JPH07126766A - Electromagnetic float-up melting furnace - Google Patents
Electromagnetic float-up melting furnaceInfo
- Publication number
- JPH07126766A JPH07126766A JP29391793A JP29391793A JPH07126766A JP H07126766 A JPH07126766 A JP H07126766A JP 29391793 A JP29391793 A JP 29391793A JP 29391793 A JP29391793 A JP 29391793A JP H07126766 A JPH07126766 A JP H07126766A
- Authority
- JP
- Japan
- Prior art keywords
- segment
- heating coil
- water
- cooling water
- outer periphery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacture And Refinement Of Metals (AREA)
- Crucibles And Fluidized-Bed Furnaces (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は加熱コイルを冷却水中に
浸漬した電磁浮揚溶解炉に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic levitation melting furnace in which a heating coil is immersed in cooling water.
【0002】[0002]
【従来の技術】従来の断熱耐火材をライニングして溶解
室を形成した誘導溶解炉に代わり、溶解室を金属で形成
し、溶湯金属を溶解室内に浮揚させて高温、高純度のク
リ−ン溶解を行なう電磁浮揚溶解炉が開発されている。
この電磁浮揚溶解炉の構造は、例えば図6に示すよう
に、水冷銅管を螺旋状に巻回した加熱コイル1の内側に
溶解室2となる水冷セグメント3が設けられている。こ
の水冷セグメント3は銅ブロックを切り出して上部を開
口したるつぼ形の銅管を形成し、この側壁の内部に通水
路4が上下方向に形成されている。2. Description of the Related Art Instead of a conventional induction melting furnace in which a heat-insulating refractory material is lined to form a melting chamber, the melting chamber is made of metal, and the molten metal is floated in the melting chamber to clean a high-temperature, high-purity cleaner. An electromagnetic levitation melting furnace for melting is being developed.
In the structure of this electromagnetic levitation melting furnace, as shown in FIG. 6, for example, a water cooling segment 3 serving as a melting chamber 2 is provided inside a heating coil 1 in which a water cooling copper tube is spirally wound. The water-cooling segment 3 is formed by cutting a copper block to form a crucible-shaped copper tube having an upper opening, and a water passage 4 is formed in the vertical direction inside the side wall.
【0003】この水冷セグメント3の下部には銅製炉床
5が接続されて、この銅製炉床5の内部に給水側の通水
路6が形成されている。この通水路6の上部は水冷セグ
メント3の内部に形成した前記通水路4に連通してい
る。また溶解室2となる水冷セグメント3の上部側壁の
外周には、内部に環状通水路7が形成されたシールドリ
ング8が接合され、この環状通水路7は前記水冷セグメ
ント3の通水路7の上部に連通して、ここを上昇してき
た冷却水9が環状通水路7を流れて排水側の通水路10
から外部に排水されるようになっている。A copper hearth 5 is connected to the lower portion of the water cooling segment 3, and a water passage 6 on the water supply side is formed inside the copper hearth 5. The upper portion of the water passage 6 communicates with the water passage 4 formed inside the water cooling segment 3. A shield ring 8 having an annular water passage 7 formed therein is joined to the outer periphery of the upper side wall of the water cooling segment 3 serving as the melting chamber 2, and the annular water passage 7 is located above the water passage 7 of the water cooling segment 3. The cooling water 9 that has been communicated with and has risen here flows through the annular water passage 7 and reaches the water passage 10 on the drain side.
It is designed to be drained from the outside.
【0004】上記構成の電磁浮揚溶解炉は、冷却水9を
供給した状態で加熱コイル1に電力の大きな高周波交番
電流を流すと、この交番電流によって溶解室2内の溶湯
金属12内に誘起される逆起電電流との相互作用によって
溶湯金属12に浮揚力が得られると共に、溶湯金属自身の
抵抗とここを流れる逆起電電流により加熱溶解される。
このように溶湯金属12は浮揚して加熱溶解されるので溶
解室2の側壁と接触せず、高温溶解が可能となると共
に、高純度の溶解が行なえる。また溶湯金属12が側壁に
接触しても、水冷セグメント3で直ちに急冷されて、加
熱コイル1を保護することができる。In the electromagnetic levitation melting furnace having the above-described structure, when a high-frequency alternating current of large power is supplied to the heating coil 1 while the cooling water 9 is being supplied, the alternating current induces the molten metal 12 in the melting chamber 2. The molten metal 12 has a levitation force due to the interaction with the counter electromotive current, and is heated and melted by the resistance of the molten metal itself and the counter electromotive current flowing there.
