JPH07145843A - Energy absorbing member made of aluminum alloy for automobile - Google Patents
Energy absorbing member made of aluminum alloy for automobileInfo
- Publication number
- JPH07145843A JPH07145843A JP31737393A JP31737393A JPH07145843A JP H07145843 A JPH07145843 A JP H07145843A JP 31737393 A JP31737393 A JP 31737393A JP 31737393 A JP31737393 A JP 31737393A JP H07145843 A JPH07145843 A JP H07145843A
- Authority
- JP
- Japan
- Prior art keywords
- aluminum alloy
- profile
- hollow
- absorbing member
- shape material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Vibration Dampers (AREA)
- Body Structure For Vehicles (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、アルミニウム合金製自
動車用エネルギー吸収メンバー、詳しくは、自動車が衝
突した場合の衝突エネルギーを吸収して搭乗者の安全を
確保するために、車体の上部構造などに取付けられるア
ルミニウム合金中空形材製のエネルギー吸収メンバーに
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy automobile energy absorbing member, and more particularly, to a vehicle upper structure for absorbing the collision energy in the event of collision of the automobile to ensure the safety of passengers. To an energy absorbing member made of an aluminum alloy hollow profile attached to the.
【0002】[0002]
【従来の技術】従来、衝突時のエネルギーを吸収して搭
乗者の保護を図るためのエネルギー吸収メンバーは、鋼
の板材をプレス成形し、スポット溶接などにより箱形状
に形成されている。この部材は、衝撃により縦方向の圧
縮荷重を受けた場合、図5の衝撃荷重−部材変形量の模
型図に示すように、最大荷重に達すると急速に荷重が減
少し、部材の端部から蛇腹状に変形し、塑性座屈が進行
して衝撃エネルギーを吸収するのが理想的なエネルギー
吸収形態である。2. Description of the Related Art Conventionally, an energy absorbing member for absorbing energy at the time of a collision and protecting an occupant is formed by pressing a steel plate material into a box shape by spot welding or the like. When a vertical compressive load is applied to the member due to an impact, the load rapidly decreases when the maximum load is reached, as shown in the model diagram of impact load-member deformation amount in FIG. The ideal energy absorption form is that it is deformed into a bellows shape and plastic buckling proceeds to absorb impact energy.
【0003】このようなエネルギー吸収形態を実現する
ためには、鋼板箱形部材に衝突荷重が負荷された場合
に、部材の荷重負荷端部から確実に蛇腹状の座屈変形を
起こさせなけらばならない。そのために、鋼板箱形部材
にビード部や穴部を設け、座屈を助長させる設計手法も
研究されている。(三菱重工技報、Vol.8 、No.1、第12
4 〜130 頁)In order to realize such an energy absorption mode, when a collision load is applied to a steel plate box-shaped member, a bellows-like buckling deformation must be surely caused from the load-loaded end of the member. I have to. Therefore, a design method for promoting buckling by providing a bead portion or a hole portion in the steel plate box-shaped member has been studied. (Mitsubishi Heavy Industries Technical Report, Vol.8, No.1, No.12
(Pp. 4-130)
【0004】近年、環境問題から自動車車体重量の軽減
が提唱されており、車体および車体を構成する部材につ
いても従来の鋼板に替えて、より軽量なアルミニウム合
金やプラスチックの使用が検討され、1部その使用が実
現されている。この場合、材料置換により構成される車
体構造には、衝撃エネルギー吸収メンバーについても、
従来の鋼板製の箱形部材に代わり、さらに軽量で且つエ
ネルギー吸収の高いメンバーが要求されている。In recent years, it has been proposed to reduce the weight of automobile bodies due to environmental problems, and the use of lighter aluminum alloys and plastics for the body and the members constituting the body instead of conventional steel plates has been studied. Its use has been realized. In this case, in the vehicle body structure formed by material replacement,
Instead of the conventional steel plate box member, a member that is lighter in weight and has higher energy absorption is required.
