Nothing Special   »   [go: up one dir, main page]

JPH07151261A - Electromagnetic proportional type pressure control valve - Google Patents

Electromagnetic proportional type pressure control valve

Info

Publication number
JPH07151261A
JPH07151261A JP5297110A JP29711093A JPH07151261A JP H07151261 A JPH07151261 A JP H07151261A JP 5297110 A JP5297110 A JP 5297110A JP 29711093 A JP29711093 A JP 29711093A JP H07151261 A JPH07151261 A JP H07151261A
Authority
JP
Japan
Prior art keywords
passage
pressure chamber
cylinder
hole
sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5297110A
Other languages
Japanese (ja)
Inventor
Hideki Nakayoshi
吉 英 記 仲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP5297110A priority Critical patent/JPH07151261A/en
Priority to US08/347,067 priority patent/US6021996A/en
Priority to DE4442085A priority patent/DE4442085C2/en
Publication of JPH07151261A publication Critical patent/JPH07151261A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/042Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure
    • F15B13/043Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure with electrically-controlled pilot valves
    • F15B13/0433Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure with electrically-controlled pilot valves the pilot valves being pressure control valves
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/20Control of fluid pressure characterised by the use of electric means
    • G05D16/2093Control of fluid pressure characterised by the use of electric means with combination of electric and non-electric auxiliary power
    • G05D16/2097Control of fluid pressure characterised by the use of electric means with combination of electric and non-electric auxiliary power using pistons within the main valve

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

PURPOSE:To prevent hunting, reduce dimension, with the simple structure at a low cost. CONSTITUTION:A pressure control valve is equipped with a sleeve 35 arranged on the inner peripheral surface of a housing 13, inside space 14 formed in the sleeve 35, inflow passage 16 and an effluence passage 18 which are formed on the housing 13, snap ring 15 arranged on the inflow passage 16 side on the inner surface of the sleeve 35, and a spool valve 19 which divides the inside space 14 to the inflow passage 16 and a pressure chamber 17. Further, the pressure control valve is equipped with an effluence hole 38 which is formed on the sleeve 35 and allows the inflow passage 16 and the effluence passage 18 to communicate and cuts off the flow when the top end of the spool valve 19 makes contact with the snap ring 15, throttle flow passage 20 which is formed on the spool valve 19 and allows the inflow passage 16 and the pressure chamber 17 to communicate, return hole 21 for the communication between the pressure chamber 17 and the effluence passage 18, plunger 22 which is formed midway in the return hole 21 and cuts off the communication between the pressure chamber 17 and the effluence passage 18, and an electromagnet part 12 for driving the plunger 22.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、車両用エンジン冷却シ
ステム等に使用されるオイルポンプの電磁比例式圧力制
御弁に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic proportional pressure control valve for an oil pump used in a vehicle engine cooling system or the like.

【0002】[0002]

【従来の技術】この種の電磁比例式圧力制御弁の従来技
術としては、特公平5−73955号公報に示されるよ
うなものが知られている。ハウジングに設けられた流入
通路及び流出通路と、ハウジングの内部に形成された流
体通路と、流体通路の流入通路側に設けられた弁座と、
この弁座と対向配置され先端が弁座と当接したときに流
入通路と流出通路との連通を遮断する有底円筒形状の制
御弁部と、制御弁部の内部に配置された筒状のロッド部
と、円筒形状制御弁部内部及びロッド部頭部とにより形
成される第1圧力室と、円筒形状制御弁部底部とロッド
部スカート部とにより形成される第2圧力室と、制御弁
部底部に形成され流体通路と第1圧力室とを結ぶ絞り通
路と、ロッド部内部に形成され第1圧力室と流体通路の
制御弁部下流とを結ぶ逃がし通路と、この逃がし通路途
中に形成されその受圧面積が弁座部に対して微小となっ
ているパイロットシート部と当接して逃がし通路を開閉
するパイロット弁部と、パイロット弁部を駆動する電磁
石とを備え、且つ第1圧力室と第2圧力室とを結ぶスピ
ル通路を円筒状制御弁部内面とロッドとの間に形成し、
且つこのスピル通路に所定値以上の流量抵抗を持たせた
ものである。
2. Description of the Related Art As a conventional technique of this kind of electromagnetic proportional pressure control valve, there is known one disclosed in Japanese Patent Publication No. 5-73955. An inflow passage and an outflow passage provided in the housing, a fluid passage formed in the housing, and a valve seat provided on the inflow passage side of the fluid passage,
A control valve part having a bottomed cylindrical shape, which is arranged so as to face the valve seat and blocks communication between the inflow passage and the outflow passage when the tip comes into contact with the valve seat, and a cylindrical control valve part arranged inside the control valve part. A first pressure chamber formed by the rod portion, the inside of the cylindrical control valve portion and the head portion of the rod portion, a second pressure chamber formed by the bottom portion of the cylindrical control valve portion and the rod skirt portion, and a control valve A throttle passage formed at the bottom of the portion connecting the fluid passage and the first pressure chamber, a relief passage formed inside the rod portion connecting the first pressure chamber and the downstream of the control valve portion of the fluid passage, and formed in the middle of the escape passage And a first pressure chamber that includes a pilot valve portion that opens and closes the escape passage by contacting a pilot seat portion whose pressure receiving area is minute with respect to the valve seat portion, and an electromagnet that drives the pilot valve portion. Cylindrical control of the spill passage connecting the second pressure chamber Formed between the valve portion inner surface and the rod,
Moreover, the spill passage has a flow resistance of a predetermined value or more.

