Nothing Special   »   [go: up one dir, main page]

JPH07124241A - Ceramic functional material offering field for bone derivation and osteogenesis and its manufacture - Google Patents

Ceramic functional material offering field for bone derivation and osteogenesis and its manufacture

Info

Publication number
JPH07124241A
JPH07124241A JP6217329A JP21732994A JPH07124241A JP H07124241 A JPH07124241 A JP H07124241A JP 6217329 A JP6217329 A JP 6217329A JP 21732994 A JP21732994 A JP 21732994A JP H07124241 A JPH07124241 A JP H07124241A
Authority
JP
Japan
Prior art keywords
functional material
diameter
spherical
space
material according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6217329A
Other languages
Japanese (ja)
Other versions
JP3061732B2 (en
Inventor
Shigeharu Takagi
茂栄 高木
Kuniomi Ito
邦臣 伊藤
Tsuneo Hidaka
恒夫 日高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Asahi Kogaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kogaku Kogyo Co Ltd filed Critical Asahi Kogaku Kogyo Co Ltd
Priority to JP6217329A priority Critical patent/JP3061732B2/en
Publication of JPH07124241A publication Critical patent/JPH07124241A/en
Application granted granted Critical
Publication of JP3061732B2 publication Critical patent/JP3061732B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof

Landscapes

  • Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

PURPOSE:To provide the status of porous space forming porous quality, capable of exhibiting an excellent function as an implant. CONSTITUTION:This is a ceramic functional material to provide a field for bone derivation and osteogenesis, made of the sintered body of a calcium phosphate compound having a plurality of spherical spaces 13 with a diameter between 10 and 450mum to provide a field for osteogenesis and a plurality of micro spaces 14 of a size between 0.01 and 0.5mum for keeping the spaces 13 communicated with the external surface of the material and for communication with one another.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、生体適合性に優れたリ
ン酸カルシウム系化合物焼結体から成り、骨誘導と骨形
成の場を提供するセラミックス機能材料及びその製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic functional material comprising a calcium phosphate-based compound sintered body having excellent biocompatibility and providing a site for osteoinduction and osteogenesis, and a method for producing the same.

【0002】[0002]

【従来技術及びその問題点】生体硬組織や軟組織の機能
修復の対策として人工材料によるインプランテーション
が行われてきた。そのインプラント材の材料としては、
金属、プラスチックス、セラミックスの単体あるいは複
合体が用いられてきた。インプラント材料に求められる
機能のうち最も重要なのは生体組織との適合性である。
この観点ではセラミックス材料は、他の素材と比較して
生体内での為害性が少なく、安定して存在すると言われ
ている。セラミックス材料のうち、特にリン酸カルシウ
ム系化合物セラミックスは、生体硬組織と類似の組成で
あり、インプラント材料として最適な材料であるとの評
価があり、既に人工骨材料、殊に骨欠損部補填材料とし
て多く製品化されている。
2. Description of the Related Art Implantation with an artificial material has been performed as a measure for repairing the function of living hard tissues and soft tissues. As the material of the implant material,
Metals, plastics, and ceramics have been used alone or as a composite. The most important function required for implant materials is compatibility with living tissues.
From this point of view, it is said that the ceramic material is less harmful and stable in existence as compared with other materials in the living body. Among the ceramic materials, calcium phosphate-based compound ceramics, in particular, have a composition similar to that of hard tissue in the living body, and it has been evaluated as an optimal material as an implant material, and it has already been used as an artificial bone material, especially as a bone defect filling material. It has been commercialized.

【0003】ここで、骨欠損部補填材料として多孔質リ
ン酸カルシウム化合物セラミックスを考えた場合、周囲
の生体骨との直接的な結合と気孔を通じて体液中の骨形
成に必要な細胞や結合因子の交通が成立し、その結果気
孔内での新生骨の形成が起こり、最終的には生体骨との
複合化も期待できる。したがって、今日ではリン酸カル
シウム化合物インプラント材料は、そのほとんどが多孔
質成形体から成っている。
Here, when a porous calcium phosphate compound ceramics is considered as a material for filling a bone defect, the cells and binding factors necessary for bone formation in body fluid through direct binding to surrounding living bone and pores are transferred. It is established, and as a result, new bone is formed in the pores, and finally it can be expected to be combined with living bone. Therefore, most of the calcium phosphate compound implant materials today consist of porous compacts.