【0005】[0005]
【発明が解決しようとする課題】本発明は、上記の要求
に応えるエネルギー吸収メンバーを開発するために、軽
量で構造部への取付けが溶接により簡単に行えるアルミ
ニウム合金中空押出形材に着目し、鋼板製箱形部材にお
ける研究成果を基礎として種々の実験を行って、圧縮応
力を負荷した場合における最大荷重は形材の断面積と材
料の耐力の積にほぼ等しいこと、変形のピッチは中空形
材の( 縦の長さ+横の長さ)/2にほぼ等しいこと、形
材の先端部の1か所から蛇腹変形が開始されれば割れな
い限り変形は蛇腹状に継続していくことなどを確認し、
これらの試験結果に基づいて、アルミニウム合金からな
るエネルギー吸収メンバーとして最適の部材材質、形
状、寸法、変形起点の形態などの組み合わせについて鋭
意検討した結果としてなされたものであり、その目的
は、軽量でエネルギー吸収度が高く、衝撃荷重を受けた
場合確実に端末部から順次に座屈変形して効果的に衝撃
エネルギーを吸収するアルミニウム合金製自動車用エネ
ルギー吸収メンバーを提供することにある。DISCLOSURE OF THE INVENTION The present invention focuses on an aluminum alloy hollow extruded shape member which is lightweight and can be easily attached to a structure by welding in order to develop an energy absorbing member which meets the above-mentioned requirements. Various experiments were conducted based on the research results of steel plate box-shaped members, and the maximum load when compressive stress was applied was approximately equal to the product of the cross-sectional area of the profile and the proof stress of the material, and the pitch of deformation was hollow. It is almost equal to (vertical length + horizontal length) / 2 of the material, and if the bellows deformation starts at one point of the shape member, it will continue to deform like a bellows unless cracked. Etc.,
Based on these test results, it was made as a result of diligent examination of the combination of the optimum member material, shape, size, form of deformation starting point, etc. as an energy absorbing member made of an aluminum alloy, and its purpose is to be lightweight and (EN) It is possible to provide an aluminum alloy energy absorbing member for an automobile, which has a high energy absorption degree and buckles and is deformed sequentially from a terminal portion when an impact load is applied to thereby effectively absorb the impact energy.
【0006】[0006]
【課題を解決するための手段】上記の目的を達成するた
めの本発明によるアルミニウム合金製自動用エネルギー
吸収メンバーは、調質された熱処理型アルミニウム合金
中空押出材からなり、該形材の長さ方向の端部に、形材
の長さ方向に圧縮応力を負荷したとき形材の蛇腹変形の
起点となり得る軟質部が形材の横方向に形成されている
こと、および該形材の肉厚は2mm 以上で、形材の中空部
を含む全断面積が3000〜8000mm2 であり、形材の断面に
はそれぞれ1000〜4000mm2 の断面積を有する中空部が1
つまたは2つ以上設けられ、形材の長さ方向の端部に、
形材の長さ方向に圧縮応力を負荷したとき形材の蛇腹状
変形の起点となり得る軟質部が形材の横方向に形成され
ていることを構成上の基本的特徴とする。To achieve the above object, an aluminum alloy automatic energy absorbing member according to the present invention comprises a heat-treated aluminum alloy hollow extruded material having a tempered length. At the end of the profile, a soft part that can be the origin of the bellows deformation of the profile when a compressive stress is applied in the length direction of the profile is formed in the lateral direction of the profile, and the wall thickness of the profile the 2mm or more, the total sectional area including the hollow portion of the profile is 3000~8000Mm 2, a hollow portion having a cross-sectional area of each of the cross-section 1000~4000Mm 2 of profile 1
One or two or more are provided, and at the end of the profile in the length direction,
It is a basic structural feature that a soft portion, which can be a starting point of the bellows-like deformation of the shape member when a compressive stress is applied in the length direction of the shape member, is formed in the lateral direction of the shape member.
【0007】また、軟質部が形材を局部加熱することに
より形成されること、形材が長辺方向の中央部に隔壁を
具えた長方形状の中空形材からなること、および形材が
長辺方向および短辺方向の中心線に対して対称となる位
置に隔壁を具えた中空形材からなることを構成上の第
3、第4および第5の特徴とする。Further, the soft portion is formed by locally heating the profile, the profile is a rectangular hollow profile having a partition wall in the central portion in the long side direction, and the profile is long. The third, fourth and fifth characteristics of the structure are that the material is made of a hollow shape member having partition walls at positions symmetrical with respect to the center lines in the side direction and the short side direction.
