JPH07185327A - Adsorbent and filter media and utilization of the same - Google Patents
Adsorbent and filter media and utilization of the sameInfo
- Publication number
- JPH07185327A JPH07185327A JP33409793A JP33409793A JPH07185327A JP H07185327 A JPH07185327 A JP H07185327A JP 33409793 A JP33409793 A JP 33409793A JP 33409793 A JP33409793 A JP 33409793A JP H07185327 A JPH07185327 A JP H07185327A
- Authority
- JP
- Japan
- Prior art keywords
- nanotube
- nanotubes
- spectrum
- adsorption
- adsorbent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Filtering Materials (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は気相または液相中の物質
ならびに気相または液相自体の精製、補集、回収または
分別を伴う産業分野に利用が可能であり、例として、化
学、薬品、食品、金属、エレクトロニクスなどの産業上
の利用分野が挙げられる。INDUSTRIAL APPLICABILITY The present invention can be used in industrial fields involving purification, collection, recovery or fractionation of substances in a gas or liquid phase and the gas or liquid phase itself. Industrial applications such as medicine, food, metal, and electronics are included.
【0002】[0002]
【従来の技術】従来の吸着剤の中で物理的・化学的安定
性に優れ、最も広範に利用されているのは活性炭に代表
される炭素材料である。通常、活性炭は粉末もしくは粒
状で使用されるが、前者は吸着活性は相対的に高いが、
飛散し易く、取扱いに注意(粉塵爆発・肺への吸引によ
る健康上の危険性)を必要とする欠点を持つ。後者は取
扱い易いが、吸着能が低いという欠点を持つ。2. Description of the Related Art Among conventional adsorbents, a carbon material typified by activated carbon has excellent physical and chemical stability and is most widely used. Normally, activated carbon is used in powder or granular form, but the former has relatively high adsorption activity,
It has the drawback that it is easily scattered and requires careful handling (health hazard due to dust explosion and inhalation into the lungs). The latter is easy to handle, but has the drawback of low adsorption capacity.
【0003】また、液相で使用する場合、粉末活性炭は
普通、回分接触法(直接液相へ吸着剤を導入し攪拌す
る)で使用され、平衡吸着量以上の吸着量を期待するこ
とはできない。粒状活性炭は、通液法(吸着剤を固定層
として液相を流す)で使用されるが、低い吸着能のため
多量の固定層を必要とする。When used in the liquid phase, powdered activated carbon is usually used in a batch contact method (in which the adsorbent is directly introduced into the liquid phase and stirred), and it is not possible to expect an adsorption amount above the equilibrium adsorption amount. . Granular activated carbon is used by a liquid passing method (flowing a liquid phase with an adsorbent as a fixed bed), but requires a large amount of fixed bed due to its low adsorption capacity.
【0004】さらに、両者とも他の炭素材料同様、液体
に対して濡れ難く、特別の処理が必要である。また、活
性炭を含む炭素材料中には通常、低分子量の有機物が本
来的に存在している。活性炭等を吸着剤として用いる場
合、吸着後の気相、液相中に活性炭等に含まれる有機物
が混入する恐れがあり、特に飲料水など飲食物を精製す
るため活性炭等を用いる場合は、人体への影響が懸念さ
れる。また、一般に活性炭などの炭素材料の微粒子に対
する濾過作用は顕著ではない。Further, both of them, like other carbon materials, are hard to be wet with a liquid and require special treatment. In addition, low-molecular weight organic substances are usually inherently present in the carbon material containing activated carbon. When using activated carbon or the like as the adsorbent, organic substances contained in the activated carbon or the like may be mixed in the gas phase or liquid phase after adsorption, especially when the activated carbon or the like is used to purify food or drink such as drinking water, the human body There is concern about the impact on Further, generally, the filtering effect on the fine particles of the carbon material such as activated carbon is not remarkable.
【0005】[0005]
【発明が解決しようとする課題】本発明が解決しようと
する課題は、吸着剤として広く利用されている活性炭に
代表される炭素材料の欠点・短所、すなわち、粉末活性
炭は取り扱いが困難である(粉塵爆発・健康上の危険
性)という欠点、粒状活性炭は単位当たりの吸着量が低
いという欠点、さらに、活性炭全体に共通する液体に対
して濡れ難いという短所、低分子量の有機物が混入する
という短所を克服し、同時に活性炭に代表される炭素材
料以上の優れた物理的・化学的安定性、高い吸着活性、
さらに顕著な濾過特性を備えるナノチューブを利用した
吸着剤・濾過剤を開発することである。The problem to be solved by the present invention is the drawbacks and disadvantages of carbon materials represented by activated carbon widely used as an adsorbent, that is, powdered activated carbon is difficult to handle ( (Dust explosion / health hazard), the fact that granular activated carbon has a low adsorption amount per unit, the disadvantage that it is difficult to wet the liquid common to all activated carbon, and the disadvantage that low molecular weight organic substances are mixed. At the same time, superior physical and chemical stability, high adsorption activity, and higher than carbon materials represented by activated carbon.
The aim is to develop an adsorbent / filter agent using nanotubes that has outstanding filtration properties.
【0006】[0006]
【課題を解決するための手段】本発明の要旨は、吸着
剤、濾過剤としてカーボン・ナノチューブを使用するこ
とである。使用方法は、従来の技術の項で述べた回分接
触法あるいは通液法を用いることができる。The gist of the present invention is the use of carbon nanotubes as adsorbents and filters. As the method of use, the batch contact method or the liquid passing method described in the section of the prior art can be used.