【0004】ところが、この多孔質成形体を構成する気
孔空間の形態と骨形成との関わりについての詳細な報告
はほとんど見られず、実際に製品化された多孔質インプ
ラント材料についても、この点を充分に考慮して設計
し、管理された構造にはなっていないのが実情である。
例えば、本来材料外表と連絡していなければならない気
孔が閉塞状態になっている場合には、インプラント材料
中における体液の交通が成立せず、気孔内にほとんど骨
形成が見られず、不活性体として残存し、ひいてはイン
プラント材料全体が周囲の生体骨と充分に結合せず、長
期的には異物として生体から拒絶され、排出されること
に陥る。また、気孔空間は充分にあり、細胞も体液も交
通できるが、逆にマクロファージや異物巨細胞も自由に
交通するため骨形成が遅れたり石灰化量の不足からイン
プラント材料としての機能が果たせなくなることも起こ
る。このように、気孔空間の設計は、インプラント材料
の成否を決める重要な事項であるにもかかわらず従来の
多孔質インプラント材料について思想的にも技術的にも
充分な検討がなされていなかった。
However, almost no detailed reports have been found on the relationship between the morphology of the pore spaces constituting this porous molded article and bone formation, and this point is also noted in the actual commercialized porous implant material. The reality is that the structure has not been designed and managed with due consideration.
For example, when the pores that should originally be in contact with the outer surface of the material are in an occluded state, communication of body fluid in the implant material is not established, almost no bone formation is observed in the pores, and the inert material is not formed. As a result, the entire implant material does not sufficiently bond to the surrounding living bone, and is rejected from the living body as a foreign body for a long period of time to be discharged. In addition, there is sufficient stomatal space, and both cells and body fluids can communicate, but conversely, macrophages and foreign body giant cells can freely communicate, so that bone formation is delayed and the function as an implant material cannot be achieved due to lack of calcification amount. Also happens. As described above, although the design of the pore space is an important factor for determining the success or failure of the implant material, the conventional porous implant material has not been sufficiently studied both ideologically and technically.

【0005】[0005]

【発明の目的】本発明は、前記従来技術の欠点を解消
し、多孔質を構成する気孔空間の形態をインプラント材
料として優れた機能を発揮しうるように設計し、骨誘導
と骨形成の場を有効に提供しうるセラミックス機能材料
及びその製造方法を提供することを目的とする。
It is an object of the present invention to solve the above-mentioned drawbacks of the prior art and to design the shape of the pore space constituting the porous body so as to exhibit an excellent function as an implant material. It is an object of the present invention to provide a ceramic functional material capable of effectively providing the above and a method for producing the same.

【0006】[0006]

【発明の概要】本発明者らは、鋭意研究の結果、特定の
直径を有する複数の真球状空間と、当該空間の周辺に当
該空間と材料外表を連絡し、かつ互いにも連絡する特定
の寸法の複数の微細空間を有する多孔質リン酸カルシウ
ム化合物焼結体が上記目的を達成しうることを見出し、
本発明を完成した。
SUMMARY OF THE INVENTION As a result of earnest research, the present inventors have found that a plurality of spherical spaces having a specific diameter and specific dimensions for communicating the space with the outer surface of a material around the space and also for communicating with each other. It was found that a porous calcium phosphate compound sintered body having a plurality of fine spaces of can achieve the above object,
The present invention has been completed.

【0007】すなわち、本発明による骨誘導と骨形成の
場を提供するセラミックス機能材料は、リン酸カルシウ
ム系化合物の焼結体からなり、該焼結体内に直径が10
〜450μmの範囲で、骨形成の場を提供する複数の真
球状の空間を有し、かつ当該空間の周辺に当該空間と材
料外表とを連絡しかつ互いにも連絡する大きさが0.0
1〜0.5μmの複数の微細空間を有することを特徴と
する。
That is, the ceramic functional material for providing a place for osteoinduction and osteogenesis according to the present invention comprises a sintered body of a calcium phosphate-based compound, and the sintered body has a diameter of 10 mm.
In the range of ˜450 μm, it has a plurality of spherical spaces that provide a field for bone formation, and has a size of 0.0 that connects the space and the outer surface of the material to the periphery of the space and also communicates with each other.
It is characterized by having a plurality of fine spaces of 1 to 0.5 μm.

【0008】本発明のセラミックス機能材料は、リン酸
カルシウム系化合物の焼結体から成るものである。ここ
で、リン酸カルシウム系化合物としては、CaHP
4 、Ca3 (PO4 2 、Ca10(PO4 6 (O
H)2 等から選ばれた1種又は複数種を使用することが
できる。水酸アパタイトにおいては、これを構成するC
a、PO4 、OHの一部又は全部を他の元素又は原子団
で置換したものを採用することもできる。
The ceramic functional material of the present invention comprises a sintered body of a calcium phosphate compound. Here, as the calcium phosphate-based compound, CaHP
O 4 , Ca 3 (PO 4 ) 2 , Ca 10 (PO 4 ) 6 (O
H) 2 or the like may be used alone or in combination. In hydroxyapatite, C which constitutes this
It is also possible to employ one in which a part or all of a, PO 4 , and OH are substituted with other elements or atomic groups.