【0008】本発明の中空形材を構成する熱処理型アル
ミニウム合金としては、例えば7000系のAl−Zn−M
g系合金、6000系のAl−Mg−Si系合金が適用され
る。これらのアルミニウム合金は押出後の調質としてT
5処理あるいはT6処理を施すのが好ましく、17%以上
の伸び率を有するものとする。中空形材としては、中空
部を含む全断面積が3000〜8000mm2 、好ましくは3500〜
6500mm2 であり、それぞれ1000〜4000mm2 の断面積を有
する中空部が1つまたは2つ以上設けられた丸管または
角管が好適に使用される。中空部の断面積の下限は、中
空部が1つの場合は2500mm2 以上、2つ以上の場合は10
00mm2 以上とするのがさらに好ましい。各断面積が4000
mm2 を越えた中空形材では強度が不十分となりエネルギ
ー吸収量も低下する。断面積の小さい中空部を多数具え
た中空形材では変形が複雑となり蛇腹変形が生じ難くな
る。中空部を含む全断面積が3000mm2 未満の形材では、
強度が十分でなく、圧縮応力を負荷した場合における最
大荷重が低くなって所望の平均荷重が得られずエネルギ
ー吸収能力が低下する。8000mm2 を越えて大きくしても
エネルギー吸収効果の顕著な向上が期待できず、実用的
でなくなる。The heat-treatable aluminum alloy constituting the hollow profile of the present invention is, for example, 7000 series Al-Zn-M.
A g-based alloy or a 6000-based Al-Mg-Si-based alloy is applied. These aluminum alloys have T as a temper after extrusion.
5 treatment or T6 treatment is preferable, and the elongation rate is 17% or more. As the hollow shape member, the total cross-sectional area including the hollow portion is 3000 to 8000 mm 2 , preferably 3500 to
It is 6500 mm 2, a round tube or square tube hollow portion is provided one or more, each having a cross-sectional area of 1000~4000Mm 2 is preferably used. The lower limit of the cross-sectional area of the hollow part is 2500 mm 2 or more for one hollow part and 10 for two or more.
More preferably, it is set to 00 mm 2 or more. Each cross section is 4000
A hollow material with a size of more than mm 2 will have insufficient strength and energy absorption will decrease. With a hollow shape member having a large number of hollow portions having a small cross-sectional area, the deformation becomes complicated and the bellows deformation hardly occurs. The profile of less than 3000 mm 2 total cross section including a hollow portion,
When the strength is not sufficient and a compressive stress is applied, the maximum load becomes low, and the desired average load cannot be obtained, and the energy absorption capacity decreases. Even if it exceeds 8000 mm 2 , the energy absorption effect cannot be expected to be significantly improved, and it becomes impractical.
【0009】本発明の特徴は、形材の長さ方向の端部
に、形材の長さ方向に圧縮応力を負荷したときの形材の
蛇腹状変形の起点となり得る軟質部を形材の横方向に形
成することにある。蛇腹状変形の起点となり得る軟質部
は、例えば形材を局部加熱することにより、図1に示す
ように、形材の端部の1か所に設けるのが好ましい。多
くの軟質部を並設すると、圧縮応力を負荷した場合にお
ける最大荷重が低下し過ぎて変形中に所望の平均荷重が
得られず、また変形のピッチに合わずエネルギー吸収量
を低下させる。軟質部は、その部分の耐力が、圧縮応力
を負荷した場合において要求される最大荷重を形材の全
断面積で除した値となるように、局部加熱の条件を調整
することにより形成する。A feature of the present invention is that the end portion in the longitudinal direction of the shape member is provided with a soft portion which can be a starting point of the bellows-like deformation of the shape member when a compressive stress is applied in the longitudinal direction of the shape member. Forming in the lateral direction. It is preferable that the soft part which can be the starting point of the bellows-like deformation is provided at one position of the end of the profile as shown in FIG. 1 by locally heating the profile. When many soft parts are arranged in parallel, the maximum load when compressive stress is applied is too low to obtain the desired average load during deformation, and the energy absorption amount is decreased because it does not match the deformation pitch. The soft portion is formed by adjusting the conditions of local heating so that the proof stress of that portion becomes a value obtained by dividing the maximum load required when a compressive stress is applied by the total cross-sectional area of the profile.