Since the molten metal 12 is floated and melted by heating in this manner, it does not come into contact with the side wall of the melting chamber 2 and high-temperature melting is possible and high-purity melting can be performed. Further, even if the molten metal 12 comes into contact with the side wall, the molten metal 12 is immediately rapidly cooled by the water-cooled segment 3 to protect the heating coil 1.
【0005】また溶解室2を構成する水冷セグメント3
は、ここを貫通する磁束により電流が誘起され、この誘
導電流の流れるターンが形成されてセグメント自身の抵
抗により過熱されるため水冷構造とする必要がある。こ
のため加熱コイル1と溶湯金属12との間隔δを広くしな
ければならず、この間隔δが広くなるとコイルの加熱効
率が低下する問題がある。また加熱コイル1には大電流
を流すためこれ自体も過熱されるので、これを冷却する
ための冷却水9の通水量から通電する電流量が規定さ
れ、大きなパワーを加えるのは限界があった。しかも従
来の水冷セグメント3は銅管を加工して内部に通水路4
を形成するので加工が面倒で装置が高価になる問題があ
った。更に加熱コイル1には大電流を通電するため、漏
洩する磁束により周縁機器が過熱される問題があり、全
体として装置が大型化する欠点があった。A water-cooled segment 3 which constitutes the melting chamber 2
A current is induced by the magnetic flux penetrating therethrough, a turn in which this induced current flows is formed, and the segment itself is overheated by the resistance of the segment itself, so it is necessary to have a water cooling structure. Therefore, it is necessary to widen the distance δ between the heating coil 1 and the molten metal 12, and there is a problem that the heating efficiency of the coil decreases when the distance δ becomes wide. Further, since a large current is passed through the heating coil 1 itself, it is also overheated. Therefore, the amount of current to be applied is regulated by the amount of water flowing through the cooling water 9 for cooling it, and there is a limit to adding large power. . Moreover, the conventional water-cooled segment 3 is made by processing a copper pipe and has a water passage 4 inside.
However, there is a problem in that the processing is troublesome and the apparatus becomes expensive because of the formation. Further, since a large current is applied to the heating coil 1, there is a problem that the peripheral equipment is overheated due to the leaked magnetic flux, and there is a drawback that the apparatus becomes large as a whole.
【0006】[0006]
【発明が解決しようとする課題】本発明は上記欠点を除
去して、加熱コイルと溶湯金属との間隔を狭めてコイル
の加熱効率を向上させると共に、加熱コイルの冷却性を
高めて大電流を通電することができ、しかも装置の加工
が容易で安価に製造できると共に、周縁の外枠の過熱を
防止して装置の小型化を図った電磁浮揚溶解炉を提供す
るものである。DISCLOSURE OF THE INVENTION The present invention eliminates the above-mentioned drawbacks and narrows the gap between the heating coil and the molten metal to improve the heating efficiency of the coil, and at the same time enhances the cooling property of the heating coil to generate a large current. (EN) Provided is an electromagnetic levitation melting furnace which can be energized, can be easily processed at low cost, and can be manufactured at a low cost while preventing overheating of a peripheral outer frame to downsize the apparatus.
【0007】[0007]
【課題を解決するための手段】本発明の電磁浮揚溶解炉
は、上部を開口した金属製円筒の側壁に縦方向のスリッ
トを周方向に沿って間隔をおいて放射状に複数個設け、
前記スリットをセラミックで閉塞して溶解室となるセグ
メントを形成し、このセグメントの外周を、冷却水が循
環する水密構造とした外枠で一体に囲い、外周に防水絶
縁被覆を施した加熱コイルを前記セグメントの外周に巻
回して、この加熱コイルを冷却水中に浸漬したことを特
徴とするものである。In the electromagnetic levitation melting furnace of the present invention, a plurality of vertical slits are provided radially at intervals along the circumferential direction on the side wall of a metal cylinder having an upper opening,
A segment serving as a melting chamber is formed by closing the slit with a ceramic, and the outer periphery of this segment is integrally surrounded by an outer frame having a watertight structure in which cooling water circulates, and a heating coil having a waterproof insulation coating on the outer periphery is formed. The heating coil is wound around the outer periphery of the segment and immersed in cooling water.