【0007】ナノチューブは活性炭と同等もしくはそれ
以上の物理的、化学的安定性を持ち、非常に微細な構造
を持つにもかかわらず飛散し難い。ナノチューブは炭素
100%で構成された完全結晶であるので、低分子量の
有機物を全く含まない。また、後述するように吸着能に
優れ、液体に対して非常に濡れ易い特長を持つ。さらに
再生可能である。ナノチューブは非常に微細な針状結晶
であるため、自らが集積することにより高密度で微小な
3次元的細孔を自己形成することが可能である。このこ
とは分子レベルでの吸着能ばかりでなく、マイクロメー
トル、ナノメートル・オーダーの微粒子の濾過機能を持
つことを示している。Nanotubes have physical and chemical stability equivalent to or higher than that of activated carbon, and are hard to scatter despite having a very fine structure. Since the nanotube is a perfect crystal composed of 100% carbon, it does not contain any low molecular weight organic matter. Further, as will be described later, it has an excellent adsorption ability and is very easily wet with a liquid. It is also renewable. Since nanotubes are very fine needle-like crystals, they are capable of self-forming high-density and minute three-dimensional pores by themselves accumulating. This indicates that it has not only the adsorption ability at the molecular level, but also the filtration function for fine particles of the order of micrometers and nanometers.
【0008】[0008]
【作用】カーボン・ナノチューブは、非常に微小な針状
グラファイト結晶であり、新しい炭素の同素体として注
目されている。ナノチューブの直径は1ナノメートル前
後から数十ナノメートル,長さは数百ナノメートルから
数マイクロメートルであり、非常に細長いストローのよ
うな形状である。また、側面は円筒状のグラファイト
面、先端部分は両方ともグラファイト曲面で覆われ、閉
じた構造を持つ。[Function] Carbon nanotubes are very fine acicular graphite crystals and are attracting attention as new allotropes of carbon. The diameter of the nanotube is from about 1 nanometer to several tens of nanometers, and the length is several hundred nanometers to several micrometers, which is a very elongated straw-like shape. In addition, the side surface has a cylindrical graphite surface, and the tip portion is covered with a graphite curved surface, and has a closed structure.
【0009】ナノチューブを産業上に利用するために
は、高収率で大量に製造する必要があるが、1992年
にナノチューブの大量合成法(特願平4−172242
号、特願平4−311846号)が発見され、問題は解
決されている。また、ナノチューブの合成時に副産物と
して生成するカーボン・ナノ粒子(微小なグラファイト
多面体)やアモルファス炭素を取り除き、純粋なナノチ
ューブを得る方法(特願平5−014387号、特願平
5−133048号)が開発され、特異な電気物性や物
理的・化学的性質を持つナノチューブを化学からエレク
トロニクスに渡る広範な次世代の産業分野に適用するこ
とが可能である。In order to use the nanotubes industrially, it is necessary to mass-produce them in high yield, but in 1992, a large-scale synthesis method of nanotubes (Japanese Patent Application No. 4-172242).
Issue, Japanese Patent Application No. 4-311846) was found and the problem has been solved. In addition, a method of obtaining pure nanotubes by removing carbon nanoparticles (fine graphite polyhedrons) and amorphous carbon generated as by-products during the synthesis of nanotubes (Japanese Patent Application No. 0-014387 and Japanese Patent Application No. 5-133048) is proposed. Nanotubes that have been developed and have unique electrical and physical / chemical properties can be applied to a wide range of next-generation industrial fields ranging from chemistry to electronics.
【0010】ナノチューブは、網目状炭素が切れ目なく
閉じた構造を有し、いわゆる欠陥や転移の無い完全結晶
でありため、物理的、機械的強度が非常に高い。理論的
な予測によると引っ張り強度はダイヤモンドを凌ぐと言
われている。また、ナノチューブは炭素100%で構成
された完全結晶であるため、さらに合成法から考えて
も、低分子量の有機物が混入する可能性は全くない。ナ
ノチューブの化学的安定性を示す例としては、高温耐性
(酸素存在下)、耐薬品性(例えば、硫酸や硝酸などの
強酸に対する反応性)などが挙げられる。炭素の同素体
の一つであるC60の場合、酸素存在下、500゜C足ら
ずの温度で燃焼が始まるのに対して、ナノチューブの場
合は700゜C前後まで燃焼しない(ネイチャー(Na
ture),Vol.362,No.6420,pp.
522−525,1993年4月8日)。炭素材料の中
で耐熱性(空気存在下)が高いカーボン・ウイスカーの
場合、耐熱限界温度は700゜C(例えば、日機装製、
商品名:グラスカーGRASKER、特性表記載)であ
る。従って、ナノチューブの酸素存在下での高温耐熱性
は、炭素材料中、最も優れている部類に入る。Since the nanotube has a structure in which reticulated carbon is closed without breaks and is a perfect crystal without so-called defects or dislocations, the physical and mechanical strength is very high. According to theoretical predictions, tensile strength is said to exceed that of diamond. Further, since the nanotube is a complete crystal composed of 100% carbon, there is no possibility that a low-molecular weight organic substance is mixed in, even considering the synthetic method. Examples of the chemical stability of nanotubes include high temperature resistance (in the presence of oxygen) and chemical resistance (eg, reactivity with strong acids such as sulfuric acid and nitric acid). In the case of C 60 , which is one of the allotropes of carbon, combustion starts at a temperature of less than 500 ° C in the presence of oxygen, whereas in the case of nanotubes, it does not burn up to around 700 ° C (Nature (Na
true), Vol. 362, No. 6420, pp.
522-525, April 8, 1993). In the case of carbon whiskers, which have high heat resistance (in the presence of air) among carbon materials, the heat resistance limit temperature is 700 ° C (for example, manufactured by Nikkiso,
Product name: Glasker GRASKER, described in the characteristics table). Therefore, the high temperature heat resistance of nanotubes in the presence of oxygen is one of the most excellent carbon materials.