【0010】本発明において適用される中空形材として
は、前記のように丸管または角管が好適に使用される
が、丸管の場合には、例えば断面積2500〜4000mm2 の中
空部を有する中空管、角管の場合には、全断面積4000〜
8000mm2 の中空角管を2つから4つの中空部に対称とな
るように仕切り、各中空部の断面積を1000〜3000mm2 と
したものが好ましい。As the hollow profile applied in the present invention, a round tube or a square tube is preferably used as described above. In the case of a round tube, for example, a hollow portion having a cross-sectional area of 2500 to 4000 mm 2 is used. For hollow tubes and square tubes, the total cross-sectional area is 4000 ~
It is preferable that a hollow square tube of 8000 mm 2 is partitioned into two to four hollow portions so as to be symmetrical, and each hollow portion has a cross-sectional area of 1000 to 3000 mm 2 .
【0011】[0011]
【作用】本発明においては、構成材料、材質特性、断面
形状、寸法、変形起点の形態などの特定された組合わせ
により、軽量でエネルギー吸収が高く、自動車車体への
溶接も簡単に行え、自動車のフロントおよびリヤサイド
メンバー、ステアリングシャフト、サイドドア・インパ
クトメンバーなどとして適用できるエネルギー吸収部材
が得られる。In the present invention, due to the specified combination of constituent materials, material characteristics, cross-sectional shape, dimensions, form of deformation starting point, etc., it is lightweight and has high energy absorption, and can be easily welded to an automobile body. It is possible to obtain an energy absorbing member that can be applied to front and rear side members, steering shafts, side doors, impact members, and the like.
【0012】[0012]
【実施例】以下、本発明の実施例を比較例と対比して説
明する。 実施例1 Zn6.0 %(重量%、以下同じ)、Mg0.8 %、Mn0.
17%、Zr0.18%を含み、残部Alからなるアルミニウ
ム合金ビレットを、押出温度500 ℃、押出比10の条件で
押出加工し、図1、図2および図3に示すように、縦10
0mm 、横60mm、厚さ2.6mm 、隔壁厚さ2.6mm の断面日型
の長方形状角管、縦100mm 、横60mm、厚さ2.3mm 、隔壁
厚さ2.3mm の断面田型の長方形状角管および縦100mm 、
横60mm、厚さ3.5mm の断面ロ型の長方形状角管とした。
空冷後、120 ℃で24h のT5処理を行い、角管端部の外
面側に、高周波誘導加熱方式で410 ℃で5 分間加熱し空
冷することにより上端から30mm下方に軟質部Aを形成し
た。これらの角管を380mm長さに切断して、圧縮速度20m
m/ 分で静的圧縮試験を行った。試験結果を表1および
図4に示す。EXAMPLES Examples of the present invention will be described below in comparison with comparative examples. Example 1 Zn6.0% (weight%, the same applies hereinafter), Mg0.8%, Mn0.
An aluminum alloy billet containing 17% and Zr 0.18% and the balance Al was extruded under the conditions of an extrusion temperature of 500 ° C. and an extrusion ratio of 10, and as shown in FIG. 1, FIG. 2 and FIG.
0mm, width 60mm, thickness 2.6mm, bulkhead thickness 2.6mm, cross-section rectangular rectangular tube, 100mm length, width 60mm, thickness 2.3mm, bulkhead 2.3mm rectangular rectangular tube And vertical 100mm,
A rectangular rectangular tube with a cross section of 60 mm in width and 3.5 mm in thickness was used.
After air cooling, T5 treatment was carried out at 120 ° C. for 24 hours, and a soft portion A was formed on the outer surface of the end of the rectangular tube 30 mm below the upper end by heating at 410 ° C. for 5 minutes by a high frequency induction heating method and air cooling. These square tubes are cut to a length of 380 mm and the compression speed is 20 m.
A static compression test was performed at m / min. The test results are shown in Table 1 and FIG.