【0003】これは、流入通路の圧力とコイルが発生す
る磁界とによりパイロット弁部が開状態とする方向に付
勢され、第1圧力室の圧力と流出通路の圧力とがつりあ
うように、パイロット弁部が開閉を繰り返す。このと
き、制御弁部も開閉を繰り返し流入通路と流出通路とを
連通させる。よって、流入通路と流出通路との差圧が一
定に保たれる。このようにコイルの励磁、非励磁を繰り
返した場合に、制御弁部は、急激な面積変化が起こるの
で第1圧力室内の圧力が大幅に変動して、制御弁部がハ
ンチングを引き起こすことになる。このハンチングを防
ぐために、第1圧力室と第2圧力室とが形成され、この
第1圧力室と第2圧力室とを所定の流量抵抗をもつスピ
ル通路により連通させ、圧力変化によるハンチングをダ
ンパ機能によって防止していた。
This is urged by the pressure in the inflow passage and the magnetic field generated by the coil in the direction in which the pilot valve portion is opened, so that the pressure in the first pressure chamber and the pressure in the outflow passage are balanced. The valve repeats opening and closing. At this time, the control valve portion also repeats opening and closing to connect the inflow passage and the outflow passage. Therefore, the differential pressure between the inflow passage and the outflow passage is kept constant. When the coil is repeatedly energized and de-energized in this way, the control valve section undergoes a rapid area change, so that the pressure in the first pressure chamber fluctuates significantly, causing hunting in the control valve section. . In order to prevent this hunting, a first pressure chamber and a second pressure chamber are formed, and the first pressure chamber and the second pressure chamber are communicated with each other by a spill passage having a predetermined flow resistance, and hunting due to pressure change is damped. It was prevented by the function.

【0004】[0004]

【発明が解決しようとする課題】上記した従来技術で
は、第1圧力室と第2圧力室とスピル通路とを設けたこ
ととによって構造が複雑になり小型化とすることが困難
である。又、第1圧力室と第2圧力室とによって作用す
るダンパ機能は、スピル通路が一定であるため作動油の
油温によって変化する。例えば油温が高い場合は、スピ
ル通路からの漏れが増えるためにダンパ機能が作用せ
ず、又、油温が低い場合は、第2圧力室の作動油が抜け
にくいためパイロット弁が開状態となっても制御弁部が
開状態となる応答性が遅れるため異常な油圧が発生す
る。このため、作動油の油温が一定条件では機能する
が、それ以外ではダンパ機能が作用しないためハンチン
グを防止できない。
In the above-mentioned prior art, the structure is complicated due to the provision of the first pressure chamber, the second pressure chamber and the spill passage, and it is difficult to reduce the size. Further, the damper function acting by the first pressure chamber and the second pressure chamber changes depending on the oil temperature of the hydraulic oil because the spill passage is constant. For example, when the oil temperature is high, the damper function does not work because leakage from the spill passage increases, and when the oil temperature is low, the pilot valve is opened because the hydraulic oil in the second pressure chamber is hard to escape. However, since the responsiveness of opening the control valve part is delayed, abnormal hydraulic pressure is generated. Therefore, the hydraulic oil functions under a constant oil temperature condition, but otherwise the damper function does not work, and hunting cannot be prevented.

【0005】本発明は、簡単な構造でハンチングを防止
するとともに小型化し且つ低コストとすることを課題と
する。
An object of the present invention is to prevent hunting with a simple structure and to reduce the size and cost.

【0006】[0006]

【課題を解決するための手段】上記した課題を解決する
ために本発明において講じた手段は、少なくとも一端が
開放したシリンダ、シリンダの周面と連通する流出通
路、及び流出通路にシリンダを介して連通する流入通路
を有したハウジングと、ハウジングの一端を液密的に閉
じるようハウジングに結合され且つシリンダの軸方向に
可動のプランジャを有した電磁石部と、閉鎖された一端
を電磁石部に連結され、シリンダ内に配置され、他端の
外周がシリンダの内周に液密に嵌合され、流出通路に連
通する孔が周壁に形成され、孔が在る部位から一端にわ
たる外周にてシリンダ内に流出通路と連通する戻し通路
を形成するスリーブ、スリーブの内周に摺動可能に嵌合
され、シリンダの一端との間に圧力室を形成し、圧力室
内に配置されたスプリングにより孔を流入通路から遮断
する所定位置に向けて付勢されたスプール弁、スプール
弁に形成されて圧力室を流入通路に連通する絞り通路
と、シリンダの一端中心部に形成され、圧力室を戻し通
路に連通する戻し孔と、プランジャと結合され、スプリ
ングにより戻し孔を圧力室の圧力に抗して閉鎖するよう
に付勢され、電磁石部の励磁時にはプランジャに作用を
吸引力により戻し孔を開放するよう変位させられる弁部
材とを備えたものである。
Means for Solving the Problems The measures taken in the present invention to solve the above-mentioned problems include a cylinder whose at least one end is open, an outflow passage communicating with the circumferential surface of the cylinder, and an outflow passage through the cylinder. A housing having an inflow passage communicating with the housing, an electromagnet portion coupled to the housing so as to liquid-tightly close one end of the housing, and an electromagnet portion having a plunger movable in the axial direction of the cylinder, and one closed end connected to the electromagnet portion. , Is located in the cylinder, the outer circumference of the other end is fluid-tightly fitted to the inner circumference of the cylinder, and a hole communicating with the outflow passage is formed in the peripheral wall. A sleeve forming a return passage communicating with the outflow passage, a sleeve slidably fitted on the inner circumference of the sleeve to form a pressure chamber with one end of the cylinder, and a sp Spool valve urged toward a predetermined position to block the hole from the inflow passage by a ring, a throttle passage formed in the spool valve to communicate the pressure chamber with the inflow passage, and a pressure chamber formed at the center of one end of the cylinder. Is connected to a return hole communicating with the return passage, and is urged by a spring to close the return hole against the pressure in the pressure chamber.When the electromagnet is excited, the action of the plunger is caused by a suction force. And a valve member that is displaced so as to open.