【0011】さらに、通常の炭素材料の粉末(例えば、
アモルファス炭素)を硫酸、硝酸中で180゜C、6時
間、煮沸した場合、原料である炭素材料の回収率(重
量)は10%以下であるのに対して、ナノチューブ(粉
末)を同じ条件で処理した場合、ナノチューブの回収率
は80%以上である。他の腐蝕性の反応物質についても
同じ結果が得られている。これらの結果は、通常の炭素
材料とナノチューブの炭素骨格の構造の相違に由来して
いる。すなわち、通常の炭素材料は2次元のグラファイ
ト面が層状に積み重なった構造を持ち、周辺部分が開い
た構造であるため、層間に反応物質が侵入し、表面部分
のみならず内部からも反応が進行するのに対して、ナノ
チューブはグラファイト面が閉じた構造であるので、表
面のみしか反応が起こらないという理由に因る。Further, a powder of a conventional carbon material (for example,
When amorphous carbon) is boiled in sulfuric acid and nitric acid at 180 ° C for 6 hours, the recovery rate (weight) of the carbon material as a raw material is 10% or less, whereas the nanotube (powder) is treated under the same conditions. When treated, the nanotube recovery is above 80%. The same results have been obtained with other corrosive reactants. These results are derived from the difference in structure between the carbon skeletons of ordinary carbon materials and nanotubes. That is, since a normal carbon material has a structure in which two-dimensional graphite surfaces are stacked in layers and the peripheral portion is open, the reaction substance penetrates between the layers and the reaction proceeds not only from the surface portion but also from the inside. On the other hand, because the nanotube has a structure in which the graphite surface is closed, the reason is that the reaction occurs only on the surface.
【0012】さらに、ナノチューブの場合は欠陥や転移
が無い完全結晶であるため、反応の開始点となるダング
リン・ボンド(結合が切断され、電子が剥き出しになっ
て反応性が非常に高い)が無く、多くの欠陥や転移を持
つ他の炭素材料とは対照的に、ナノチューブは本来的に
反応性が低いことも大きな理由である。以上の如く、ナ
ノチューブは活性炭を含む他の炭素材料と同等もしくは
それら以上の物理的・化学的安定性を持ち、これらはナ
ノチューブを利用する上で有利な特性となっている。Furthermore, in the case of a nanotube, since it is a perfect crystal with no defects or transitions, there is no danglin bond (the bond is cut and the electron is exposed and the reactivity is very high) which is the starting point of the reaction. Another major reason is that nanotubes are inherently less reactive, in contrast to other carbon materials, which have many defects and dislocations. As described above, nanotubes have physical and chemical stability equivalent to or higher than other carbon materials including activated carbon, and these are advantageous characteristics in utilizing nanotubes.
【0013】前述したように、ナノチューブは非常に微
細で細長い針状結晶である。従って、バルク状態のナノ
チューブは、互いに3次元的に複雑に絡み合うため、飛
散し難い。さらに自らが集積することにより高密度で微
小な3次元的細孔を自己形成することが可能である。こ
のことは分子レベルでの吸着能ばかりでなく、マイクロ
メートル、ナノメートル・オーダーの微粒子や超微粒子
の濾過機能を持つことを示している。As mentioned above, nanotubes are very fine, elongated needle-like crystals. Therefore, since the nanotubes in the bulk state are intricately entangled with each other in a three-dimensional manner, they are difficult to scatter. Further, by accumulating by themselves, it is possible to self-form high density and minute three-dimensional fine pores. This indicates not only the adsorption ability at the molecular level, but also the filtration function for fine particles and ultrafine particles of the order of micrometers and nanometers.
【0014】吸着剤の液体に対する濡れやすさは、液相
中の物質を補集、分別し、液相を精製、回収する場合、
吸着剤が有効に働くかどうかという点で重要となる。す
なわち、吸着剤が濡れやすいほど、液相が吸着剤内部ま
で浸透し、吸着効率が向上する。ナノチューブの液体に
対する濡れやすさは、次の簡単な実験で示すことが出来
る。ナノチューブを敷き詰めた上部から水を滴下してゆ
く。すると、水はナノチューブにどんどん浸透してゆ
く。同様の実験を粉末のアモルファス炭素を用いて実験
すると、水は弾かれて水滴となり内部には染み込んでい
かない。ガラス状炭素の粉末を用いた場合もアモルファ
ス炭素の粉末の場合と同じ結果である。The wettability of the adsorbent with respect to the liquid is determined by collecting and separating substances in the liquid phase and purifying and recovering the liquid phase.
It is important in terms of whether the adsorbent works effectively. That is, as the adsorbent gets wet, the liquid phase penetrates into the adsorbent, and the adsorption efficiency is improved. The wettability of nanotubes with liquids can be shown by the following simple experiment. Water is dripped from the upper part where the nanotubes are spread. Then, water permeates the nanotube more and more. When a similar experiment is performed using powdered amorphous carbon, water is repelled to form water droplets and does not soak into the interior. The same results are obtained when the glassy carbon powder is used as when the amorphous carbon powder is used.
【0015】このように、他の炭素材料に比較して、ナ
ノチューブは非常に液体に対して濡れやすい。この理由
は、通常の炭素材料を形成するグラファイト面が平面状
であるのに対して、ナノチューブを形成するグラファイ
ト面が円筒状と球面状であることに由来すると考えられ
る。すなわち、構成元素である炭素のπ軌道が、他の炭
素材料の場合はお互いに平行であるのに対して、ナノチ
ューブの場合は平行でなくある角度で外に向かって開い
ているため、液体を構成する分子(または原子)がナノ
チューブ表面の炭素原子と相互作用しやすいことに起因
していると考えられる。As described above, the nanotube is very easily wet by the liquid as compared with other carbon materials. It is considered that this is because the graphite surface forming the ordinary carbon material is flat, whereas the graphite surface forming the nanotube is cylindrical and spherical. That is, while the π orbitals of carbon, which is a constituent element, are parallel to each other in the case of other carbon materials, they are not parallel in the case of nanotubes and open outward at a certain angle. It is considered that the constituent molecules (or atoms) easily interact with the carbon atoms on the surface of the nanotube.