【0009】本発明のセラミックス機能材料は、上記の
ようなリン酸カルシウム系化合物焼結体内に、直径が1
0〜450μmの複数の真球状空間と0.01〜0.5
μmの複数の微細空間を有する。直径が10〜450μ
mの真球状空間は、骨形成の認識の場の提供と、血液中
の血漿成分の交通に基づく骨形成細胞の活性化と産生機
能とを共存させる場を提供するものである。真球状空間
の直径が10μm未満であると、骨形成細胞の侵入が遅
れ、骨形成と成熟化が遅延し、また、450μmを超え
ると早期に細胞は場の認識を行わず、逆に血管の新生増
成作用を発揮する。一方、このような構造においては、
インプラント材料自体の強度低下を招く恐れが出てく
る。そのため、当該空間は可及的に真球に近い形状で、
かつ、インプラント材料中に均一に分布していることが
望ましい。また、空間を真球状にすることによって、骨
形成の促進に加えてインプラント材料に加わる外部から
の応力を集中することなく適度に分散させることができ
る。
The ceramic functional material of the present invention has a diameter of 1 in the above-mentioned calcium phosphate compound sintered body.
A plurality of spherical spaces of 0 to 450 μm and 0.01 to 0.5
It has a plurality of micro spaces of μm. Diameter 10-450μ
The spherical space of m provides a place for recognizing bone formation and a place for coexisting the activation and production functions of osteogenic cells based on the traffic of plasma components in blood. When the diameter of the true spherical space is less than 10 μm, invasion of bone-forming cells is delayed and bone formation and maturation are delayed, and when it exceeds 450 μm, the cells do not recognize the field early and, conversely, the blood vessels are not recognized. It exerts a new growth effect. On the other hand, in such a structure,
There is a risk that the strength of the implant material itself may be reduced. Therefore, the space has a shape as close to a true sphere as possible,
Moreover, it is desirable that they are evenly distributed in the implant material. Further, by making the space spherical, in addition to promoting bone formation, external stress applied to the implant material can be dispersed appropriately without concentration.

【0010】一方、上記真球状空間の周辺にあって材料
外表と該空間を連絡し、さらに互いに連絡する複数の微
細空間は、フィルターの効果を保有し、体液、血液中の
血漿成分や骨始祖細胞のみを交通させ、真球状空間に居
住して骨形成に係わる細胞の活性化を促進し、このよう
な細胞の産生工場的機能を提供する。真球状空間のみで
も、確かに骨形成に係わる細胞と体液と血漿成分の交通
が可能であるため、上記微細空間は一見不要と考えられ
るが、真球状空間のみでは、真球状空間内部に細胞が充
分量居住し、骨形成が行われ、これが成熟してオステオ
ン構造が形成された場合、当該真球状空間は閉塞状態に
なり、その細胞並びに次の空間への材料外表からの栄養
補給の通路が断たれることになる。このように、微細空
間は、真球状空間の内部に細胞が充分量居住し、材料外
表との交通が不充分になった場合にも、細胞に対して栄
養成分のみならず物質移動の供給の場とする専用通路の
機能を果たすものである。そのためには、微細空間は、
内部に細胞が侵入して通路が閉塞する構造であってはな
らない。したがって、微細空間の大きさは、0.01〜
0.5μmであることが必要である。この大きさが0.
01μm未満であると体液や血漿成分の交通が困難とな
り、0.5μmを超えると単球や遊走細胞が微細空間に
侵入する可能性を生じる。
On the other hand, a plurality of microspaces around the spherical space, which communicate with the outer surface of the material and which communicate with each other, further have the effect of a filter, and the body fluid, plasma components in blood, and bone ancestors. It allows only cells to be transported, occupies the spherical space, promotes the activation of cells involved in bone formation, and provides the function of producing such cells. Since it is possible to communicate cells involved in bone formation, body fluids, and plasma components even in the spherical space alone, it is considered that the above-mentioned microscopic space is not necessary at first glance, but in the spherical space alone, cells are present inside the spherical space. When a sufficient amount of inhabitants have been occluded and bone formation has taken place, and this has matured to form an osteon structure, the true spherical space becomes an occluded state, and the cells and the passages for nutritional supplementation from the external surface of the material to the next space are formed. You will be refused. As described above, in the microscopic space, even when a sufficient amount of cells inhabit the inside of the spherical space and the communication with the outer surface of the material becomes insufficient, not only the nutrient components but also the mass transfer supply to the cells are provided. It fulfills the function of a dedicated passageway. For that, the fine space is
It must not have a structure that allows cells to enter inside and block the passage. Therefore, the size of the fine space is 0.01 to
It is necessary to be 0.5 μm. This size is 0.
When it is less than 01 μm, it becomes difficult for the body fluid and plasma components to communicate, and when it exceeds 0.5 μm, monocytes and migratory cells may invade the fine space.

【0011】上記の構造を有する本発明のセラミックス
機能材料は、優れた骨形成機能を有し、その形態は顆粒
状、立方体、直方体、角柱状、円柱状、円板状など、任
意の形態であってよい。また、寸法についても、種々の
大きさであってよいが、比較的大きく、例えば、3c
m、5cmといった大きさのブロック状のインプラント
材料においては、その中心部まで骨形成が進むためには
比較的長時間を要し、極端な場合にはインプラント材料
の外側だけ骨形成が起こり、中心部には骨形成に係わる
細胞が侵入できなくなる恐れがある。
The ceramic functional material of the present invention having the above-mentioned structure has an excellent bone forming function, and its form can be any form such as granular, cubic, rectangular parallelepiped, prismatic, columnar or disc-shaped. You can The size may be various, but is relatively large, for example, 3c.
In a block-shaped implant material having a size of m or 5 cm, it takes a relatively long time for bone formation to proceed to the central portion, and in an extreme case, bone formation occurs only on the outside of the implant material. The cells involved in bone formation may not be able to enter the part.