【0007】[0007]

【作用】上記した手段によれば、スリーブ上に形成され
流出通路と連通する孔を開閉するスプール弁は、徐々に
孔を開口していくため、急激な通路面積変化がなくな
り、言い換えれば急激な圧力変化がなくなるため、スプ
ール弁のハンチングが減少する。又、戻り通路をハウジ
ングの内周面とスリーブの外周面とで形成したことによ
って戻り通路を設ける必要がないことからコスト低減に
繋がる。以上のことから、エンジン用冷却システムの水
温等に相当した作動油を油圧モータに供給され、簡単な
構造でハンチングを防止することができる。又、小型化
が可能となり低コストとすることができる。
According to the above-mentioned means, the spool valve formed on the sleeve for opening and closing the hole communicating with the outflow passage gradually opens the hole, so that the passage area does not change suddenly. Hunting of the spool valve is reduced because there is no pressure change. Further, since the return passage is formed by the inner peripheral surface of the housing and the outer peripheral surface of the sleeve, it is not necessary to provide the return passage, which leads to cost reduction. From the above, hydraulic oil corresponding to the water temperature of the engine cooling system is supplied to the hydraulic motor, and hunting can be prevented with a simple structure. Further, the size can be reduced and the cost can be reduced.

【0008】[0008]

【実施例】本発明の実施例を図面に基づいて説明する。Embodiments of the present invention will be described with reference to the drawings.

【0009】図1に示されるように、電磁比例式圧力制
御弁10は、制御弁部11と電磁石部12とから構成さ
れており、制御弁部11と電磁石部12とは一体形成さ
れている。制御弁部11について説明する。オイルポン
プ50のハウジング13には、オイルポンプ50の吐出
通路51と連通する流入通路16と、作動油をオイルポ
ンプ50の吸込側に戻す流出通路18とが形成されてい
る。又、ハウジング13には、シリンダ39が形成され
ており、このシリンダ39を介して流入通路16と流出
通路18とが連通可能とされている。又、シリンダ39
にスリーブ35が挿入されており、このスリーブ35の
流入通路16側では、作動油の洩れがないように嵌合さ
れている。又、対向側には、スリーブ35の外周面とハ
ウジング13の内周面とによって戻り通路27が形成さ
れている。流入通路16と流出通路18とは、流出穴
(孔)38によって連通される。スリーブ35内には、
内部空間14が形成されており、この内部空間14を流
入通路16と圧力室17とに区画するスプール弁19が
摺動可能に収容されている。このスプール弁19は、流
出穴38を開閉可能としており、スリーブ35の流入通
路16側に設けられたスナップリング15によって移動
量が規制されている。このスナップリング15にスプー
ル弁19の先端が当接したとき流出穴38は閉状態とさ
れる。又、流入通路16と圧力室17とは、スプール弁
19に形成された絞り通路によって連通されている。圧
力室17は、スリーブ36に形成された戻し孔21と戻
り通路27とを介して流出通路18と連通している。
又、流出穴38は、流出穴38の通路面積を急激に変化
させないために、スリーブ35の円周上に一箇所形成さ
れており、スプール弁19に開閉されるときは徐々に通
路面積が変化するような形状となっている。
As shown in FIG. 1, the electromagnetic proportional pressure control valve 10 is composed of a control valve portion 11 and an electromagnet portion 12, and the control valve portion 11 and the electromagnet portion 12 are integrally formed. . The control valve unit 11 will be described. The housing 13 of the oil pump 50 is provided with an inflow passage 16 that communicates with the discharge passage 51 of the oil pump 50, and an outflow passage 18 that returns the working oil to the suction side of the oil pump 50. A cylinder 39 is formed in the housing 13, and the inflow passage 16 and the outflow passage 18 can communicate with each other via the cylinder 39. Also, the cylinder 39
The sleeve 35 is inserted in the sleeve 35, and the sleeve 35 is fitted on the side of the inflow passage 16 so that the hydraulic oil does not leak. On the opposite side, a return passage 27 is formed by the outer peripheral surface of the sleeve 35 and the inner peripheral surface of the housing 13. The inflow passage 16 and the outflow passage 18 are connected by an outflow hole (hole) 38. Inside the sleeve 35,
An internal space 14 is formed, and a spool valve 19 that partitions the internal space 14 into an inflow passage 16 and a pressure chamber 17 is slidably accommodated. The spool valve 19 can open and close the outflow hole 38, and the movement amount is restricted by the snap ring 15 provided on the inflow passage 16 side of the sleeve 35. When the tip of the spool valve 19 comes into contact with the snap ring 15, the outflow hole 38 is closed. Further, the inflow passage 16 and the pressure chamber 17 are communicated with each other by a throttle passage formed in the spool valve 19. The pressure chamber 17 communicates with the outflow passage 18 through a return hole 21 formed in the sleeve 36 and a return passage 27.
Further, the outflow hole 38 is formed at one place on the circumference of the sleeve 35 in order to prevent the passage area of the outflow hole 38 from being rapidly changed, and the passage area gradually changes when the spool valve 19 is opened and closed. It is shaped like