【0008】[0008]
【作用】本発明の電磁浮揚溶解炉は、外枠内に冷却水を
循環させて加熱コイルとセグメントを冷却する。この状
態で加熱コイルに電力の大きな高周波交番電流を流す
と、この交番電流によって溶解室内の溶湯金属内に誘起
される逆起電電流との相互作用によって溶湯金属に浮揚
力が得られると共に、溶湯金属自身の抵抗とここを流れ
る逆起電電流により加熱溶解される。In the electromagnetic levitation melting furnace of the present invention, cooling water is circulated in the outer frame to cool the heating coil and the segment. When a high-frequency alternating current of large power is passed through the heating coil in this state, the alternating current produces a levitation force in the molten metal by interaction with the counter electromotive current induced in the molten metal in the melting chamber, It is heated and melted by the resistance of the metal itself and the counter electromotive current that flows through it.
【0009】この場合、セグメントの外周は冷却水が循
環する水密構造の外枠で囲まれて、多量の冷却水と接触
しているので冷却性に優れていると共に、加熱コイルと
溶湯金属との間隔を狭くすることができるのでコイルの
加熱効率を向上させることができる。更にセグメントは
その側壁に縦方向のスリットを周方向に沿って間隔をお
いて放射状に複数個設け、このスリットをセラミックで
閉塞して、周方向に沿って電気的に絶縁されているの
で、セグメントを貫通する磁束により誘起される電流の
ループが形成されず過熱によるロスを少なくして、更に
効率を高めることができる。また加熱コイルは内部に冷
却水が通水し、防水絶縁被覆した外周は冷却水中に浸漬
されて内外から冷却されるので、大電流を流すことがで
き、大きなパワーで浮揚溶解させることができる。In this case, the outer periphery of the segment is surrounded by an outer frame having a watertight structure in which cooling water circulates and is in contact with a large amount of cooling water, so that the cooling property is excellent and the heating coil and the molten metal are Since the interval can be narrowed, the heating efficiency of the coil can be improved. Further, the segment is provided with a plurality of vertical slits radially on the side wall thereof at intervals along the circumferential direction, and the slits are closed with a ceramic to be electrically insulated along the circumferential direction. A loop of current induced by the magnetic flux penetrating through is not formed, so that loss due to overheating can be reduced and efficiency can be further improved. Further, since the cooling water flows inside the heating coil and the outer periphery covered with the waterproof insulating coating is immersed in the cooling water to be cooled from the inside and outside, a large current can be passed and it can be floated and melted with a large power.
【0010】[0010]
【実施例】以下本発明を図1ないし図3を参照して詳細
に説明する。この電磁浮揚溶解炉は上部を開口した銅製
円筒13で形成された溶解室2となるセグメント14の外周
を、冷却水15が循環する水密構造とした外枠16で一体に
囲った構造をなしている。前記セグメント14は図2に示
すように銅製円筒13の側壁に縦方向のスリットを周方向
に沿って間隔をおいて放射状に複数個設け、このスリッ
ト17に機構率の非常に小さいセラミック18を埋め込んで
閉塞し、冷却水15がセグメント内に流出するのを防止す
ると共に、セグメント内壁にセラミック溶射層19を形成
して耐熱性を高めた構造となっている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to FIGS. This electromagnetic levitation melting furnace has a structure in which an outer circumference of a segment 14 which is a melting chamber 2 formed by a copper cylinder 13 having an open upper part is integrally surrounded by an outer frame 16 having a watertight structure in which cooling water 15 circulates. There is. As shown in FIG. 2, the segment 14 is provided with a plurality of vertical slits radially on the side wall of the copper cylinder 13 at intervals along the circumferential direction, and a ceramic 18 having a very low mechanical ratio is embedded in the slit 17. The cooling water 15 is prevented from flowing out into the segment and the ceramic sprayed layer 19 is formed on the inner wall of the segment to increase the heat resistance.