【0016】バルクのナノチューブは粉末状であるが、
一本一本のナノチューブは極微であるため、高密度に圧
縮することが可能で様々な形状に加工できる。従って、
液相で吸着剤として使用する場合、粉末、粒状どちらで
も使用可能であり、粉末活性炭のように回分接触法(直
接液相へ吸着剤を導入し攪拌する)、粒状活性炭のよう
に通液法(吸着剤を固定層として液相を流す)の両者の
方法を用いることができる。また、吸着物が気化する場
合は、加熱装置、吸着物気体の補集装置を組み合わせる
ことで、吸着物の補集、分別のみならず、精製、回収も
行える。さらに、吸着剤としてのナノチューブを容易に
再生することが可能であり、繰り返し使用に耐える。次
項に示す実施例から、ナノチューブは高い吸着能を示す
ことが分かる。Bulk nanotubes are in powder form,
Since each nanotube is extremely fine, it can be compressed to a high density and processed into various shapes. Therefore,
When used as an adsorbent in the liquid phase, either powder or granules can be used. Batch contact method like powdered activated carbon (directly introducing adsorbent into liquid phase and stirring), liquid passing method like granular activated carbon. Both methods (flowing the liquid phase with the adsorbent as a fixed bed) can be used. Further, when the adsorbate is vaporized, by combining a heating device and an adsorbate gas collector, not only the adsorbate can be collected and separated, but also purified and recovered. Furthermore, it is possible to easily regenerate the nanotubes as an adsorbent and withstand repeated use. From the examples shown in the next section, it can be seen that the nanotubes have high adsorption ability.
【0017】また、ナノチューブを精製し、ナノチュー
ブの両端を開口する技術(特願平5−133048号)
を併用することにより、ナノチューブ内部を吸着サイト
として利用することも可能である。開口したナノチュー
ブを用いた場合、20〜50%の吸着量の増加が見られ
る。A technique for purifying a nanotube and opening both ends of the nanotube (Japanese Patent Application No. 5-133048).
It is also possible to use the inside of the nanotube as an adsorption site by using together. When using open nanotubes, an increase in adsorption of 20-50% is seen.
【0018】以上より、ナノチューブは活性炭と同等も
しくはそれ以上の物理的、化学的安定性を持ち、非常に
微細な構造を持つにもかかわらず飛散し難いことが分か
る。また、吸着能に優れ、液体に対して非常に濡れ易い
特長を持ち、吸着後の気相、液相中に低分子量の有機物
を混入させてしまうことがない。さらに、自らが集積す
ることにより高密度で微小な3次元的細孔を自己形成
し、分子レベルでの吸着能ばかりでなく、マイクロメー
トル、ナノメートル・オーダーの微粒子や超微粒子の濾
過機能を持つことが分かる。From the above, it can be seen that nanotubes have physical and chemical stability equivalent to or higher than that of activated carbon and are hard to scatter even though they have a very fine structure. Further, it has an excellent adsorption ability and is very easily wetted by a liquid, and does not mix a low molecular weight organic substance into the gas phase or the liquid phase after adsorption. Furthermore, by accumulating by themselves, they form high-density and minute three-dimensional pores by themselves, and have not only adsorption ability at the molecular level, but also filtration function for fine and ultrafine particles of the order of micrometers and nanometers. I understand.
【0019】[0019]
(実施例1)ナノチューブを濾過剤として用い、懸濁水
溶液中のポリメチルメタクリレート(PMMA)の超微
粒子を補集、分別し、純粋な水を精製、回収した例を以
下に示す。(Example 1) An example of purifying and collecting pure water by collecting and fractionating ultrafine particles of polymethylmethacrylate (PMMA) in a suspension aqueous solution using nanotubes as a filtering agent is shown below.
【0020】(実験)注射器の筒の底に紙フィルターを
敷き、その上にナノチューブ0.4gを敷き詰め、ナノ
チューブのフィルターを作った。ナノチューブ部分の厚
さは2mm程度であった。平均粒子径1〜2μmのPM
MA超微粒子(商品名:アクリル超微粉体、MP−14
00、綜研化学株式会社製)と平均粒子径0.15μm
のPMMA微粒子(同上、MP−1451)の懸濁水溶
液(濃度はともに1.0*10-1g/l)を調整し、ナ
ノチューブのフィルター上部に懸濁水溶液を注ぎ、下部
から流出する水溶液の紫外吸収スペクトルを測定し、ナ
ノチューブの超微粒子に対する濾過作用について調べ
た。(Experiment) A paper filter was laid on the bottom of the syringe barrel, and 0.4 g of nanotubes was laid on the paper filter to form a nanotube filter. The thickness of the nanotube portion was about 2 mm. PM with an average particle size of 1-2 μm
MA ultrafine particles (trade name: acrylic ultrafine powder, MP-14
00, manufactured by Soken Chemical Industry Co., Ltd.) and having an average particle diameter of 0.15 μm
A suspension of PMMA fine particles (the same as above, MP-1451) in water (concentration: 1.0 * 10 -1 g / l) was prepared, the suspension was poured onto the upper part of the nanotube filter, and the ultraviolet light of the aqueous solution flowing out from the lower part was extracted. The absorption spectrum was measured to examine the filtering effect of the nanotubes on the ultrafine particles.
【0021】(結果)ナノチューブ上部に平均粒子径1
〜2μmのPMMA超微粒子の懸濁水溶液を滴下する
と、どんどん染み込むことから、ナノチューブは水溶液
に対して非常に濡れ易いことが分かった。次に、流出前
と流出後の水溶液の紫外・可視吸収スペクトルの変化を
図1に示す。スペクトルAがナノチューブのフィルター
を通す前のPMMA超微粒子の懸濁水溶液のスペクト
ル、スペクトルBがフィルターを通過させた後の水溶液
のスペクトルである。一般に、懸濁液はその中に含まれ
る微粒子が光を散乱するため、紫外・可視吸収スペクト
ルを測定すると、赤外領域から紫外域にかけて見掛け上
の幅広い吸収が見られる。スペクトルAは波長200〜
700nmに渡って幅広い吸収が見られるが、これは、
PMMAの超微粒子に由来する見掛け上の吸収である。
流出後のスペクトルには、PMMAの超微粒子による吸
収は全く現れず、従って、流出してきた水溶液は純粋な
水であることを示している。(Result) Average particle size 1 on the upper part of the nanotube
It was found that the nanotubes were very easily wetted with the aqueous solution, because the suspension was soaked more and more when the suspension solution of PMMA ultrafine particles of ˜2 μm was dropped. Next, FIG. 1 shows changes in the UV-visible absorption spectrum of the aqueous solution before and after the outflow. Spectrum A is a spectrum of a suspension aqueous solution of PMMA ultrafine particles before passing through the nanotube filter, and spectrum B is a spectrum of an aqueous solution after passing through the filter. In general, fine particles contained in a suspension scatter light, and therefore, when an ultraviolet / visible absorption spectrum is measured, an apparent broad absorption is seen from the infrared region to the ultraviolet region. Spectrum A has a wavelength of 200-
Broad absorption is seen over 700 nm, which is
Apparent absorption derived from ultrafine particles of PMMA.
