度OtpとOo2に両立域
(重複域)が存在するか否かを判定し、両立域が存在す
る場合には、ステップ44に進み、両弁開度の両立域の
範囲内に、実際の弁開度Oreを設定する。この弁開度O
reは、両立域の範囲内であればどのような開度でもよい
が、昇温・冷却防止の観点から弁開度Oo2に近い値とす
る方が好ましい。In step 40, it is judged whether or not there is a compatible range (overlap range) between the control valve opening degrees Otp and Oo 2 obtained in step 35 and step 39, respectively. The routine proceeds to step 44, where the actual valve opening degree Ore is set within the range of both valve opening degrees compatible with each other. This valve opening O
Re may be any opening as long as it is within the compatibility range, but it is preferable to set it to a value close to the valve opening Oo 2 from the viewpoint of preventing temperature rise and cooling.
【0028】しかし、制御弁の特性によっては算出され
た弁開度OtpとOo2に両立域が存在しない場合もある。
両立域が存在しない場合には、ヒータによる昇温と酸素
供給による微粒子の燃焼とを分離して制御する必要があ
り、ヒータによる昇温制御を優先すべく、ステップ41
で制御弁を全閉とし、ステップ42で全閉フラグをON
とし、ステップ43で制御弁の必要な時間だけ全閉とす
べく弁閉タイマのカウントを開始する。このように、フ
ィルタ冷却防止を考慮した弁開度Otpと、微粒子の燃焼
性を考慮した弁開度Oo2とが重複しない場合、言い換え
れば、微粒子を燃焼させるに必要な酸素量を確保できる
最小の排気流量が、フィルタが冷却しない範囲で供給で
きる最大排気流量より多い場合に、ヒータによる昇温制
御を優先することにより、フィルタの冷却を防止してヒ
ータの通電時間延長による電力消費を防止できる。However, depending on the characteristics of the control valve, there is a case where the calculated valve opening degrees Otp and Oo 2 are not compatible with each other.
If there is no compatible region, it is necessary to control separately the temperature rise by the heater and the combustion of the fine particles by the oxygen supply, and in order to give priority to the temperature rise control by the heater, step 41
To fully close the control valve and turn on the fully closed flag in step 42.
Then, in step 43, the count of the valve closing timer is started in order to fully close the control valve for the required time. In this way, when the valve opening degree Otp considering the filter cooling prevention and the valve opening degree Oo 2 considering the combustibility of the fine particles do not overlap, in other words, the minimum amount of oxygen required to burn the fine particles can be secured. When the exhaust flow rate of is larger than the maximum exhaust flow rate that can be supplied in the range where the filter does not cool, priority is given to the temperature rise control by the heater, so that the cooling of the filter is prevented and the power consumption due to the extension of the energization time of the heater can be prevented. .
【0029】また、 上述した図3に示す再生動作にお
いて、フィルタ再生中に再生側の制御弁開度を調整する
(図3のフローチャートのステップ8、9)のは、再生
動作中にエンジンの運転状態の変化により、フィルタが
過冷却され排気微粒子の燃焼伝播が阻害されることや、
酸素供給量が不足し排気微粒子の燃焼が失火状態に陥る
のを防止するためである。かかる再生中の制御弁の開度
調整動作の詳細を、図6に示すフローチャートを参照し
て説明する。Further, in the above-described regeneration operation shown in FIG. 3, the control valve opening on the regeneration side is adjusted during filter regeneration (steps 8 and 9 in the flowchart of FIG. 3) is the operation of the engine during the regeneration operation. Due to the change of state, the filter is overcooled and the combustion propagation of exhaust particulates is obstructed,
This is to prevent the combustion of exhaust particulates from falling into a misfire state due to insufficient oxygen supply. The details of the operation of adjusting the opening of the control valve during regeneration will be described with reference to the flowchart shown in FIG.
【0030】ステップ51〜54は、図5のフローチャ
ートにおいて、制御弁の全閉制御が実行されてから、所
定時間後に酸素供給が開始されるまでの動作を示すもの
である。即ち、ステップ51で弁閉フラグがONか否か
を判定し、ONの時は制御弁全閉制御中であると判断
し、ステップ52で弁閉タイマのカウント値が所定値に
なったか否かを判定し、所定値になるまではステップ5
4で弁閉タイマのカウントアップを行う。所定値になっ
たら、ステップ53で弁閉フラグをOFFにして制御弁
の全閉制御を終了し、ステップ55〜64を実行し酸素
の供給を行う。Steps 51 to 54 show the operation from the execution of the fully closed control of the control valve to the start of the oxygen supply after a predetermined time in the flowchart of FIG. That is, in step 51, it is determined whether or not the valve closing flag is ON, and when it is ON, it is determined that the control valve full closing control is being performed, and in step 52, it is determined whether or not the count value of the valve closing timer reaches a predetermined value. Is determined, and until the predetermined value is reached, step 5
At 4, the valve close timer is incremented. When the predetermined value is reached, the valve closing flag is turned off in step 53 to complete the fully closed control of the control valve, and steps 55 to 64 are executed to supply oxygen.