【0012】そこで、比較的大きいインプラント材料の
場合には、インプラント材料の相対する一対の面を連絡
する管状通路を少なくとも1個形成することが好まし
い。このインプラント材料を生体の欠損部の血流方向に
沿うように設置することによって中心部まで空間内での
新生血管の増成と増殖を可能にし、血流の確保ができる
ようになり骨形成に係わる細胞や栄養成分を充分に供給
することが可能となる。すなわち、上記管状通路は、イ
ンプラント材料の中心部まで骨形成に係わる細胞、体液
及び血漿成分を本来の血流方向に沿って交通させること
を目的とするものである。当該通路は、直径が0.6〜
1.2mmであることが望ましい。この直径が0.6m
m未満であると骨形成に伴い血流と血液成分が滞ること
なく交通することが困難になり、1.2mmを超えると
インプラント材料全体の強度低下を招く恐れが生じる。
Therefore, in the case of a relatively large implant material, it is preferable to form at least one tubular passage that connects a pair of opposing surfaces of the implant material. By arranging this implant material along the blood flow direction of the defect part of the living body, it becomes possible to increase and proliferate new blood vessels in the space up to the central part, and it becomes possible to secure blood flow and bone formation. It becomes possible to supply the relevant cells and nutrients sufficiently. That is, the tubular passage is intended to allow cells, body fluids, and plasma components involved in bone formation to be transported to the central portion of the implant material along the original blood flow direction. The passage has a diameter of 0.6 to
It is preferably 1.2 mm. This diameter is 0.6m
If it is less than m, it becomes difficult for the blood flow and blood components to pass through without being impaired due to bone formation, and if it exceeds 1.2 mm, the strength of the entire implant material may be reduced.

【0013】上記のような管状通路を複数形成する場合
には、該通路と直交するインプラント材料断面において
互いに3〜5mmの間隔で当該通路が存在するのが好ま
しい。この間隔が3mm未満であるとインプラント材料
の強度低下を招く恐れがあり、5mmを超えると骨形成
に係わる細胞や栄養成分の細部への供給が不充分になる
恐れがある。
When forming a plurality of tubular passages as described above, it is preferable that the passages are present at intervals of 3 to 5 mm from each other in the cross section of the implant material orthogonal to the passages. If this distance is less than 3 mm, the strength of the implant material may be reduced, and if it exceeds 5 mm, the cells and nutrients involved in bone formation may not be sufficiently supplied to the details.

【0014】管状通路は、骨形成の面からは短い間隔で
数多い方が有利であるし、インプラント材料の強度の面
からは長い間隔で数少ない方が有利である。そこで、で
きるだけ数少ない通路で骨形成を充分に起こさせるため
には、当該通路に直交する断面上において、管状通路が
六方対称(Hexagonal symmetry)に配置され、かつ互いに
の間隔が3〜5mmであることが好ましい。このように
配置することによって、インプラント材料中のどの点か
らでも管状通路までの距離は最大でも5mmまでとする
ことができる。
From the viewpoint of bone formation, it is advantageous that a large number of tubular passages are provided at a short interval, and from the aspect of strength of an implant material, a few passages at long intervals are advantageous. Therefore, in order to sufficiently cause bone formation in as few passages as possible, the tubular passages should be arranged in hexagonal symmetry on the cross section orthogonal to the passages and the distance between them should be 3 to 5 mm. Is preferred. With such an arrangement, the distance from any point in the implant material to the tubular passage can be up to 5 mm.

【0015】次に、本発明のセラミックス機能材料の製
造方法について説明する。本発明のセラミックス機能材
料の製造方法は、セラミックス原料粉体として粒径5〜
10μmの球状リン酸カルシウム系化合物粒子を用いて
乾式又は湿式法で気孔空間を含むか又は球状熱消失性物
質を含む成形体を作製し、焼成して直径が10〜450
μmの範囲の複数の真球状の空間及び当該空間の周辺に
当該空間と材料外表とを連絡しかつ互いにも連絡する大
きさが0.01〜0.5μmの複数の微細空間を有する
多孔質焼結体を製造することを特徴とする。
Next, a method of manufacturing the ceramic functional material of the present invention will be described. The method for producing a ceramic functional material according to the present invention has a particle size of 5 to 5 as a ceramic raw material powder.
A molded body containing pore spaces or containing a spherical heat-dissipating substance is prepared by a dry or wet method using spherical calcium phosphate-based compound particles having a diameter of 10 to 450.
A porous calcination having a plurality of spherical spaces in the range of μm and a plurality of fine spaces having a size of 0.01 to 0.5 μm that communicates the space with the outer surface of the material and also communicates with each other around the space. It is characterized by producing a tie.