In the spectrum after flowing out, no absorption by PMMA ultrafine particles appears at all, thus showing that the flowing out aqueous solution is pure water.
【0022】すなわち、懸濁水溶液中のPMMAの超微
粒子がすべてナノチューブの濾過作用により除去され、
純粋な水が精製・回収されている。平均粒子径0.15
μmのPMMA超微粒子の懸濁液について同様な実験を
行い、紫外・可視スペクトルを測定したのが図2であ
る。図1と同様に、スペクトルAがフィルターを通す前
のPMMA超微粒子の懸濁水溶液のスペクトル、スペク
トルBがフィルターを通過させた後の水溶液のスペクト
ルである。図2から明らかなように、平均粒子径1〜2
μmのPMMAの超微粒子の場合と同様に、平均粒子径
0.15μmのPMMAの超微粒子もナノチューブによ
り完全に濾過され、純粋な水が得られていることが分か
る。以上2つの実験結果より、ナノチューブにはマイク
ロメートル、ナノメートル・オーダーの物質に対する濾
過機能があることが分かる。また、PMMAの超微粒子
を濾過した後のナノチューブを注射器から取り出し、水
洗いすることにより、再度ナノチューブを濾過剤として
用いることが可能であることを確認した(図1の実験
後、ナノチューブを水洗いし、図2の実験を行った)。That is, all the ultrafine particles of PMMA in the suspension aqueous solution are removed by the filtering action of the nanotubes,
Pure water is purified and recovered. Average particle size 0.15
A similar experiment was performed on a suspension of PMMA ultrafine particles of μm, and the UV / visible spectrum was measured as shown in FIG. Similar to FIG. 1, spectrum A is a spectrum of an aqueous suspension of PMMA ultrafine particles before passing through the filter, and spectrum B is a spectrum of the aqueous solution after passing through the filter. As is clear from FIG. 2, the average particle size is 1-2.
It can be seen that, as in the case of the PMMA ultrafine particles of μm, the ultrafine particles of PMMA having an average particle size of 0.15 μm were completely filtered by the nanotubes to obtain pure water. From the above two experimental results, it can be seen that the nanotube has a filtering function for substances on the order of micrometers and nanometers. Further, it was confirmed that the nanotubes after filtering the ultrafine particles of PMMA were taken out from the syringe and washed with water (it was possible to use the nanotubes again as a filter agent (after the experiment of FIG. 1, the nanotubes were washed with water, The experiment of FIG. 2 was performed).
【0023】次に、参照のために、同様の実験を炭素材
料の一種アモルファス炭素で行った。しかしながら、ア
モルファス炭素のフィルターは水溶液に対して濡れ難い
ことが分かった。さらに、アモルファス炭素由来の多量
の微粒子を濾液中に含むことが肉眼で確認され、紫外・
可視吸収スペクトルからはPMMAの超微粒子の除去は
判断できなかったが、重要なことは、アモルファス炭素
では少なくとも水の精製、回収は出来ないということで
ある。Next, for reference, a similar experiment was conducted with a kind of carbon material, amorphous carbon. However, it has been found that the amorphous carbon filter is difficult to wet with an aqueous solution. Furthermore, it was confirmed with the naked eye that the filtrate contained a large amount of fine particles derived from amorphous carbon.
Although it was not possible to judge the removal of ultrafine particles of PMMA from the visible absorption spectrum, what is important is that at least water cannot be purified and recovered with amorphous carbon.
【0024】(実施例2)ナノチューブを吸着剤として
用い、ベンゼン水溶液中のベンゼンを補集・分別した例
を以下に示す。(Example 2) An example in which nanotubes are used as an adsorbent and benzene in an aqueous benzene solution is collected and fractionated is shown below.
【0025】(実験)ナノチューブ1gをガラスフィル
ターの底に敷き詰め、ナノチューブのフィルターを作っ
た。フィルター上部から5*10-3mol/lのベンゼ
ン水溶液をポンプで加圧しながら流し、下部から流出す
る水溶液の紫外吸収スペクトルを測定し、ナノチューブ
のベンゼン吸着作用を調べ、ベンゼンの吸着量を決定し
た。(Experiment) 1 g of nanotubes was spread on the bottom of a glass filter to make a nanotube filter. A 5 * 10 -3 mol / l benzene aqueous solution was made to flow from the upper part of the filter while being pressurized with a pump, the ultraviolet absorption spectrum of the aqueous solution flowing out from the lower part was measured, and the benzene adsorption action of the nanotubes was investigated to determine the adsorption amount of benzene. .