【0010】スプール弁19は、円筒状で一端が断面コ
の字状となっており、フィルター24が配設されてい
る。又、このフィルター24は、支持部材25によって
固定されており、作動油内の異物が圧力室17に進入す
るのを防いでいる。スプール弁19の絞り通路20は流
入通路16と圧力室17とを常時連通しており、流入通
路16と圧力室17との圧力は等しくなっている。又、
スプール弁19の他端は、断面逆コの字状となってい
る。この断面逆コの字状の内周端には、流出穴38を閉
じる方向に付勢するリターンスプリング26が配設され
ている。
The spool valve 19 is cylindrical and has a U-shaped cross section at one end, and is provided with a filter 24. Further, the filter 24 is fixed by a supporting member 25, and prevents foreign matter in the hydraulic oil from entering the pressure chamber 17. The throttle passage 20 of the spool valve 19 continuously connects the inflow passage 16 and the pressure chamber 17, and the inflow passage 16 and the pressure chamber 17 have the same pressure. or,
The other end of the spool valve 19 has an inverted U-shaped cross section. A return spring 26 for urging the outflow hole 38 in the direction of closing the outflow hole 38 is disposed at the inner peripheral end of the inverted U-shaped cross section.

【0011】電磁石部12について説明する。プランジ
ャ22は、戻し孔21の途中に配置されている。又、プ
ランジャ22は、パイロット弁28と、ロッド29と、
プランジャ30とから構成されている。パイロット弁2
8は、ロッド29の一端に一体形成されており、又、プ
ランジャ30も他端に圧入により固定されている。パイ
ロット弁28の先端は、戻し孔21を開閉可能としてお
り、パイロット弁28の後端には、戻し孔21を閉じる
方向に付勢するスプリング31の一端が当接している。
パイロット弁28が戻し孔21を開状態としていると
き、戻し孔21は、ロッド29に形成された連通路33
と連通して、戻し孔21から流出した作動油は、連通路
33と戻り通路27を介して流出通路18に流出され
る。又、スプリング31の他端は、調整ネジ32に当接
しており、この調整ネジ32によって付勢力を調整する
ことができる。又、プランジャ30を駆動させるコイル
23は、励磁されるコア34の周囲に巻回されている。
コア34は、調整ネジ32の周囲に配置され、又、ガイ
ドコア37が調整ネジ32とコア34との間に配設され
ている。
The electromagnet section 12 will be described. The plunger 22 is arranged in the middle of the return hole 21. The plunger 22 includes a pilot valve 28, a rod 29,
And a plunger 30. Pilot valve 2
8 is integrally formed at one end of the rod 29, and the plunger 30 is also fixed at the other end by press fitting. The tip of the pilot valve 28 can open and close the return hole 21, and the rear end of the pilot valve 28 is in contact with one end of a spring 31 that urges the return hole 21 in the closing direction.
When the pilot valve 28 opens the return hole 21, the return hole 21 is connected to the communication passage 33 formed in the rod 29.
The hydraulic oil that has flowed out of the return hole 21 and communicates with the discharge hole 18 flows out into the outflow passage 18 via the communication passage 33 and the return passage 27. The other end of the spring 31 is in contact with the adjusting screw 32, and the urging force can be adjusted by the adjusting screw 32. The coil 23 that drives the plunger 30 is wound around the excited core 34.
The core 34 is arranged around the adjusting screw 32, and the guide core 37 is arranged between the adjusting screw 32 and the core 34.

【0012】図2に示されるように、電磁比例式圧力制
御弁10は、オイルポンプ50の通路51に並列に接続
されており、オイルポンプ50から吐出された作動油
は、スプール弁19が流出穴38を閉状態としていると
きは吐出通路51を流れ、スプール弁19が流出穴38
を開状態としているときは矢印A側から流入通路16に
流入して、流出通路18から矢印Bの方向に流出され
る。又、オイルポンプ50には、油圧モータ52が接続
されており、油圧モータ52には、ファン53が回転可
能に接続されている。ファン53の前方には、ラジエー
タ54が配設されている。このラジエータ54には、水
温センサーの信号55によって、電磁比例式圧力制御弁
10を制御するECU56が接続されている。
As shown in FIG. 2, the electromagnetic proportional pressure control valve 10 is connected in parallel to the passage 51 of the oil pump 50, and the working oil discharged from the oil pump 50 flows out from the spool valve 19. When the hole 38 is in the closed state, the spool valve 19 flows through the discharge passage 51 and the outflow hole 38
When is open, it flows into the inflow passage 16 from the arrow A side and flows out from the outflow passage 18 in the direction of arrow B. A hydraulic motor 52 is connected to the oil pump 50, and a fan 53 is rotatably connected to the hydraulic motor 52. A radiator 54 is arranged in front of the fan 53. An ECU 56 that controls the electromagnetic proportional pressure control valve 10 by a signal 55 from a water temperature sensor is connected to the radiator 54.