【0031】ステップ55〜63は、図5のフローチャ
ートのステップ31〜39までに示した制御弁開度の制
御動作と同じである。そして、この図6のフローチャー
トに示す弁開度調整では、各弁開度Otp、Oo2算出後に
実際の弁開度Oreを決定する場合、両弁開度Otp、Oo2
に両立域が存在しない時には、燃焼性を考慮した弁開度
Oo2を優先して、実際の弁開度OreをOo2に設定する。
この理由は、制御弁の全閉制御が行われたことにより、
フィルタは十分に昇温しており、排気微粒子は充分な昇
温・着火状態となっているので、充分な酸素量を供給す
る必要があるためである。Steps 55 to 63 are the same as the control operation of the control valve opening shown in steps 31 to 39 of the flowchart of FIG. Then, the valve opening control shown in the flowchart of FIG. 6, when determining the actual valve opening Ore each valve opening Otp, after Oo 2 calculates, both valve opening Otp, Oo 2
Both regions within the the absence, the valve opening Oo 2 considering flammability priority, sets the actual valve opening Ore to Oo 2 in.
The reason for this is that the control valve was fully closed,
This is because it is necessary to supply a sufficient amount of oxygen because the temperature of the filter has been sufficiently raised and the exhaust particulates have been sufficiently heated and ignited.
【0032】[0032]
【発明の効果】以上説明したように本発明によれば、排
気温度に基づいてフィルタが過冷却にならない範囲で供
給できる最大の排気流量を算出すると共に、機関運転状
態に基づいて排気中の酸素濃度を求め、この酸素濃度に
基づいて排気微粒子を燃焼させるに充分な酸素量を供給
できる最小限の排気流量を算出し、これら両方の排気流
量値から再生するフィルタ側の排気流量制御弁の開度を
決定する構成としたので、フィルタの過冷却防止の観点
のみでなく排気微粒子の燃焼性をも考慮した排気流量
を、フィルタ再生時にフィルタに流すことができる。従
って、低回転・高負荷のように排気温度は高いが排気流
量が少ない機関運転状態においても、再生中のフィルタ
に充分な酸素量を供給でき、排気微粒子の燃焼が良好と
なり、フィルタを速やかに再生できる。また、ヒータの
通電時間の延長が防止でき、電力消費を低減できる。As described above, according to the present invention, the maximum exhaust flow rate that can be supplied within the range where the filter is not overcooled is calculated based on the exhaust temperature, and the oxygen in the exhaust is calculated based on the engine operating condition. Obtain the concentration, calculate the minimum exhaust flow rate that can supply an amount of oxygen sufficient to burn the exhaust particulates based on this oxygen concentration, and open the exhaust flow control valve on the filter side that regenerates from both of these exhaust flow values. Since the degree is determined, it is possible to allow the exhaust gas flow rate to flow through the filter at the time of filter regeneration not only from the viewpoint of preventing overcooling of the filter but also considering the combustibility of exhaust particulates. Therefore, even in an engine operating state where the exhaust temperature is high but the exhaust flow rate is small, such as low rotation and high load, a sufficient amount of oxygen can be supplied to the filter during regeneration, combustion of exhaust particulate becomes good, and the filter can be swiftly discharged. Can be played. Further, it is possible to prevent the energization time of the heater from being extended and reduce the power consumption.
【0033】また、排気微粒子の燃焼性を確保するため
の排気流量を流した場合にフィルタの冷却が進行するよ
うな時には、排気流量制御弁を全閉としてフィルタの昇
温を優先すれば、フィルタの過冷却防止の確実性を高め
ることができる。Further, when the cooling of the filter proceeds when the exhaust flow rate for ensuring the combustibility of the exhaust particulates is passed, if the exhaust flow rate control valve is fully closed and the temperature rise of the filter is prioritized. It is possible to increase the certainty of preventing overcooling of the.