【0026】(結果)ナノチューブ上部にベンゼン水溶
液を滴下すると、どんどん染み込むことから、ナノチュ
ーブはベンゼン水溶液に対して非常に濡れ易いことが分
かった。次に、流出前と流出後の水溶液の紫外吸収スペ
クトルの変化を図3に示す。スペクトルAがフィルター
を通す前のベンゼン水溶液のスペクトル、Bがフィルタ
ーを通過させたはじめの5mlのスペクトル、Cが50
ml流した後のスペクトルである。スペクトルAの24
5nm付近を中心とする振動構造を伴う吸収は、水溶液
内のベンゼンによるものである。ベンゼン水溶液をフィ
ルターに通すと、スペクトルBに示すようにベンゼンに
由来する吸収はすべて無くなっている。これはナノチュ
ーブによって、水溶液中のベンゼンがすべて吸着し、除
去されていることを示している。従って、ナノチューブ
はベンゼンに対して高い吸着能を持つことが分かる。ま
た、他の有機物に由来する吸収が見られないことから、
ナノチューブ中には、低分子量の芳香族炭化水素のよう
な有機物は存在しないことが確認される。さらにベンゼ
ンの吸着が飽和に達するまで、ベンゼン水溶液を流し続
け(スペクトルCは飽和途中のスペクトルに対応す
る)、ベンゼンの吸着量を計算すると、ナノチューブに
は、2*10-4mol/gのベンゼン吸着能があること
が分かった。この吸着量は、30m2 /gに相当し、ナ
ノチューブに対して行われたBET法(N2 の吸着能)
による実験で得られた結果と良く一致している。(Results) When the aqueous benzene solution was dripped on the upper part of the nanotube, it was permeated more and more, and it was found that the nanotube was very easily wet with the aqueous benzene solution. Next, FIG. 3 shows changes in the ultraviolet absorption spectrum of the aqueous solution before and after the outflow. Spectrum A is the spectrum of the benzene solution before passing through the filter, B is the first 5 ml spectrum after passing through the filter, and C is 50.
It is a spectrum after flowing ml. 24 of spectrum A
Absorption with a vibrational structure centered around 5 nm is due to benzene in the aqueous solution. When the aqueous benzene solution is passed through the filter, as shown in spectrum B, all the absorption derived from benzene has disappeared. This indicates that all the benzene in the aqueous solution was adsorbed and removed by the nanotube. Therefore, it can be seen that the nanotube has a high adsorption ability for benzene. In addition, since absorption derived from other organic substances is not seen,
It is confirmed that there are no organic substances such as low molecular weight aromatic hydrocarbons in the nanotubes. Further, the benzene aqueous solution is kept flowing until the adsorption of benzene reaches saturation (spectrum C corresponds to the spectrum in the middle of saturation), and the amount of benzene adsorbed is calculated to be 2 * 10 -4 mol / g of benzene. It was found to have adsorption capacity. This adsorption amount corresponds to 30 m 2 / g, and the BET method (N 2 adsorption capacity) performed on nanotubes
It is in good agreement with the result obtained in the experiment by.
【0027】参照のために、同様の実験を炭素材料の一
種アモルファス炭素で行ったところ、アモルファス炭素
はほとんどベンゼンを吸着しなかった(アモルファス炭
素のフィルターから流出した水溶液のスペクトルは、ア
モルファス炭素による多量の微粒子を含むためにバック
グラウンドが大きく、グラフのスケールからはみ出すの
で、図1に示していない)。また、アモルファス炭素の
フィルターは水溶液に対して濡れ難く、フィルターがう
まく形成されなかった。さらに濾液にアモルファス炭素
が混入していることが肉眼でも確認された。ナノチュー
ブのフィルターではこのようなことはなく、密なフィル
ターが形成されていることがわかる。実験後、ナノチュ
ーブを減圧下、60゜C、1時間の加熱処理を行い、同
様の実験を行ったところ、上記の結果と全く同様の吸着
活性を示した。従って、ナノチューブは吸着剤として再
生使用が可能であることが分かった。As a reference, a similar experiment was conducted with a kind of carbon material, amorphous carbon. As a result, amorphous carbon hardly adsorbed benzene. (Not shown in FIG. 1) because the background is large due to the inclusion of the fine particles of (3), and it extends from the scale of the graph). Further, the amorphous carbon filter was difficult to wet with an aqueous solution, and the filter was not formed well. Further, it was confirmed with naked eyes that amorphous carbon was mixed in the filtrate. This is not the case with the nanotube filter, and it can be seen that a dense filter is formed. After the experiment, the nanotubes were subjected to heat treatment at 60 ° C. for 1 hour under reduced pressure, and the same experiment was performed. As a result, the same adsorption activity as the above result was exhibited. Therefore, it was found that the nanotube can be recycled as an adsorbent.
【0028】(実施例3)ナノチューブを吸着剤として
用い、クロロベンゼン水溶液中のクロロベンゼンを補集
・分別した例を以下に示す。(Example 3) An example of collecting and fractionating chlorobenzene in an aqueous chlorobenzene solution using nanotubes as an adsorbent is shown below.
【0029】(実験)注射器の筒の底に紙フィルターを
敷き、その上にナノチューブ0.5gを敷き詰め、ナノ
チューブのフィルターを作った。注射器内部に1*10
-4mol/lのクロロベンゼン水溶液を入れ、下部から
流出する水溶液の紫外吸収スペクトルを測定し、ナノチ
ューブのクロロベンゼン吸着作用を調べた。(Experimental) A paper filter was laid on the bottom of the cylinder of the syringe, and 0.5 g of nanotubes was laid on the paper filter to prepare a nanotube filter. 1 * 10 inside the syringe
-4 mol / l chlorobenzene aqueous solution was added, and the ultraviolet absorption spectrum of the aqueous solution flowing out from the lower part was measured to examine the chlorobenzene adsorption action of the nanotubes.