【0013】次に本実施例の作用を説明する。Next, the operation of this embodiment will be described.

【0014】ECU56により、水温センサーからの信
号55に応じた電流が、コイル23に供給されると磁界
が発生する。電流量によって、パイロット弁28が開閉
されるときの圧力を可変することができる。磁界によ
り、コア34が励磁され、プランジャ30をコア34側
に吸引しようとする。このときの吸引力と圧力室17の
圧力とがスプリング31の付勢力より低い場合は、パイ
ロット弁28は戻し孔21を閉状態としている。又、圧
力室17の圧力が高くなり、スプリング31の付勢力と
等しくなるとパイロット弁28は中立状態となってお
り、スプール弁19は、流出通路18を閉状態としてい
る。パイロット弁28の受圧面積は、スプール弁19の
受圧面積に比べ数段小さくなっている。これは、小さな
電流による吸引力であってもパイロット弁28を摺動さ
せることは可能である。パイロット弁28を摺動させれ
ば、大きな受圧面積を有するスプール弁19を摺動させ
ることが可能である。圧力室17の圧力が高くなりスプ
リング31の付勢力より高くなると、パイロット弁28
が図示右方向に摺動して戻し孔28を開状態とする。戻
し孔28が開状態となると作動油は、連通路33及び戻
り通路27を介して流出通路18に流出される。圧力室
17と流出通路18とが連通すると、流入通路16と圧
力室17とに差圧が生じる。これは、戻し孔21に比べ
絞り通路20から流出される流出量が少ないために流入
通路16と圧力室17とが同圧になるのが遅れるためで
ある。この差圧がリターンスプリング26の付勢力を上
回ると、スプール弁19も図示右方向へ摺動する。この
スプール弁19が摺動すると流出穴38が徐々に開口さ
れるため急激な圧力変化は起こらない。流入通路16の
圧力が低下していき、圧力室17の圧力との差圧がなく
なり、圧力室17の圧力が低下するとスプリング31の
付勢力により、パイロット弁28は図示左方側に摺動さ
れ、戻し孔21を閉状態とする。戻し孔21が閉状態と
されると、流入通路16は、圧力室17の圧力とリター
ンスプリング26の付勢力により、スプール弁19を図
示左方側へ摺動させ、流出穴38を閉状態とする。これ
により、オイルポンプ50から吐出される作動油の吐出
量をリニアに制御することができる。
When a current corresponding to the signal 55 from the water temperature sensor is supplied to the coil 23 by the ECU 56, a magnetic field is generated. The pressure when the pilot valve 28 is opened / closed can be changed by the amount of current. The magnetic field excites the core 34 and tries to attract the plunger 30 to the core 34 side. When the suction force and the pressure of the pressure chamber 17 at this time are lower than the urging force of the spring 31, the pilot valve 28 closes the return hole 21. When the pressure in the pressure chamber 17 increases and becomes equal to the biasing force of the spring 31, the pilot valve 28 is in the neutral state and the spool valve 19 closes the outflow passage 18. The pressure receiving area of the pilot valve 28 is several steps smaller than the pressure receiving area of the spool valve 19. This allows the pilot valve 28 to slide even with an attractive force generated by a small current. By sliding the pilot valve 28, the spool valve 19 having a large pressure receiving area can be slid. When the pressure in the pressure chamber 17 increases and becomes higher than the biasing force of the spring 31, the pilot valve 28
Slides to the right in the drawing to open the return hole 28. When the return hole 28 is opened, the hydraulic oil is flown out to the outflow passage 18 via the communication passage 33 and the return passage 27. When the pressure chamber 17 and the outflow passage 18 communicate with each other, a differential pressure is generated between the inflow passage 16 and the pressure chamber 17. This is because the outflow amount outflowing from the throttle passage 20 is smaller than that of the return hole 21, so that the inflow passage 16 and the pressure chamber 17 are delayed in having the same pressure. When this pressure difference exceeds the biasing force of the return spring 26, the spool valve 19 also slides to the right in the figure. When the spool valve 19 slides, the outflow hole 38 is gradually opened, so that no sudden pressure change occurs. When the pressure in the inflow passage 16 decreases and the pressure difference with the pressure in the pressure chamber 17 disappears, and the pressure in the pressure chamber 17 decreases, the pilot valve 28 slides to the left side in the drawing due to the urging force of the spring 31. The return hole 21 is closed. When the return hole 21 is closed, the inflow passage 16 causes the spool valve 19 to slide to the left side in the drawing by the pressure of the pressure chamber 17 and the urging force of the return spring 26 to close the outflow hole 38. To do. Thereby, the discharge amount of the hydraulic oil discharged from the oil pump 50 can be linearly controlled.