【図1】本発明の構成を説明するためのブロック構成図FIG. 1 is a block configuration diagram for explaining a configuration of the present invention.
【図2】本発明の一実施例のシステムの構成図FIG. 2 is a configuration diagram of a system according to an embodiment of the present invention.
【図3】同上実施例の基本動作を説明するフローチャー
トFIG. 3 is a flowchart explaining the basic operation of the above embodiment.
【図4】図3に続くフローチャートFIG. 4 is a flowchart following FIG.
【図5】弁開度調整動作を説明するフローチャートFIG. 5 is a flowchart illustrating a valve opening adjustment operation.
【図6】フィルタ再生中における弁開度調整動作を説明
するフローチャートFIG. 6 is a flowchart illustrating a valve opening adjustment operation during filter regeneration.
【図7】エンジン回転数、エンジン負荷による排気温度
特性図[Fig. 7] Exhaust temperature characteristic diagram depending on engine speed and engine load
【図8】エンジン回転数に対する排気流量特性図FIG. 8 is a characteristic diagram of exhaust flow rate with respect to engine speed
【図9】EGRなしの時のエンジン回転数、エンジン負
荷に対する排気中酸素濃度特性図FIG. 9 is a characteristic diagram of exhaust gas oxygen concentration with respect to engine speed and engine load without EGR
【図10】EGR有りの時のエンジン回転数、エンジン
負荷に対する排気中酸素濃度特性図FIG. 10 is a characteristic diagram of exhaust gas oxygen concentration with respect to engine speed and engine load when EGR is present.
【図11】エンジン回転数、エンジン負荷による排気微
粒子排出特性図FIG. 11 is a characteristic diagram of exhaust particulate emission according to engine speed and engine load.
【図12】排気流量制御弁の流量特性図FIG. 12 is a flow characteristic diagram of the exhaust flow control valve.
1 エンジン本体 3 排気通路 11,21 分岐通路 12,22 ヒータ 13,23 フィルタ 14,24 排気流量制御弁 30 コントロールユニット 31 排温センサ 32 回転数センサ 33 コントロールレバーセンサ 1 Engine Main Body 3 Exhaust Passage 11,21 Branch Passage 12,22 Heater 13,23 Filter 14,24 Exhaust Flow Control Valve 30 Control Unit 31 Exhaust Temperature Sensor 32 Rotation Speed Sensor 33 Control Lever Sensor
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F01N 9/00 ZAB Z ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display area F01N 9/00 ZAB Z
Claims (2)
し、各分岐通路内に、機関から排出される微粒子を捕集
するフィルタと、該フィルタに捕集された微粒子を燃焼
除去するための電気ヒータと、前記フィルタと直列に設
けられ当該フィルタを流れる排気流量を制御する排気流
量制御弁とを設ける一方、機関運転状態検出手段と、排
気温度検出手段と、前記各フィルタ再生時に、再生する
フィルタが過冷却とならない範囲で当該フィルタ側に流
せる最大排気流量を前記排気温度検出手段の検出値に基
づいて演算する最大排気流量演算手段と、前記機関運転
状態検出手段で検出される機関運転状態に応じて排気中
の酸素濃度を算出する酸素濃度算出手段と、該酸素濃度
算出手段の算出値に基づいて再生に必要な酸素量を確保
するのに必要な再生用の排気流量を演算する再生用排気
流量演算手段と、前両排気流量演算手段の演算値に基づ
いて再生するフィルタ側の分岐通路の排気流量制御弁開
度を制御する弁開度制御手段と、フィルタ再生時に再生
するフィルタ側の電気ヒータに通電するヒータ通電制御
手段とを備えて構成したことを特徴とするディーゼル機
関の排気浄化装置。1. An exhaust passage of a diesel engine is branched into a plurality of filters, and a filter for collecting fine particles discharged from the engine in each branch passage, and an electricity for burning and removing the fine particles collected by the filter. A heater and an exhaust flow rate control valve that is provided in series with the filter and controls the exhaust flow rate flowing through the filter are provided, while an engine operating state detection unit, an exhaust temperature detection unit, and a filter that is regenerated when each filter is regenerated. The maximum exhaust flow rate calculation means for calculating the maximum exhaust flow rate that can flow to the filter side in the range that does not become supercooling based on the detection value of the exhaust temperature detection means, and the engine operating state detected by the engine operating state detecting means. According to the oxygen concentration calculation means for calculating the oxygen concentration in the exhaust gas, and the regeneration necessary to secure the amount of oxygen required for regeneration based on the calculated value of the oxygen concentration calculation means. An exhaust flow rate calculation means for regeneration for calculating the exhaust flow rate of, and a valve opening degree control means for controlling the exhaust flow rate control valve opening degree of the branch passage on the filter side for regeneration based on the calculated values of the front and rear exhaust flow rate calculation means, An exhaust emission control device for a diesel engine, comprising: a heater energization control unit that energizes an electric heater on the filter side that is regenerated during filter regeneration.