【0016】0.01〜0.5μmの微細空間の形成
は、原料となるリン酸カルシウム系化合物の粉末を予め
5〜10μmの球状粒子として造粒することによって達
成される。本発明の方法においては、このような粒径の
球状粒子を原料粉体として用いて、成形体を作製し、焼
成することによって上記のような空間構造を有する多孔
質焼結体を製造するのであるが、成形体は、乾式又は湿
式法で作製することができる。乾式法としては、例え
ば、原料粉体を粒径12〜700μmの真球状熱消失性
物質と混合し、圧縮成形して成形体(圧粉体)を作製す
る方法がある。ここで、熱消失性物質としては、ナフタ
リン、アダマンタン、トリメチルノルボルナン、p−ジ
クロロベンゼン、アダマンタンとトリメチルノルボルナ
ンとの混合物、シクロドデカンなどの昇華性物質及びポ
リメチルメタクリレート、ポリプロピレン、ポリスチレ
ン、ポリエチレンなどの合成樹脂が挙げられる。熱消失
性物質の粒径は、焼成時に該物質が消失することによっ
て生じる空間が焼成収縮により縮むことを考慮して選定
する。一般に、線収縮で0.6〜0.8倍に収縮すると
言われている。また、湿式法としては、過酸化水素、卵
白などの発泡剤を用いて発泡スラリーを作製し、これを
注型し、加熱乾燥して多数の気孔空間を有する成形体を
作製する方法などが挙げられる。
The formation of a fine space of 0.01 to 0.5 μm is achieved by preliminarily granulating the powder of the calcium phosphate compound as a raw material into spherical particles of 5 to 10 μm. In the method of the present invention, the spherical particles having such a particle size are used as the raw material powder to prepare a molded body, which is then fired to produce the porous sintered body having the above-described spatial structure. However, the molded body can be manufactured by a dry method or a wet method. As a dry method, for example, there is a method in which a raw material powder is mixed with a spherical heat-dissipating substance having a particle diameter of 12 to 700 μm and compression-molded to produce a molded body (compacted powder). Here, examples of the heat-dissipating substance include naphthalene, adamantane, trimethylnorbornane, p-dichlorobenzene, a mixture of adamantane and trimethylnorbornane, sublimable substances such as cyclododecane, and synthetic substances such as polymethylmethacrylate, polypropylene, polystyrene, and polyethylene. Resins may be mentioned. The particle size of the heat-dissipating substance is selected in consideration of the fact that the space generated by the disappearance of the substance during firing shrinks due to firing shrinkage. Generally, it is said that linear contraction causes 0.6 to 0.8 times contraction. Examples of the wet method include a method in which a foaming slurry is prepared using a foaming agent such as hydrogen peroxide and egg white, and the resulting slurry is cast and dried by heating to prepare a molded product having a large number of pore spaces. To be

【0017】上記の方法で作製した成形体を、使用した
リン酸カルシウム化合物の種類や所望の気孔空間径など
を考慮して、例えば電気炉中で温度上昇勾配の充分な管
理設計のもとで焼成することにより、上記の空間構造を
有する焼結体を得ることができる。
The molded body produced by the above method is fired, for example, in an electric furnace under a sufficiently controlled design of temperature rising gradient in consideration of the type of calcium phosphate compound used and the desired pore space diameter. As a result, a sintered body having the above spatial structure can be obtained.

【0018】本発明のセラミックス機能材料において、
少なくとも一対の相対する面を有し、その面同士を連絡
する直径が0.6〜1.2mmの管状通路を少なくとも
1個有する機能材料を製造するには、様々な方法を採用
することができる。具体的には、前記の方法で製造し
た成形体を少なくとも一対の相対する面を有する形状に
加工成形した後、相対する面同士を連絡する管状通路を
1個以上機械加工により形成し、焼成する方法、原料
粉体、粒径12〜700μmの球状熱消失性物質及び熱
消失性物質から成る直径0.7〜1.8mmの管状通路
形成材を用いて圧粉体を作製し、焼成する方法、発泡
剤を用いて原料粉体の発泡スラリーを調製し、これを底
面が平面である型内に入れ、このスラリー中に熱消失性
物質から成り、少なくとも液面から底面まで達する長さ
で、かつ直径が0.7〜1.8mmの管状通路形成材を
1個以上垂下させて成形体を作製し、焼成する方法、
発泡剤を用いて原料粉体の発泡スラリーを調製し、この
スラリーを、底面に直径が0.7〜1.8mmで、液面
まで達する長さの管状通路形成用ピンが1個以上直立す
る型内に注型して成形体を作製し、乾燥後、型から取り
外した成形体を焼成する方法などが挙げられる。
In the ceramic functional material of the present invention,
Various methods can be adopted for producing a functional material having at least one pair of facing surfaces and at least one tubular passage having a diameter of 0.6 to 1.2 mm connecting the surfaces. . Specifically, the molded body manufactured by the above method is processed and molded into a shape having at least a pair of facing surfaces, and then one or more tubular passages connecting the facing surfaces are formed by machining and fired. Method, raw material powder, spherical heat-dissipating substance having a particle diameter of 12 to 700 μm, and a method for producing a green compact by using a tubular passage forming material having a diameter of 0.7 to 1.8 mm and comprising a heat-dissipating substance, and firing , A foaming slurry of raw material powder is prepared using a foaming agent, and the slurry is put in a mold whose bottom surface is a flat surface. The heat-dissipating substance is contained in this slurry, and at least the length from the liquid surface to the bottom surface is reached. And a method in which one or more tubular passage-forming materials having a diameter of 0.7 to 1.8 mm are hung to prepare a molded body and then fired,
A foaming slurry of raw material powder is prepared using a foaming agent, and at least one tubular passage forming pin having a diameter of 0.7 to 1.8 mm and a length reaching the liquid surface is erected on the bottom surface of the slurry. Examples include a method of casting into a mold to prepare a molded body, drying the molded body, and firing the molded body removed from the mold.