【0013】[0013]
【表1】 [Table 1]
【0014】本発明によるエネルギー吸収メンバーの試
験材No.1は、最大荷重は軟質部の形成により25%程度低
下したが約21tfに抑制することができ、小さいピッチで
蛇腹状に変形して、荷重−変位線図は図4に示すように
なり、圧縮変位量200mm までの吸収エネルギーは24kJ以
上で優れたエネルギー吸収能力を示した。試験材No.2も
小さいピッチで蛇腹状に変形し、圧縮変位量200mm まで
の吸収エネルギーは28.6kJと高い値を示した。一方、断
面ロ型の長方形状角管( 比較1)は、軟質部側から変形を
開始したが、変形は不規則で荷重−変位線図における平
均荷重が低下し十分なエネルギー吸収が達成されなかっ
た。In the test material No. 1 of the energy absorbing member according to the present invention, the maximum load was reduced by about 25% due to the formation of the soft portion, but it could be suppressed to about 21 tf and deformed into a bellows shape at a small pitch, The load-displacement diagram is as shown in Fig. 4, and the absorbed energy up to a compression displacement amount of 200 mm was 24 kJ or more, indicating excellent energy absorption capacity. Test material No. 2 also deformed into a bellows shape with a small pitch, and the absorbed energy up to a compression displacement amount of 200 mm showed a high value of 28.6 kJ. On the other hand, the rectangular square tube with a cross section of B-shaped (Comparison 1) started to deform from the soft side, but the deformation was irregular and the average load in the load-displacement diagram decreased and sufficient energy absorption was not achieved. It was
【0015】比較例1 実施例1と同一の組成を有するアルミニウム合金ビレッ
ト実施例1と同様の受験で押出加工し、実施例1と同一
寸法の断面日型の長方形状角管、断面田型の長方形状角
管および断面ロ型の長方形状角管とした。これらの角管
を380mm 長さに切断し、圧縮速度20mm/ 分で静的圧縮試
験を実施した。試験結果を表2に示す。Comparative Example 1 An aluminum alloy billet having the same composition as in Example 1 was extruded in the same test as in Example 1 to obtain a rectangular rectangular tube having a cross-section of the same size as that of Example 1, and a cross-section of rectangular cross section. A rectangular rectangular tube and a rectangular rectangular tube having a cross-section of square shape were used. These square tubes were cut into a length of 380 mm, and a static compression test was performed at a compression speed of 20 mm / min. The test results are shown in Table 2.
【0016】[0016]
【表2】 [Table 2]
【0017】表2に示されるように、比較例によるエネ
ルギー吸収メンバーは、いずれも変形の起点が中央部あ
るいは反対端部と安定しなかった。このようなメンバー
を実際に使用した場合には、衝突速度が大きくなるに従
って蛇腹変形が不安定になり、横折れ変形し易くなる。As shown in Table 2, the energy absorbing members according to the comparative examples were not stable in the starting point of deformation at the central portion or the opposite end portion. When such a member is actually used, the bellows deformation becomes unstable as the collision speed increases, and the member is easily bent and deformed.
【0018】[0018]
【発明の効果】以上のとおり、本発明によれば、軽量で
溶接可能であり、エネルギー吸収能力の高いエネルギー
吸収メンバーが提供される。アルミニウム合金の中空押
出形材を使用するので形状は使用箇所に合わせて自由に
設計することが可能であり生産性にも優れている。As described above, according to the present invention, there is provided an energy absorbing member which is lightweight, weldable, and has a high energy absorbing ability. Since a hollow extruded shape of aluminum alloy is used, the shape can be freely designed according to the place of use and is excellent in productivity.
【図1】本発明に使用する中空形材の軟質部を簡略化し
て示す斜視図である。FIG. 1 is a simplified perspective view showing a soft part of a hollow profile used in the present invention.
【図2】本発明に使用する中空型材の他の実施例の軟質
部を簡略化して示す斜視図である。FIG. 2 is a simplified perspective view showing a soft part of another embodiment of the hollow mold member used in the present invention.
【図3】比較例として示す中空形材の軟質部を簡略化し
て示す斜視図である。FIG. 3 is a simplified perspective view showing a soft part of a hollow frame shown as a comparative example.
【図4】本発明のエネルギー吸収メンバーとして使用す
る断面日型の長方形状角管の静的圧縮試験における荷重
−変位線図である。FIG. 4 is a load-displacement diagram in a static compression test of a rectangular rectangular tube having a Japanese cross section used as an energy absorbing member of the present invention.
【図5】エネルギー吸収メンバーにおける衝撃エネルギ
ー吸収を説明する衝撃荷重−変形量の関係を示す線図で
ある。FIG. 5 is a diagram showing an impact load-deformation amount relationship for explaining impact energy absorption in an energy absorbing member.