【0030】(結果)ナノチューブは、クロロベンゼン
水溶液に対して非常に濡れ易いことが分かった。次に、
流出前と流出後の水溶液の紫外吸収スペクトルの変化を
図4に示す。スペクトルAがフィルターを通す前のクロ
ロベンゼン水溶液のスペクトル、Bがフィルターを通過
させた水溶液のスペクトルである。スペクトルAの26
5nm付近に極大を持つ吸収は、水溶液内のクロロベン
ゼンによるものである。ベンゼン水溶液をフィルターに
通すと、スペクトルBに示すようにクロロベンゼンに由
来する吸収は、通過前と比較して、その強度を約4分の
1に減少させている。これはナノチューブによって、水
溶液中のクロロベンゼンが75%除去されていることを
示している。実験後、ナノチューブを減圧下、60゜
C、1時間の加熱処理を行い、同様の実験を行ったとこ
ろ、上記の結果と全く同様の吸着活性を示した。従っ
て、ベンゼンの吸着の場合同様、クロロベンゼンを吸着
する場合でも、ナノチューブは吸着剤として再生使用が
可能であることが分かった。(Results) It was found that the nanotubes are very easily wet with the aqueous chlorobenzene solution. next,
The change in the ultraviolet absorption spectrum of the aqueous solution before and after the outflow is shown in FIG. Spectrum A is the spectrum of the chlorobenzene aqueous solution before passing through the filter, and B is the spectrum of the aqueous solution after passing through the filter. 26 of spectrum A
The absorption having a maximum around 5 nm is due to chlorobenzene in the aqueous solution. When the aqueous benzene solution is passed through the filter, the absorption derived from chlorobenzene as shown in spectrum B has its intensity reduced to about 1/4 of that before the passage. This indicates that the nanotubes removed 75% of the chlorobenzene in the aqueous solution. After the experiment, the nanotubes were subjected to heat treatment at 60 ° C. for 1 hour under reduced pressure, and the same experiment was performed. As a result, the same adsorption activity as the above result was exhibited. Therefore, it was found that the nanotubes can be reused as an adsorbent when adsorbing chlorobenzene as in the case of adsorbing benzene.
【0031】[0031]
【発明の効果】上記実施例から、ナノチューブを吸着
剤、濾過剤として用いることにより、液相中の物質なら
びに液相自体の精製、補集、分別または回収することが
可能であることが実証された。実施例で用いた液相の代
わりに気相を用いても同様の結果を生む。さらに、ナノ
チューブ独特のの性質により、従来の吸着剤、濾過剤以
上の以下に示す特性が証明されている。すなわち、ナノ
チューブは物理的、化学的安定性を持ち、非常に微細な
構造を持つにもかかわらず飛散し難い。ナノチューブは
炭素100%で構成された完全結晶であるので、低分子
量の有機物を全く含まない。吸着能に優れ、液体に対し
て非常に濡れ易い特長を持つ。ナノチューブは吸着剤、
濾過剤として再生可能である。ナノチューブは自らが集
積することにより高密度で微小な3次元的細孔を自己形
成し、マイクロメートル、ナノメートル・オーダーの微
粒子の濾過機能を持つ。From the above examples, it is demonstrated that it is possible to purify, collect, fractionate or recover the substance in the liquid phase and the liquid phase itself by using the nanotubes as an adsorbent or a filtering agent. It was Similar results can be obtained by using a gas phase instead of the liquid phase used in the examples. Furthermore, due to the unique properties of the nanotubes, the following characteristics, which are superior to those of conventional adsorbents and filter agents, have been proved. That is, the nanotubes have physical and chemical stability, and have a very fine structure, but are difficult to scatter. Since the nanotube is a perfect crystal composed of 100% carbon, it does not contain any low molecular weight organic matter. It has excellent adsorption capacity and is very easily wet with liquid. Nanotubes are adsorbents,
It can be regenerated as a filtering agent. The nanotubes self-assemble into high-density, minute three-dimensional pores by themselves accumulating, and have a function of filtering fine particles of the order of micrometers or nanometers.
【図1】本発明の実施例を説明するための図。FIG. 1 is a diagram for explaining an embodiment of the present invention.
【図2】本発明の実施例を説明するための図。FIG. 2 is a diagram for explaining an embodiment of the present invention.
【図3】本発明の実施例を説明するための図。FIG. 3 is a diagram for explaining an example of the present invention.
【図4】本発明の実施例を説明するための図。FIG. 4 is a diagram for explaining an example of the present invention.
Claims (5)
特徴とする吸着剤。1. An adsorbent comprising carbon nanotubes.
を固定層とし、気相または液相を前記固定層を通過さ
せ、該気相または液相中の物質を前記吸着剤に吸着させ
ることを特徴とする請求項1記載の吸着剤の使用方法。2. An adsorbent composed of carbon nanotubes is used as a fixed bed, and a gas phase or a liquid phase is passed through the fixed bed to adsorb a substance in the gas phase or the liquid phase to the adsorbent. The method of using the adsorbent according to claim 1.
であることを特徴とする請求項2記載の吸着剤の使用方
法。3. The method of using an adsorbent according to claim 2, wherein the substance is an organic substance or a halogen compound.
特徴とする濾過剤。4. A filter agent comprising carbon nanotubes.