【0015】以上のことにより、スプール弁19が流出
穴38を開状態とするとき、急激な通路面積の変化がな
いので圧力室17の圧力変化が少なく、これにより、一
つの圧力室17によってスプール弁19のハンチングを
防止することができる。又、制御弁部11と電磁石部1
2とを一体構造としたことで小型にすることができる。
又、スリーブ35の外周面とハウジング13の内周面と
によって戻り通路27を形成したことによってドリル等
によって戻り通路を設ける必要がない。よって、簡単な
構造によってハンチングが防止でき且つ小型化が可能と
なり、又、低コストとすることができる。
As described above, when the spool valve 19 opens the outflow hole 38, there is no abrupt change in the passage area, so the pressure change in the pressure chamber 17 is small. Hunting of the valve 19 can be prevented. In addition, the control valve unit 11 and the electromagnet unit 1
It is possible to reduce the size by integrating 2 and 1 into an integrated structure.
Further, since the return passage 27 is formed by the outer peripheral surface of the sleeve 35 and the inner peripheral surface of the housing 13, it is not necessary to provide the return passage with a drill or the like. Therefore, hunting can be prevented with a simple structure, downsizing can be achieved, and the cost can be reduced.

【0016】[0016]

【発明の効果】上記した発明によれば、スリーブ上に形
成され流出通路と連通する孔を開閉するスプール弁は、
徐々に孔を開口していくため、急激な通路面積変化がな
くなり、言い換えれば急激な圧力変化がなくなるため、
スプール弁のハンチングが減少する。又、戻り通路をハ
ウジングの内周面とスリーブの外周面とで形成したこと
によって戻り通路を設ける必要がないことからコスト低
減に繋がる。以上のことから、エンジン用冷却システム
の水温等に相当した作動油を油圧モータに供給され、簡
単な構造でハンチングを防止することができる。又、小
型化が可能となり低コストとすることができる。
According to the invention described above, the spool valve for opening and closing the hole formed on the sleeve and communicating with the outflow passage is
Since the holes are gradually opened, there is no abrupt change in passage area, in other words, there is no abrupt pressure change.
Hunting of the spool valve is reduced. Further, since the return passage is formed by the inner peripheral surface of the housing and the outer peripheral surface of the sleeve, it is not necessary to provide the return passage, which leads to cost reduction. From the above, hydraulic oil corresponding to the water temperature of the engine cooling system is supplied to the hydraulic motor, and hunting can be prevented with a simple structure. Further, the size can be reduced and the cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る電磁比例式圧力制御弁の
断面図を示したものである。
FIG. 1 is a sectional view of an electromagnetic proportional pressure control valve according to an embodiment of the present invention.

【図2】電磁比例式圧力制御弁を使用したシステム図で
ある。
FIG. 2 is a system diagram using an electromagnetic proportional pressure control valve.

【符号の説明】[Explanation of symbols]

10・・・電磁比例式圧力制御弁 12・・・電磁石部 13・・・ハウジング 16・・・流入通路 17・・・圧力室 18・・・流出通路 19・・・スプール弁 20・・・絞り通路 21・・・戻し孔 22・・・プランジャ 35・・・スリーブ 38・・・流出穴(孔) 39・・・シリンダ 10 ... Electromagnetic proportional pressure control valve 12 ... Electromagnet section 13 ... Housing 16 ... Inflow passage 17 ... Pressure chamber 18 ... Outflow passage 19 ... Spool valve 20 ... Throttle Passage 21 ... Return hole 22 ... Plunger 35 ... Sleeve 38 ... Outflow hole (hole) 39 ... Cylinder