【0019】いずれの方法を採用する場合でも、特に焼
結時の昇温温度勾配の設定は重要であり、粒成長の完全
な制御の下で球状粒子同士の間隙が前述の微細空間を構
成するように製造管理を行う。この微細空間は、前述の
フィルターとしての機能を果たし、発泡剤による真球状
空間は、その曲率が骨形成細胞の認識の場となり、さら
に居住空間となる。また、管状通路(貫通孔)は、骨組
織内にインプランテーションされた中で血管の増成空間
を提供することになる。
Whichever method is adopted, it is particularly important to set the temperature rising temperature gradient during sintering, and the gap between the spherical particles constitutes the above-mentioned fine space under the complete control of grain growth. Manufacturing control. This fine space serves as the above-mentioned filter, and the spherical space formed by the foaming agent serves as a place for recognizing bone-forming cells and further serves as a living space. In addition, the tubular passage (through hole) will provide a growth space for blood vessels while being implanted in bone tissue.

【0020】[0020]

【発明の実施例】図1ないし図3は本発明によるセラミ
ックス機能材料(インプラント材料)の実施例を示す。
このインプラント材料11は、角柱状をなしており、そ
の長手方向に複数の管状通路12が形成されている。管
状通路12の一つは、角柱体の中心部に位置しており、
残りの管状通路は、この中心管状通路と六方対称(hexa
gonal symmetry)をなすように、配列されている。図示
例では、中心管状通路12aを中心とする二つの仮想同
心円上にそれぞれ、各6個の周辺管状通路12b、12
cが位置している。この六方対称形状によると、最も好
ましい結果が得られる。
1 to 3 show an embodiment of a ceramic functional material (implant material) according to the present invention.
The implant material 11 has a prismatic shape, and a plurality of tubular passages 12 are formed in the longitudinal direction thereof. One of the tubular passages 12 is located at the center of the prismatic body,
The remaining tubular passages are hexagonally symmetrical to this central tubular passage.
are arranged so as to form a gonal symmetry). In the illustrated example, six peripheral tubular passages 12b and 12 are provided on each of two virtual concentric circles centered on the central tubular passage 12a.
c is located. This hexagonal symmetric shape gives the most favorable results.

【0021】図3は、このインプラント材料11中に形
成される真球状の空間13と微細空間14とを模式的に
示している。微細空間14は、真球状空間13どうし、
真球状空間13とインプラント材料11の外表面、ある
いは管状通路12の内表面とを接続する。
FIG. 3 schematically shows a spherical space 13 and a fine space 14 formed in the implant material 11. The fine space 14 is the spherical space 13,
The spherical space 13 is connected to the outer surface of the implant material 11 or the inner surface of the tubular passage 12.

【0022】図4、図5は、本発明によるセラミックス
機能材料を円柱状インプラント材料11Aとしたもので
ある。管状通路12Aは、図4、図5と同様に、中心管
状通路12aと、この通路12aを中心とする仮想同心
円上に配置した周辺管状通路12bとからなっている。
この中心管状通路12aと周辺管状通路12bも、六方
対称形状をなしている。
4 and 5 show a ceramic functional material according to the present invention as a columnar implant material 11A. Similar to FIGS. 4 and 5, the tubular passage 12A includes a central tubular passage 12a and a peripheral tubular passage 12b arranged on a virtual concentric circle centered on the passage 12a.
The central tubular passage 12a and the peripheral tubular passage 12b also have a hexagonal symmetrical shape.

【0023】管状通路12の間隔は、好ましくは、イン
プラント材料中の任意の点から管状通路までの距離が最
大でも5mm程度となるように、定めるのがよい。図
4、図5の例では、管状通路12の間隔を等しく3〜5
mmとすると、インプラント材料中の任意の点から管状
通路までの距離が5mm以下となる。
The intervals between the tubular passages 12 are preferably determined so that the distance from any point in the implant material to the tubular passages is about 5 mm at the maximum. In the example of FIGS. 4 and 5, the intervals of the tubular passages 12 are made equal to each other by 3 to 5
mm, the distance from any point in the implant material to the tubular passage is 5 mm or less.

【0024】次に、具体例に基づいて本発明をさらに詳
細に説明するが、本発明はこれによって制限されるもの
ではない。
Next, the present invention will be described in more detail based on specific examples, but the present invention is not limited thereto.