排気流量が、前記最大排気流量演算手段で演算された排
気流量より多い時に、前記排気流量制御弁を所定時間全
閉とする制御手段を備えることを特徴とする請求項1記
載のディーゼル機関の排気浄化装置。2. A control means for fully closing the exhaust flow rate control valve for a predetermined time when the exhaust flow rate calculated by the regeneration exhaust flow rate calculation means is larger than the exhaust flow rate calculated by the maximum exhaust flow rate calculation means. The exhaust emission control device for a diesel engine according to claim 1, further comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5322661A JPH07180529A (en) | 1993-12-21 | 1993-12-21 | Exhaust emission control device for diesel engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5322661A JPH07180529A (en) | 1993-12-21 | 1993-12-21 | Exhaust emission control device for diesel engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07180529A true JPH07180529A (en) | 1995-07-18 |
Family
ID=18146194
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5322661A Pending JPH07180529A (en) | 1993-12-21 | 1993-12-21 | Exhaust emission control device for diesel engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07180529A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009197763A (en) * | 2008-02-25 | 2009-09-03 | Honda Motor Co Ltd | Exhaust gas purifying apparatus for internal combustion engine |
JP2010248945A (en) * | 2009-04-13 | 2010-11-04 | Denso Corp | Exhaust emission control device for internal combustion engine |
JP2016186242A (en) * | 2015-03-27 | 2016-10-27 | 富士重工業株式会社 | Exhaust emission control device |
JP2022158467A (en) * | 2021-04-02 | 2022-10-17 | 株式会社豊田自動織機 | Exhaust device of internal combustion engine |
-
1993
- 1993-12-21 JP JP5322661A patent/JPH07180529A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009197763A (en) * | 2008-02-25 | 2009-09-03 | Honda Motor Co Ltd | Exhaust gas purifying apparatus for internal combustion engine |
JP2010248945A (en) * | 2009-04-13 | 2010-11-04 | Denso Corp | Exhaust emission control device for internal combustion engine |
JP2016186242A (en) * | 2015-03-27 | 2016-10-27 | 富士重工業株式会社 | Exhaust emission control device |
JP2022158467A (en) * | 2021-04-02 | 2022-10-17 | 株式会社豊田自動織機 | Exhaust device of internal combustion engine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2005264785A (en) | Exhaust gas aftertreatment device of diesel engine | |
JPH0431613A (en) | Exhaust treatment system for internal combustion engine | |
JPH07180529A (en) | Exhaust emission control device for diesel engine | |
JPH0431614A (en) | Exhaust gas treatment system | |
JP2630024B2 (en) | Engine exhaust purification device | |
JP3186516B2 (en) | Particulate trap device | |
JPH10259711A (en) | Exhaust gas purifying device for engine | |
JPH0650130A (en) | Exhaust emission control device of diesel engine | |
JP4370942B2 (en) | Engine exhaust purification system | |
JP2003201829A (en) | Exhaust emission control device of diesel engine | |
JPH06264714A (en) | Exhaust gas purifier for internal combustion engine | |
JP2848204B2 (en) | Exhaust particulate cleaning equipment | |
JP2003222013A (en) | Diesel particulates filter device | |
JPH0726935A (en) | Diesel engine | |
JPS62291415A (en) | Exhaust particulate treating device for internal combustion engine | |
JPH04358714A (en) | Exhaust purifying device for engine | |
JP2004108193A (en) | Exhaust emission control device of diesel engine | |
JPH07253012A (en) | Exhaust fine particle processing device of internal combustion engine | |
JP3028714B2 (en) | Diesel engine exhaust purification system | |
JP3580563B2 (en) | Exhaust gas particulate purification system for internal combustion engine | |
JPH0432211B2 (en) | ||
JPH0734858A (en) | Exhaust gas purifying device for diesel engine | |
JPS59192815A (en) | Regeneration of filter of exhaust gas solid particulate catcher for diesel engine | |
JPH03233123A (en) | Exhaust gas purifier of engine | |
JPH0419316A (en) | Device for purifying exhaust gas in engine |