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも一端が開放したシリンダ、前
記シリンダの周面と連通する流出通路、及び前記流出通
路に前記シリンダを介して連通する流入通路を有したハ
ウジングと、 前記ハウジングの前記一端を液密的に閉じるよう前記ハ
ウジングに結合され且つ前記シリンダの軸方向に可動の
プランジャを有した電磁石部と、 閉鎖された一端を前記電磁石部に連結され、前記シリン
ダ内に配置され、他端の外周が前記シリンダの内周に液
密に嵌合され、前記流出通路に連通する孔が周壁に形成
され、前記孔が在る部位から一端にわたる外周にて前記
シリンダ内に前記流出通路と連通する戻し通路を形成す
るスリーブ、 前記スリーブの内周に摺動可能に嵌合され、前記シリン
ダの前記一端との間に圧力室を形成し、前記圧力室内に
配置されたスプリングにより前記孔を前記流入通路から
遮断する所定位置に向けて付勢されたスプール弁、 前記スプール弁に形成されて前記圧力室を前記流入通路
に連通する絞り通路と、 前記シリンダの前記一端中心部に形成され、前記圧力室
を前記戻し通路に連通する戻し孔と、 前記プランジャと結合され、スプリングにより前記戻し
孔を前記圧力室の圧力に抗して閉鎖するように付勢さ
れ、前記電磁石部の励磁時には前記プランジャに作用を
吸引力により前記戻し孔を開放するよう変位させられる
弁部材とを備えた電磁比例式圧力制御弁。
1. A housing having a cylinder having at least one end opened, an outflow passage communicating with a peripheral surface of the cylinder, and an inflow passage communicating with the outflow passage through the cylinder, and the one end of the housing is provided with a liquid. An electromagnet part which is coupled to the housing so as to be closed tightly and has a plunger movable in the axial direction of the cylinder, and a closed one end of which is connected to the electromagnet part and which is arranged in the cylinder and has an outer periphery of the other end. Is liquid-tightly fitted to the inner circumference of the cylinder, a hole communicating with the outflow passage is formed in the peripheral wall, and a return communicating with the outflow passage into the cylinder at an outer circumference extending from one end of the hole to one end. A sleeve forming a passage, slidably fitted to the inner circumference of the sleeve to form a pressure chamber between the sleeve and the one end of the cylinder, and a sleeve arranged in the pressure chamber. A spool valve biased toward a predetermined position to block the hole from the inflow passage by a pulling, a throttle passage formed in the spool valve to communicate the pressure chamber with the inflow passage, and a center of the one end of the cylinder A return hole that is formed in a portion and communicates the pressure chamber with the return passage, and is coupled to the plunger, and is urged by a spring to close the return hole against the pressure of the pressure chamber, and the electromagnet An electromagnetic proportional pressure control valve having a valve member that is displaced so as to open the return hole by an attractive force when the portion is excited.
JP5297110A 1993-11-26 1993-11-26 Electromagnetic proportional type pressure control valve Pending JPH07151261A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP5297110A JPH07151261A (en) 1993-11-26 1993-11-26 Electromagnetic proportional type pressure control valve
US08/347,067 US6021996A (en) 1993-11-26 1994-11-23 Electromagnetically operable proportional pressure control valve
DE4442085A DE4442085C2 (en) 1993-11-26 1994-11-25 Electromagnetically operated proportional pressure control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5297110A JPH07151261A (en) 1993-11-26 1993-11-26 Electromagnetic proportional type pressure control valve

Publications (1)

Publication Number Publication Date
JPH07151261A true JPH07151261A (en) 1995-06-13

Family

ID=17842348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5297110A Pending JPH07151261A (en) 1993-11-26 1993-11-26 Electromagnetic proportional type pressure control valve

Country Status (3)

Country Link
US (1) US6021996A (en)
JP (1) JPH07151261A (en)
DE (1) DE4442085C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001000992A1 (en) * 1999-06-24 2001-01-04 Zexel Valeo Climate Control Corporation Variable-capacity control for refrigerating cycle

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH094747A (en) * 1995-06-22 1997-01-07 Aisin Seiki Co Ltd Electromagnetic proportional type pressure valve
DE19622763A1 (en) * 1996-06-07 1997-12-11 Rexroth Mannesmann Gmbh Hydraulic control system to maintain constant supply to load
DE19932139B4 (en) * 1999-07-09 2009-06-18 Bosch Rexroth Aktiengesellschaft Pilot operated slide valve
US6345870B1 (en) * 1999-10-28 2002-02-12 Kelsey-Hayes Company Control valve for a hydraulic control unit
DE10046978C2 (en) * 2000-09-22 2003-03-06 Knorr Bremse Systeme Electromagnetically actuated valve device and valve device
FR2817605B1 (en) * 2000-12-01 2005-05-20 Eaton Corp PROPORTIONAL SOLENOID VALVE FOR MOTOR COOLANT LIQUID CIRCUIT
DE10146351A1 (en) * 2001-09-20 2003-04-17 Korsch Pressen Ag Process for remote diagnosis of process states in plants via computer software
JP2003322274A (en) * 2002-04-26 2003-11-14 Tgk Co Ltd Solenoid control valve
US7264019B2 (en) * 2002-12-17 2007-09-04 Nem S.P.A. Controlled-flow hydraulic distributor
FR2858372B1 (en) * 2003-07-29 2006-02-17 Delphi Tech Inc HYDRAULIC VALVE, IN PARTICULAR FOR ANTIROULIS SYSTEM OF A MOTOR VEHICLE
FR2864197B1 (en) * 2003-12-18 2006-04-28 Eaton Sa Monaco HYDRAULIC VALVE WITH PIEZOELECTRIC WASHER
EP1589392A1 (en) * 2004-04-24 2005-10-26 THOMAS MAGNETE GmbH Pressure controlling valve
DE102006062902B4 (en) * 2006-04-07 2016-11-17 Hofer Mechatronik Gmbh Method for operating a transmission for a motor vehicle
US20070290152A1 (en) * 2006-06-16 2007-12-20 Pengfei Ma Poppet valve
US20080169439A1 (en) * 2006-12-18 2008-07-17 Borgwarner Inc. Integrated two-stage low-leak control valve
DE102009019552A1 (en) * 2009-04-30 2010-11-11 Hydac Fluidtechnik Gmbh Proportional throttle valve
DE102009019554B3 (en) * 2009-04-30 2010-09-09 Hydac Fluidtechnik Gmbh Proportional throttle valve
DE102011010474A1 (en) 2011-02-05 2012-08-09 Hydac Fluidtechnik Gmbh Proportional pressure control valve
WO2012128797A2 (en) * 2011-03-22 2012-09-27 Parker Hannifin Corporation Electro-proportional pilot operated poppet valve with pressure compensation
DE102011101187B4 (en) * 2011-05-11 2014-09-04 Magna Steyr Fahrzeugtechnik Ag & Co Kg pressure reducer
DE102011110257B3 (en) 2011-06-06 2012-07-26 Hydac Fluidtechnik Gmbh Valve, in particular pressure control valve or pressure relief valve
DE102011121339A1 (en) * 2011-12-16 2013-06-20 Hydac Filtertechnik Gmbh Valve
DE102014222299A1 (en) * 2014-10-31 2016-05-04 Robert Bosch Gmbh Apparatus for erosive processing and / or for cleaning a material or a workpiece surface by means of at least one high-pressure fluid jet and method for operating such a device
EP3552763B1 (en) * 2018-04-10 2023-01-04 Hamilton Sundstrand Corporation Filter retaining plug
EP3660331B1 (en) 2018-11-27 2021-06-16 Hamilton Sundstrand Corporation Filter retaining plug and tool
CN109372813B (en) * 2018-11-30 2020-05-08 武汉船用机械有限责任公司 Electro-hydraulic proportional throttle valve and control method thereof