【0011】また外枠16の上部には図1に示すように絶
縁リング20を介してシールドリング21が設けられ、溶解
室2の上部を構成している。また溶解室2を構成するセ
グメント14の上部は分離しているので図3に示すように
上部の絶縁リング20とビス25で連結して固定されてい
る。A shield ring 21 is provided on the upper portion of the outer frame 16 via an insulating ring 20 as shown in FIG. 1, and constitutes the upper portion of the melting chamber 2. Further, since the upper portion of the segment 14 which constitutes the melting chamber 2 is separated, as shown in FIG. 3, the insulating ring 20 and the screw 25 on the upper portion are connected and fixed.
【0012】また前記シールドリング21は図1に示すよ
うにその内部には環状通水路22が形成され、絶縁ホース
23、23により外枠16内に接続されて、外枠16内の冷却水
15が循環するようになっている。またこの冷却水15とし
ては、絶縁性のある純水を用い、外枠16の下部側に取付
けた給水側の通水路6から内部に流入して、上部側に取
付けた排水側の通水路10から排水されるようになってい
る。また溶解室2となるセグメント14の外周には加熱コ
イル1が巻回されて、冷却水15中に浸漬されている。こ
の加熱コイル1は図4に示すように、水冷銅管26の外周
に例えば絶縁テープを巻回してワニスを真空含浸して防
水絶縁被覆27を施したものである。The shield ring 21 has an annular water passage 22 formed therein as shown in FIG.
The cooling water in the outer frame 16 is connected to the outer frame 16 by 23, 23.
15 are circulated. Pure water having an insulating property is used as the cooling water 15. The cooling water 15 flows into the inside from the water passage 6 on the water supply side attached to the lower side of the outer frame 16, and the water passage 10 on the drain side attached to the upper side. It is designed to be drained from. Further, the heating coil 1 is wound around the outer periphery of the segment 14 serving as the melting chamber 2 and immersed in the cooling water 15. As shown in FIG. 4, the heating coil 1 is formed by winding a water-cooled copper pipe 26 around an outer periphery of the water-cooled copper pipe, for example, and vacuum impregnating a varnish with a waterproof insulating coating 27.
【0013】上記構成の電磁浮揚溶解炉は、給水側の通
水路6から外枠16内に純水の冷却水15を給水し、加熱コ
イル1とセグメント14を冷却すると共に、一部は絶縁ホ
ース23を通ってシールドリング21の環状通水路22を循環
して排水側の通水路10から排水される。この状態で加熱
コイル1に電力の大きな高周波交番電流を流すと、この
交番電流によって溶解室2内の溶湯金属12内に誘起され
る逆起電電流との相互作用によって溶湯金属12に浮揚力
が得られると共に、溶湯金属自身の抵抗とここを流れる
逆起電電流により加熱溶解される。溶湯金属12は浮揚し
て加熱溶解されるので溶解室2の側壁と接触せず、万一
接触しても耐熱性に優れたセラミック溶射層19が形成さ
れているので高温溶解が可能となると共に、高純度の溶
解が行なえる。In the electromagnetic levitation melting furnace having the above-mentioned structure, the pure water cooling water 15 is supplied from the water passage 6 on the water supply side into the outer frame 16 to cool the heating coil 1 and the segment 14, and part of the insulating hose. It circulates through the annular water passage 22 of the shield ring 21 through 23 and is discharged from the water passage 10 on the drain side. In this state, when a high-frequency alternating current of large power is applied to the heating coil 1, the levitation force is exerted on the molten metal 12 by the interaction with the counter electromotive current induced in the molten metal 12 in the melting chamber 2 by this alternating current. While being obtained, it is heated and melted by the resistance of the molten metal itself and the counter electromotive current flowing there. Since the molten metal 12 floats and is heated and melted, it does not come into contact with the side wall of the melting chamber 2, and even if it comes in contact with it, the ceramic sprayed layer 19 having excellent heat resistance is formed, so that high-temperature melting becomes possible. , High-purity dissolution is possible.