A 軟質部 A soft part
Claims (5)
空形材からなり、該形材の長さ方向の端部に、形材の長
さ方向に圧縮応力を負荷したとき形材の蛇腹状変形の起
点となり得る軟質部が形材の横方向に形成されているこ
とを特徴とするアルミニウム合金製自動車用エネルギー
吸収メンバー。1. A bellows-shaped deformation of a heat-treatable aluminum alloy hollow shaped material which is subjected to a compressive stress in the longitudinal direction of the shaped material at the end of the shaped material in the longitudinal direction. An energy absorbing member for an automobile made of an aluminum alloy, characterized in that a soft portion which can be a starting point of is formed in a lateral direction of the profile.
空形材からなり、該形材の肉厚は2mm 以上で、形材の中
空部を含む全断面積が3000〜8000mm2 であり、形材の断
面にはそれぞれ1000〜4000mm2 の断面積を有する中空部
が1つまたは2つ以上設けられ、形材の長さ方向の端部
に、形材の長さ方向に圧縮応力を負荷したとき形材の蛇
腹状変形の起点となり得る軟質部が形材の横方向に形成
されていることを特徴とするアルミニウム合金製自動車
用エネルギー吸収メンバー。2. A heat-treated aluminum alloy hollow profile material, which has been heat-treated, has a wall thickness of 2 mm or more and a total cross-sectional area including the hollow portion of the profile of 3000 to 8000 mm 2. of the cross-section hollow portion having a cross-sectional area of 1000~4000Mm 2 each are provided one or more, the longitudinal end of the profile, when loaded with compressive stress in the longitudinal direction of the profile An aluminum alloy energy absorbing member for an automobile, characterized in that a soft portion which can be a starting point of a bellows-like deformation of the profile is formed in a lateral direction of the profile.
形成されることを特徴とする請求項1〜2記載のアルミ
ニウム合金製自動車用エネルギー吸収メンバー。3. The energy absorbing member for an automobile made of an aluminum alloy according to claim 1, wherein the soft portion is formed by locally heating the profile.
長方形状の中空形材からなることを特徴とする請求項1
〜3記載のアルミニウム合金製自動車用エネルギー吸収
メンバー。4. The shape member is a rectangular hollow shape member having a partition wall at the center in the long side direction.
The energy-absorbing member for automobiles made of an aluminum alloy according to 1 to 3.
の中心線に対して対称となる位置に隔壁を具えた中空形
材からなることを特徴とする請求項1〜3記載のアルミ
ニウム合金製自動車用エネルギー吸収メンバー。5. The shape member according to claim 1, wherein the shape member is a hollow shape member having a partition wall at a position symmetrical with respect to a central portion in the long side direction and a center line in the short side direction. Aluminum alloy energy absorbing member for automobiles.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31737393A JPH07145843A (en) | 1993-11-24 | 1993-11-24 | Energy absorbing member made of aluminum alloy for automobile |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31737393A JPH07145843A (en) | 1993-11-24 | 1993-11-24 | Energy absorbing member made of aluminum alloy for automobile |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07145843A true JPH07145843A (en) | 1995-06-06 |
Family
ID=18087532
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31737393A Pending JPH07145843A (en) | 1993-11-24 | 1993-11-24 | Energy absorbing member made of aluminum alloy for automobile |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07145843A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002012165A (en) * | 2001-05-29 | 2002-01-15 | Kobe Steel Ltd | Energy absorbing member |
EP1209039A2 (en) | 2000-11-21 | 2002-05-29 | Aisin Seiki Kabushiki Kaisha | Shock absorbing member and bumper comprising the same |
KR20030000253A (en) * | 2001-06-22 | 2003-01-06 | 현대자동차주식회사 | Front side member for increasing clash-performance of automobile |
US6502874B2 (en) | 2000-12-25 | 2003-01-07 | Toyota Jidosha Kabushiki Kaisha | Coupling structure of shock transmitting member and shock absorbing member, and bumper |
JP2008213625A (en) * | 2007-03-02 | 2008-09-18 | Sumitomo Light Metal Ind Ltd | Method for manufacturing energy absorbing member for automobile, and energy absorbing member for automobile manufactured by the manufacturing method |