【0025】具体例1 公知方法で水酸アパタイトを湿式合成し、得られた水酸
アパタイトスラリーを回転式スプレードライヤを用いて
噴霧乾燥し、粒径5〜9μmの範囲の水酸アパタイト球
状粉末を得た。得られた水酸アパタイト球状粉末200
gに粉末状卵白アルブミン100gを添加し、乾式ボー
ルミルで穏やかに混合した。得られた混合粉末の粒度は
6.5μmであった。この混合粉末に水500gを添加
し、ハンドミキサーで15分間攪拌し泡立てた後、直径
20cm、深さ5cmのガラスシャーレに移し、80℃
の乾燥機内で24時間乾燥した。次いで、乾燥体をダイ
ヤモンドディスクを用いて直径1.2cm、高さ1cm
の円柱状に切り出し、相対する面を貫通するように直径
1.2mmの貫通孔(管状通路)を断面の中心点に1個
開け、さらに、4mm間隔で断面の中心点から等角度、
等距離で6個開けた後、1100℃で2時間電気炉内で
焼成し、インプラント材料を得た。焼結体の大きさは、
予め焼成収縮を予測しておいたとおり、円柱の直径8m
m、高さ7mm、貫通孔の間隔3mm、貫通孔の直径
0.8mmであった。水銀ポロシメータによる細孔分布
として気孔径を測定したところ平均で0.3μmの微細
空間と350μmの空間の2極分布が確認された。
Specific Example 1 Hydroxyapatite is wet-synthesized by a known method, and the obtained hydroxyapatite slurry is spray-dried using a rotary spray dryer to obtain hydroxyapatite spherical powder having a particle size of 5 to 9 μm. Obtained. Obtained spherical hydroxyapatite powder 200
100 g of powdered ovalbumin was added to g and gently mixed with a dry ball mill. The particle size of the obtained mixed powder was 6.5 μm. To this mixed powder, 500 g of water was added, and the mixture was stirred for 15 minutes with a hand mixer to foam, then transferred to a glass petri dish having a diameter of 20 cm and a depth of 5 cm, and the temperature was 80 ° C.
24 hours in the dryer. Then, the dried body is used with a diamond disk to have a diameter of 1.2 cm and a height of 1 cm.
, A through hole (tubular passage) with a diameter of 1.2 mm is opened at the center point of the cross section so as to penetrate through the opposite surfaces, and at equal intervals from the center point of the cross section at 4 mm intervals.
After 6 pieces were opened at equal distances, they were baked in an electric furnace at 1100 ° C. for 2 hours to obtain implant materials. The size of the sintered body is
As predicted by firing shrinkage in advance, the diameter of the cylinder is 8 m
m, the height was 7 mm, the distance between the through holes was 3 mm, and the diameter of the through holes was 0.8 mm. When the pore size was measured as a pore distribution by a mercury porosimeter, a bipolar distribution of a fine space of 0.3 μm and a space of 350 μm on average was confirmed.

【0026】得られたインプラント材料をビーグル成犬
の大腿骨骨髄中に埋入し、2週間後及び4週間後に組織
としてこれを取り出し、主としてインプラント組織構造
内の骨形成の状態を観察した。埋入後2週間でインプラ
ント材料中心部においても真球状空間の内壁にライニン
グセル構造が形成され、新生骨と見られる染色像の形成
が認められた。さらに、4週間経過後では真球状空間の
内部のほとんどの部分が新生骨で満たされ、従来の構
造、すなわち微細空間を伴わない組織構造の場合と比較
して顕著な骨形成像を示した。
The obtained implant material was embedded in the femur bone marrow of a beagle adult dog, and taken out as a tissue after 2 weeks and 4 weeks, and the state of bone formation mainly in the implant tissue structure was observed. Two weeks after the implantation, a lining cell structure was formed on the inner wall of the spherical space even in the central part of the implant material, and formation of a stained image that was considered to be new bone was recognized. Furthermore, after 4 weeks, most of the inside of the spherical space was filled with new bone, and a remarkable bone formation image was shown as compared with the case of the conventional structure, that is, the tissue structure without fine space.

【0027】具体例2 具体例1と同様の方法により作製したインプラント材料
を直径15mm、厚さ4mmの円板と直径12mm、厚
さ4mmの円板との二枚重ねの円板状に加工した。ビー
グル老犬(10才犬)の頭蓋骨側部に直径13mmの骨
穿孔を行い、骨欠損部とし、上記インプラント材料を埋
め込んだ。この状態では周囲1mmの間隙があり、指で
押せば動揺した。ここで帽状腱膜で押さえ込む形で縫合
を行い、3日間放置した。3日目に頭皮表面から指頭で
埋込部位の動揺性を確かめた結果、埋込部位でのインプ
ラント材料の動揺はなく、ほぼ固定が終了しているもの
と観察された。3週間経過後、ビーグル犬を犠牲とし剖
検を行った結果、インプラント材料と頭蓋骨穿孔部骨空
隙とのギャップは、明らかに新生骨で覆われ、極めて癒
合状態の良い所見と組織所見とが得られた。
SPECIFIC EXAMPLE 2 An implant material produced by the same method as in Specific Example 1 was processed into a double-layered disc shape of a disk having a diameter of 15 mm and a thickness of 4 mm and a disk having a diameter of 12 mm and a thickness of 4 mm. An old Beagle dog (10-year-old dog) was perforated with a bone having a diameter of 13 mm on the side of the skull to form a bone defect, and the implant material was embedded therein. In this state, there was a gap of 1 mm around, and it shook when pressed with a finger. Here, sutures were performed while being held down by the cap-shaped aponeurosis, and left for 3 days. As a result of confirming the swaying property of the implant site from the scalp surface with the fingertip on the 3rd day, it was observed that the implant material did not sway at the implant site and the fixation was almost completed. After 3 weeks, a beagle dog was sacrificed and autopsy was performed. As a result, the gap between the implant material and the bone void in the skull perforation was obviously covered with new bone, and very good fusion and histological findings were obtained. It was