【0014】この場合、セグメント14の外周は水密構造
の外枠16内を循環する多量の冷却水15と接触して冷却性
に優れていると共に、加熱コイル1と溶湯金属12との間
隔δを狭くすることができるのでコイルの加熱効率を向
上させることができる。更に図2に示すように、セグメ
ント14はその側壁にスリット17を周方向に放射状に設
け、このスリット17をセラミック18で閉塞して、周方向
に沿って電気的に絶縁されているので、セグメント14を
貫通する磁束により誘起される電流のターンが形成され
ず、しかも上部のシールドリング21との間には絶縁リン
グ20が介在されて絶縁されているので、周方向に電流の
流れるターンが形成されず、セグメント14の過熱による
ロスを少なくして、更に効率を高めることができる。In this case, the outer periphery of the segment 14 comes into contact with a large amount of cooling water 15 circulating in the outer frame 16 having a watertight structure and is excellent in cooling property, and the interval δ between the heating coil 1 and the molten metal 12 is set. Since it can be narrowed, the heating efficiency of the coil can be improved. Further, as shown in FIG. 2, the segment 14 is provided with slits 17 on its side wall in a radial direction in the circumferential direction, and the slits 17 are closed by a ceramic 18 to be electrically insulated in the circumferential direction. Since the turn of the current induced by the magnetic flux penetrating 14 is not formed and the insulating ring 20 is interposed between the shield ring 21 and the upper shield ring 21, the turn of the current flowing in the circumferential direction is formed. Therefore, the loss due to overheating of the segment 14 can be reduced, and the efficiency can be further improved.
【0015】また加熱コイル1は内部に冷却水9が通水
し、防水絶縁被覆27を設けた外周は冷却水15中に浸漬さ
れて内外から冷却されるので大電流を流すことができ、
大きなパワーで浮揚溶解させることができる。また従来
の水冷セグメント3は銅管を加工して内部に多数の通水
路4を形成する複雑な加工をしなければならなかった
が、本発明のセグメント14は銅管の側壁にスリット17を
形成してここにセラミック18を充填するだけで加工が容
易であり装置を安価に製造することができる。また外枠
16の内部が冷却水15で冷却されているので漏洩磁束によ
る外枠16の過熱も防止でき、全体として装置の小型化も
図ることもできる。Further, since the cooling water 9 flows through the heating coil 1 and the outer periphery provided with the waterproof insulating coating 27 is immersed in the cooling water 15 to be cooled from the inside and outside, a large current can flow.
It can be floated and melted with great power. In addition, the conventional water-cooled segment 3 had to be complicatedly machined by forming a large number of water passages 4 inside the copper pipe, but the segment 14 of the present invention has the slit 17 formed on the side wall of the copper pipe. Then, only by filling the ceramic 18 here, the processing is easy and the device can be manufactured at low cost. Also the outer frame
Since the inside of 16 is cooled by the cooling water 15, it is possible to prevent overheating of the outer frame 16 due to the leakage magnetic flux, and it is possible to reduce the size of the device as a whole.
【0016】また溶解室2の上部には絶縁リング20を介
してシールドリング21が設けられて、連続した短絡リン
グが形成されているので、加熱コイル1から溶解室2の
上部に漏れた磁束が、シールドリング21と鎖交し、ここ
で逆起電力により短絡電流が流れる。この短絡電流によ
って誘起された磁束が、加熱コイル1からの磁束を打ち
消して溶解室2の上方に磁束が漏れるのを防止すること
ができる。Further, since a shield ring 21 is provided on the upper portion of the melting chamber 2 via an insulating ring 20 to form a continuous short-circuit ring, the magnetic flux leaked from the heating coil 1 to the upper portion of the melting chamber 2 is generated. , The shield ring 21 is linked, and a short circuit current flows there due to the counter electromotive force. The magnetic flux induced by the short-circuit current can cancel the magnetic flux from the heating coil 1 and prevent the magnetic flux from leaking above the melting chamber 2.
【0017】このため溶解室2内の上部から盛上がろう
とする溶湯金属12を押え込む作用が働いて溶解室2から
露出せず、また必要以上に大きな電力をかけてもこれに
比例して押え込む力が大きくなるので溶湯金属12の飛出
しが阻止される。またこのように、溶解室2の上部にシ
ールドリング21を配置することにより、周辺機器への熱
的な影響を防止することができる。なおシールドリング
21に短絡電流が流れると発熱するが、内部に環状通水路
22が形成されてここで十分に冷却され、しかもシールド
リング21の断面積が大きく抵抗が小さいので発生する熱
を少なくでき溶解炉の大容量化が可能である。Therefore, the molten metal 12 that is trying to rise from the upper portion of the melting chamber 2 is pressed down so that it is not exposed from the melting chamber 2, and even if an unnecessarily large amount of power is applied, it is proportional to this. Since the pressing force is increased, the molten metal 12 is prevented from jumping out. Further, by disposing the shield ring 21 on the upper portion of the melting chamber 2 as described above, it is possible to prevent thermal influence on peripheral devices. Shield ring
Heat is generated when a short-circuit current flows through 21, but there is an annular water passage inside.