JP2010522292A (en) * | 2007-03-19 | 2010-07-01 | カザック コンポジッツ,インコーポレイテッド | Buckling-restrained braces for structural reinforcement and seismic energy distribution |
US8752295B2 (en) | 2010-12-29 | 2014-06-17 | GM Global Technology Operations LLC | Method of varying material properties |
DE102018124192A1 (en) | 2017-11-06 | 2019-05-09 | Toyota Jidosha Kabushiki Kaisha | Crashbox and manufacturing process thereof |
-
1993
- 1993-11-24 JP JP31737393A patent/JPH07145843A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1209039A2 (en) | 2000-11-21 | 2002-05-29 | Aisin Seiki Kabushiki Kaisha | Shock absorbing member and bumper comprising the same |
US6502874B2 (en) | 2000-12-25 | 2003-01-07 | Toyota Jidosha Kabushiki Kaisha | Coupling structure of shock transmitting member and shock absorbing member, and bumper |
JP2002012165A (en) * | 2001-05-29 | 2002-01-15 | Kobe Steel Ltd | Energy absorbing member |
KR20030000253A (en) * | 2001-06-22 | 2003-01-06 | 현대자동차주식회사 | Front side member for increasing clash-performance of automobile |
JP2008213625A (en) * | 2007-03-02 | 2008-09-18 | Sumitomo Light Metal Ind Ltd | Method for manufacturing energy absorbing member for automobile, and energy absorbing member for automobile manufactured by the manufacturing method |
JP2010522292A (en) * | 2007-03-19 | 2010-07-01 | カザック コンポジッツ,インコーポレイテッド | Buckling-restrained braces for structural reinforcement and seismic energy distribution |
US8752295B2 (en) | 2010-12-29 | 2014-06-17 | GM Global Technology Operations LLC | Method of varying material properties |
DE102018124192A1 (en) | 2017-11-06 | 2019-05-09 | Toyota Jidosha Kabushiki Kaisha | Crashbox and manufacturing process thereof |
US10894523B2 (en) | 2017-11-06 | 2021-01-19 | Toyota Jidosha Kabushiki Kaisha | Crash box and its manufacturing method |
DE102018124192B4 (en) | 2017-11-06 | 2022-02-17 | Toyota Jidosha Kabushiki Kaisha | Crash box and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20060202511A1 (en) | Crash energy absorption member | |
JP3403290B2 (en) | Aluminum alloy extruded square tube for front side member with excellent axial compression characteristics | |
JPH07145843A (en) | Energy absorbing member made of aluminum alloy for automobile | |
JP4045846B2 (en) | Impact energy absorbing member | |
JPH07145842A (en) | Energy absorbing member made of aluminum alloy for automobile | |
KR100481231B1 (en) | STRUCTURAL COMPONENT MADE OF AN ALUMINUM ALLOY OF THE AlMgSi TYEP | |
US20040135384A1 (en) | Bumper assembly | |
JPH06171441A (en) | Bumper beam and bumper | |
JPH09277953A (en) | Shock absorbing member | |
JP4039032B2 (en) | Impact energy absorbing member | |
JP5354928B2 (en) | Composite aluminum alloy extruded material for welded structures | |
JPH06142754A (en) | Aluminum extruded hollow shape material | |
JPH08216916A (en) | Shock absorbing frame made of extrusion-molded aluminum material excellent in shock absorbing property | |
JP4303659B2 (en) | Shock absorption structure of automobile | |
JP4759871B2 (en) | Impact energy absorbing member | |
JP4773853B2 (en) | Aluminum alloy extrusions for automotive door beams | |
JP2003139179A (en) | Collision energy absorption member | |
JP4689300B2 (en) | Shock absorbing member for vehicle | |
JP2002240747A (en) | Side step for automobile | |
JP2004175228A (en) | Vehicle front underrun protector | |
JP2007030647A (en) | Axial compression energy absorbing member for automobile frame made of aluminum alloy | |
JP2005029064A (en) | Energy absorption member for aluminum alloy automobile frame and manufacturing method thereof | |
JP4688318B2 (en) | Vehicle beam | |
JP2004106612A (en) | Energy absorbing member for absorbing impact in axial direction | |
JP3272130B2 (en) | Energy absorbing member and method of manufacturing the same |