を固定層とし、気相または液相を前記固定層を通過さ
せ、該気相または液相中の物質を濾過することを特徴と
する請求項4記載の濾過剤の使用方法。5. A filter agent comprising carbon nanotubes is used as a fixed layer, a gas phase or a liquid phase is passed through the fixed layer, and a substance in the gas phase or the liquid phase is filtered. Use of the described filtering agent.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5334097A JP2710198B2 (en) | 1993-12-28 | 1993-12-28 | Adsorbents and filtration agents and their use |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5334097A JP2710198B2 (en) | 1993-12-28 | 1993-12-28 | Adsorbents and filtration agents and their use |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07185327A true JPH07185327A (en) | 1995-07-25 |
JP2710198B2 JP2710198B2 (en) | 1998-02-10 |
Family
ID=18273499
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5334097A Expired - Fee Related JP2710198B2 (en) | 1993-12-28 | 1993-12-28 | Adsorbents and filtration agents and their use |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2710198B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002100775A2 (en) * | 2001-06-13 | 2002-12-19 | The Regents Of The University Of California | Carbon nanotube coatings as chemical absorbers |
JP2003334423A (en) * | 2002-05-15 | 2003-11-25 | Mitsubishi Heavy Ind Ltd | Exhaust gas treatment apparatus |
JP2006503702A (en) * | 2002-10-28 | 2006-02-02 | ジーイーオー2 テクノロジーズ,インク. | Ceramic diesel exhaust filter |
JP2006150348A (en) * | 2004-11-19 | 2006-06-15 | Internatl Business Mach Corp <Ibm> | Method for forming carbon nanotube, filter and exposure system (chemical particle filter including chemically modified carbon nanotube structure) |
JP2007275815A (en) * | 2006-04-10 | 2007-10-25 | Inoac Corp | Carbon nanotube support and capturing material containing it |
EP2113302A1 (en) * | 2004-05-13 | 2009-11-04 | National University Corporation Hokkaido University | Fine carbon dispersion |
JP2010504854A (en) * | 2006-09-27 | 2010-02-18 | 韓國電子通信研究院 | NANOWIRE FILTER, MANUFACTURING METHOD THEREOF, ADSORBED SUBSTANCE METHOD, AND FILTER DEVICE EQUIPPED |
US8021967B2 (en) * | 2004-11-01 | 2011-09-20 | California Institute Of Technology | Nanoscale wicking methods and devices |
JP2016104464A (en) * | 2014-12-01 | 2016-06-09 | 国立研究開発法人物質・材料研究機構 | Adsorptive removal filter and adsorptive removal method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0797723A (en) * | 1993-09-10 | 1995-04-11 | Hyperion Catalysis Internatl Inc | Fibril material of carbon containing liquid |
-
1993
- 1993-12-28 JP JP5334097A patent/JP2710198B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0797723A (en) * | 1993-09-10 | 1995-04-11 | Hyperion Catalysis Internatl Inc | Fibril material of carbon containing liquid |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002100775A3 (en) * | 2001-06-13 | 2003-02-20 | Univ California | Carbon nanotube coatings as chemical absorbers |
US6749826B2 (en) | 2001-06-13 | 2004-06-15 | The Regents Of The University Of California | Carbon nanotube coatings as chemical absorbers |
WO2002100775A2 (en) * | 2001-06-13 | 2002-12-19 | The Regents Of The University Of California | Carbon nanotube coatings as chemical absorbers |
JP2003334423A (en) * | 2002-05-15 | 2003-11-25 | Mitsubishi Heavy Ind Ltd | Exhaust gas treatment apparatus |
JP4746321B2 (en) * | 2002-10-28 | 2011-08-10 | ジーイーオー2 テクノロジーズ,インク. | Ceramic diesel exhaust filter |
JP2006503702A (en) * | 2002-10-28 | 2006-02-02 | ジーイーオー2 テクノロジーズ,インク. | Ceramic diesel exhaust filter |
EP2113302A1 (en) * | 2004-05-13 | 2009-11-04 | National University Corporation Hokkaido University | Fine carbon dispersion |
EP2113302A4 (en) * | 2004-05-13 | 2009-12-23 | Univ Hokkaido Nat Univ Corp | Fine carbon dispersion |
US8021967B2 (en) * | 2004-11-01 | 2011-09-20 | California Institute Of Technology | Nanoscale wicking methods and devices |
JP2006150348A (en) * | 2004-11-19 | 2006-06-15 | Internatl Business Mach Corp <Ibm> | Method for forming carbon nanotube, filter and exposure system (chemical particle filter including chemically modified carbon nanotube structure) |
JP2007275815A (en) * | 2006-04-10 | 2007-10-25 | Inoac Corp | Carbon nanotube support and capturing material containing it |
JP2010504854A (en) * | 2006-09-27 | 2010-02-18 | 韓國電子通信研究院 | NANOWIRE FILTER, MANUFACTURING METHOD THEREOF, ADSORBED SUBSTANCE METHOD, AND FILTER DEVICE EQUIPPED |
JP2016104464A (en) * | 2014-12-01 | 2016-06-09 | 国立研究開発法人物質・材料研究機構 | Adsorptive removal filter and adsorptive removal method |
Also Published As
Publication number | Publication date |
---|---|
JP2710198B2 (en) | 1998-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5904854A (en) | Method for purifying water | |
JP2688563B2 (en) | Filters containing glass microbeads | |
JP5718309B2 (en) | Nonwoven media incorporating ultrafine or nano-sized powder | |
TWI248378B (en) | Composite adsorption material composite powder and process for producing the composite adsorption material | |
JPS63143913A (en) | Filtration by biological system silica | |
US20150129502A1 (en) | Graphene oxide-modified materials for water treatment | |
JP2710198B2 (en) | Adsorbents and filtration agents and their use | |
US7101417B2 (en) | Activated carbon for odor control and method for making same | |
JP6736470B2 (en) | Heavy metal recycling processes and materials useful for such processes | |
JPWO2003022425A1 (en) | Composite granular material and method for producing the same | |
JP6910955B2 (en) | Composite gas adsorbent, adsorption filter using it, and method for manufacturing composite gas adsorbent | |
JP5429931B2 (en) | Adsorbent and water purifier using the same | |
Van Wagenen et al. | Activated carbons for medical applications. In vitro microparticle characterization and solute adsorption | |
Xin et al. | Highly permeable nanofibrous polyamide membranes for multi-component wastewater treatment: Exploration of multiple separation mechanism | |
Adetunji et al. | Nanofluids for water treatment | |
RU2000101775A (en) | METHOD FOR PRODUCING 1,2-DICHLORETHANE OXYCHLORATION | |
WO2018110547A1 (en) | Radioactive substance removal filter, radioactive substance removal filter unit in which said radioactive substance removal filter is used, and method for removing radioactive substance | |
JP7301591B2 (en) | Manufacturing method for residual chlorine removal filter body | |
JP2005125199A (en) | Adsorbent, method for manufacturing the same, and water purifier using the same | |
JP2003190941A (en) | Adsorbent for water cleaner, method for manufacturing the same and water cleaner using the adsorbent | |
Tepper et al. | High Performance Turbidity Filter | |
JP2020048973A (en) | Production method of absorbent for purifying liquid derived from organism | |
TWI754251B (en) | Adsorbent material, heavy metal remover, and molded body and water purifier using the same | |
JPH08168619A (en) | Filter material | |
Sutherland | Filtration overview: A closer look at depth filtration |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19970924 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071024 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081024 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091024 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091024 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101024 Year of fee payment: 13 |
|
LAPS | Cancellation because of no payment of annual fees |