22 is formed and sufficiently cooled here, and since the shield ring 21 has a large cross-sectional area and a small resistance, the heat generated can be reduced and the melting furnace can have a large capacity.
【0018】図5は本発明の他の実施例を示すもので、
水冷銅管をらせん状に巻回した加熱コイル1の全体を、
成形型に入れて表面を樹脂で固定して円筒状の防水絶縁
被覆27を形成したもので、これをセグメント14の外周に
配置して冷却水15中に浸漬するものである。この構造は
加熱コイル1の防水絶縁作業が容易である。FIG. 5 shows another embodiment of the present invention.
The whole of the heating coil 1 in which a water-cooled copper tube is spirally wound,
A cylindrical waterproof insulating coating 27 is formed by placing it in a molding die and fixing the surface with a resin. The cylindrical waterproof insulating coating 27 is arranged on the outer periphery of the segment 14 and immersed in the cooling water 15. This structure facilitates waterproof insulation of the heating coil 1.
【0019】[0019]
【発明の効果】以上説明した如く本発明によれば、溶解
室となるセグメントの外周を、冷却水が循環する水密構
造とした外枠で一体に囲い、前記セグメントの外周に防
水絶縁被覆を施した加熱コイルを冷却水中に浸漬して巻
回しているので、加熱コイルと溶湯金属との間隔を狭め
てコイルの加熱効率を向上できると共に、加熱コイルの
冷却性を高めて大電流を通電することができ、しかも装
置の加工が容易で安価に製造できると共に、外枠の過熱
を防止して装置の小型化を図った電磁浮揚溶解炉を得る
ことができる。As described above, according to the present invention, the outer periphery of the segment serving as the melting chamber is integrally surrounded by the outer frame having the watertight structure in which the cooling water circulates, and the outer periphery of the segment is provided with the waterproof insulating coating. Since the heated heating coil is soaked in the cooling water and wound, the gap between the heating coil and the molten metal can be narrowed to improve the heating efficiency of the coil, and the cooling performance of the heating coil can be improved to supply a large current. In addition, it is possible to obtain an electromagnetic levitation melting furnace in which the apparatus can be processed easily and can be manufactured at low cost, and at the same time, the outer frame can be prevented from overheating and the apparatus can be downsized.
【図1】本発明の一実施例による電磁浮揚溶解炉を示す
断面図である。FIG. 1 is a sectional view showing an electromagnetic levitation melting furnace according to an embodiment of the present invention.
【図2】溶解室となるセグメントの水平断面図である。FIG. 2 is a horizontal sectional view of a segment serving as a melting chamber.
【図3】セグメントの上部と絶縁リングとの固定構造を
示す縦断面図である。FIG. 3 is a vertical sectional view showing a fixing structure of an upper portion of a segment and an insulating ring.
【図4】図1の加熱コイルを拡大して示す断面図であ
る。FIG. 4 is an enlarged sectional view showing the heating coil of FIG.
【図5】本発明の他の実施例による加熱コイルを破断し
て示す斜視図である。FIG. 5 is a cutaway perspective view of a heating coil according to another embodiment of the present invention.
【図6】従来の電磁浮揚溶解炉を示す断面図である。FIG. 6 is a sectional view showing a conventional electromagnetic levitation melting furnace.