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4305566A (en) * 1979-10-31 1981-12-15 Fluid Controls, Inc. Fluid control valve
IT1129059B (en) * 1980-01-23 1986-06-04 Fiat Ricerche PRESSURE REGULATING VALVE FOR AN OPEN HYDRAULIC CIRCUIT
DE3220867A1 (en) * 1982-06-03 1983-12-08 Rheinische Armaturen- und Maschinenfabrik Albert Sempell, 4052 Korschenbroich Pilot operated solenoid valve
US4623118A (en) * 1982-08-05 1986-11-18 Deere & Company Proportional control valve
US4494726A (en) * 1983-08-08 1985-01-22 Deere & Company Control valve
US4750704A (en) * 1983-12-21 1988-06-14 Robert W. Brundage Solenoid controlled fluid flow valve
JPS61105381A (en) * 1984-10-29 1986-05-23 Kawasaki Heavy Ind Ltd Electromagnetic flow control valve
DE3600640A1 (en) * 1985-03-14 1986-09-25 Zahnradfabrik Friedrichshafen Ag, 7990 Friedrichshafen Adjustable drive of a fan
DE3532591A1 (en) * 1985-09-12 1987-03-19 Rexroth Mannesmann Gmbh HYDRAULIC DEVICE, IN PARTICULAR 2-WAY PROPORTIONAL THROTTLE VALVE
JPS62147181A (en) * 1985-12-19 1987-07-01 Nippon Denso Co Ltd Solenoid proportional type pressure control valve
JPS63124820A (en) * 1986-11-12 1988-05-28 Toyota Motor Corp Revolution speed controller of cooling fan of internal combustion engine
US4941437A (en) * 1987-07-01 1990-07-17 Nippondenso Co., Ltd. Automotive radiator cooling system
US5020771A (en) * 1989-01-26 1991-06-04 Ranco Japan Ltd. Proportional control valve
US5020772A (en) * 1989-02-13 1991-06-04 Degenfelder Joseph R Proportional electromagnetic flow valve
US5178359A (en) * 1990-02-08 1993-01-12 Applied Power Inc. Porportional pressure control valve
US5048790A (en) * 1990-07-18 1991-09-17 Target Rock Corporation Self-modulating control valve for high-pressure fluid flow
JPH0573955A (en) * 1991-09-10 1993-03-26 Victor Co Of Japan Ltd Optical recording medium disc

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001000992A1 (en) * 1999-06-24 2001-01-04 Zexel Valeo Climate Control Corporation Variable-capacity control for refrigerating cycle
US6585494B1 (en) 1999-06-24 2003-07-01 Zexel Valeo Climate Control Corporation Variable-capacity control for refrigerating cycle without using a large pressure control valve

Also Published As

Publication number Publication date
DE4442085C2 (en) 1999-07-22
DE4442085A1 (en) 1995-06-01
US6021996A (en) 2000-02-08

Similar Documents

Publication Publication Date Title
JPH07151261A (en) Electromagnetic proportional type pressure control valve
US6209563B1 (en) Solenoid control valve
CA2251231C (en) Proportional variable force solenoid control valve with armature damping
JPH094747A (en) Electromagnetic proportional type pressure valve
US20040154672A1 (en) Proportional pilot-operated flow control valve
US6615869B2 (en) Solenoid valve
JP2004504566A (en) Proportional pressure control valve
US20050098211A1 (en) Three-way bleed type proportional electromagnetic valve
EP0783985B1 (en) Damper control valve
US6186750B1 (en) Oil pump control valve spool with pilot pressure relief valve
EP0916566B1 (en) Flow rate regulating valve of hydraulic pump
CA2431717A1 (en) Proportional valve with linear actuator
US5819777A (en) Flow control device
KR100211324B1 (en) Servo valve type injection timing control device for fuel injection pump
US20030034073A1 (en) Check valve for fuel pump
US6263909B1 (en) Valve assembly
JP2560640Y2 (en) Pilot operated solenoid proportional valve
JP2002130515A (en) Oil pressure control valve
JPH0573955B2 (en)
JP2003129818A (en) Hydraulic control device
JPH0594220A (en) Pressure controller
JPH081345Y2 (en) Electromagnetic flow control valve
JP4470538B2 (en) Solenoid valve
JP2586207Y2 (en) Poppet valve device
JP2561717Y2 (en) Two-way relief valve