【符合の説明】 1 加熱コイル 2 溶解室 3 水冷セグメント 4 通水路 8 シールドリング 9 冷却水 12 溶湯金属 14 セグメント 15 冷却水 16 外枠 17 スリット 18 セラミック 20 絶縁リング 21 シールドリング 22 環状通水路 23 絶縁ホース 27 防水絶縁被覆[Explanation of signs] 1 heating coil 2 melting chamber 3 water cooling segment 4 water passage 8 shield ring 9 cooling water 12 molten metal 14 segment 15 cooling water 16 outer frame 17 slit 18 ceramic 20 insulating ring 21 shield ring 22 annular water passage 23 insulation Hose 27 waterproof insulation
Claims (1)
向のスリットを周方向に沿って間隔をおいて放射状に複
数個設け、前記スリットをセラミックで閉塞して溶解室
となるセグメントを形成し、このセグメントの外周を、
冷却水が循環する水密構造とした外枠で一体に囲い、外
周に防水絶縁被覆を施した加熱コイルを前記セグメント
の外周に巻回して、この加熱コイルを冷却水中に浸漬し
たことを特徴とする電磁浮揚溶解炉。1. A metal cylinder having an open upper portion is provided with a plurality of vertical slits radially at intervals along a circumferential direction, and the slits are closed by a ceramic to form a segment serving as a melting chamber. The outer circumference of this segment,
It is characterized in that a heating coil having a watertight structure in which cooling water circulates is integrally surrounded, and a heating coil having a waterproof insulation coating on the outer periphery is wound around the outer periphery of the segment, and the heating coil is immersed in cooling water. Electromagnetic levitation melting furnace.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29391793A JPH07126766A (en) | 1993-10-30 | 1993-10-30 | Electromagnetic float-up melting furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29391793A JPH07126766A (en) | 1993-10-30 | 1993-10-30 | Electromagnetic float-up melting furnace |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07126766A true JPH07126766A (en) | 1995-05-16 |
Family
ID=17800835
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29391793A Pending JPH07126766A (en) | 1993-10-30 | 1993-10-30 | Electromagnetic float-up melting furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07126766A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010050182A1 (en) | 2008-10-29 | 2010-05-06 | トヨタ自動車株式会社 | Agitation device, melting apparatus and melting method |
CN108672670A (en) * | 2018-06-05 | 2018-10-19 | 湖南城市学院 | A kind of metal strand apparatus for continuously production that compression casting is provided and method |
-
1993
- 1993-10-30 JP JP29391793A patent/JPH07126766A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010050182A1 (en) | 2008-10-29 | 2010-05-06 | トヨタ自動車株式会社 | Agitation device, melting apparatus and melting method |
US8599899B2 (en) | 2008-10-29 | 2013-12-03 | Toyota Jidosha Kabushiki Kaisha | Agitation device, melting apparatus and melting method |
EP2821162A2 (en) | 2008-10-29 | 2015-01-07 | Toyota Jidosha Kabushiki Kaisha | Agitation device, melting apparatus and melting method |
EP2821161A2 (en) | 2008-10-29 | 2015-01-07 | Toyota Jidosha Kabushiki Kaisha | Agitation device, melting apparatus and melting method |
CN108672670A (en) * | 2018-06-05 | 2018-10-19 | 湖南城市学院 | A kind of metal strand apparatus for continuously production that compression casting is provided and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2302704T3 (en) | HIGH PERFORMANCE INDUCTION FUSION SYSTEM. | |
SU818469A3 (en) | Device for stirring molten metal in crystallizer | |
RU2060427C1 (en) | Solenoid valve for controlling metallic or metallic alloy flow | |
US3905417A (en) | Electromagnetic rabbling mechanism for continuously pouring molten metal | |
JP2009002616A (en) | Induction heating water heater | |
US5892790A (en) | Cold crucible induction furnace | |
JP2000515235A (en) | Induction furnace for melting glass in cold crucibles | |
JPH07126766A (en) | Electromagnetic float-up melting furnace | |
EP0232846B1 (en) | Induction furnace or other inductively heated container | |
GB2262693A (en) | Skin effrct induction heater and screw conveyor | |
US3046320A (en) | Induction furnace coil | |
US5430758A (en) | Magnetic yoke for an induction crucible furnace | |
JP2604687Y2 (en) | Electromagnetic levitation melting furnace | |
JP3633967B2 (en) | Induction heating roller device | |
US5322417A (en) | Electromagnetic pump cooling bypass | |
JP2920655B2 (en) | Electromagnetic levitation melting furnace | |
SU1177004A1 (en) | Arrangement for moulding hollow parts with heating | |
JPH08155591A (en) | Continuous casting apparatus by induction heating having magnetic flux shielding device and melting furnace | |
US1827274A (en) | Electric induction furnace | |
US4101726A (en) | Water cooling jacket for induction furnace water bushing | |
RU2719287C1 (en) | Electric machine stator with tubular cooling system | |
JP2972787B2 (en) | Floating melting equipment | |
JPS644073Y2 (en) | ||
JPS5848798Y2 (en) | induction melting and holding furnace | |
JPH017994Y2 (en) |