【0028】具体例3 ビーグル成犬の左右脛骨骨端線下部から断面積で1/2
cm2 、長さ15mmを切除し、これと同様な形状に加
工したインプラント材料(材料は具体例1と同)を代替
充填した。術部位について、術直後、3日、1週、3
週、5週、7週、9週、12週、26週、そして52週
にX線所見を得、さらにこれと並行して血液生化学的検
索を実施した。X線像については、主として材料と骨と
の境界の陰影像の変化並びに新生骨形成を主体とした観
察を行った結果、5〜9週にわたって旺盛な骨形成像が
観察された。一方、血液生化学的検索については、アル
カリフォスファターゼ値は、7〜9週にわたり高位を示
した。これは、従来の同質インプラント材料でおおむね
12週に高位に達することと比較して極めて早い。この
事実は、本発明によるインプラント材料が従来のものと
比較して著しく優れた骨形成性を有することを示すもの
である。
Example 3 Half of the cross-sectional area from the lower part of the right and left tibial epiphyses of an adult beagle dog
The implant material cut out in cm 2 and 15 mm in length and processed into a similar shape (the material is the same as in Example 1) was substituted and filled. Immediately after surgery, 3 days, 1 week, 3
X-ray findings were obtained at week 5, week 5, week 7, week 9, week 12, week 26, and week 52, and in parallel with this, a blood biochemical search was performed. As for the X-ray image, as a result of observing mainly the changes in the shadow image of the boundary between the material and the bone and the new bone formation, a vigorous bone formation image was observed for 5 to 9 weeks. On the other hand, regarding the blood biochemical search, the alkaline phosphatase level was high over 7 to 9 weeks. This is extremely fast compared to reaching a high level in approximately 12 weeks with conventional homogeneous implant materials. This fact indicates that the implant material according to the present invention has significantly superior osteogenicity as compared with the conventional one.

【0029】具体例4 具体例1の乾燥体をそのまま1100℃の電気炉内で2
時間焼成し、籠形粉砕機により粗砕した後、ASTM規
格ふるいでふるい分けすることにより、粒径250〜5
00μmの顆粒状インプラント材料を製造した。この顆
粒状インプラント材料は、80μmの真球状空間と0.
3μmの微細空間を有していた。ビーグル幼犬の大腿骨
を麻酔下で人工的に骨折させ、骨髄中に上記顆粒状イン
プラント材料を充填し、整復した後、縫合し、さらにギ
プス包帯で固定した。術後3日、7日及び2週経過後に
ギプス包帯をはずし、X線像に基づく所見を観察した
後、ギプス包帯により再固定した。3週経過後には明ら
かに仮骨形成が認められる陰影像が認められたため、固
定から開放し、自由歩行に移行したが、以後再骨折など
の異常は生ぜず、正常な回復に向かい、X線所見として
7週経過後は治癒と判断できた。
Concrete Example 4 The dried product of Concrete Example 1 was used as it was in an electric furnace at 1100 ° C. for 2 hours.
After firing for a long time and coarsely crushing with a basket-type crusher, sieving with an ASTM standard sieve gives a particle size of 250-5.
A 00 μm granular implant material was produced. This granular implant material has a true spherical space of 80 μm and 0.
It had a fine space of 3 μm. The femur of a beagle juvenile was artificially fractured under anesthesia, the above-mentioned granular implant material was filled in the bone marrow, and after reduction, it was sutured and further fixed with a cast bandage. The casts were removed 3 days, 7 days, and 2 weeks after the operation, and the findings based on the X-ray image were observed, and then fixed again by the casts. After 3 weeks, a shadow image clearly showing callus formation was observed, so the patient was released from fixation and moved to free walking, but thereafter, abnormalities such as re-fracture did not occur, and normal recovery was performed, and X-ray was performed. As a finding, it could be judged to be cured after 7 weeks.

【0030】具体例5 具体例4と同様な方法で焼成することにより作製したイ
ンプラント材料を籠形粉砕機により粗砕し、ASTM規
格ふるいにより140〜7メッシュの間で0.3mm間
隔にふるい分け、それぞれの集団を作製した。次いで、
粒径比を0.1mmを基準として粒径比がほぼ2×2
1/2 となる最密充填粒径分布となるように配合し、人工
骨頭固定用顆粒状インプラント材料とした。
SPECIFIC EXAMPLE 5 The implant material prepared by firing in the same manner as in Specific Example 4 was coarsely crushed by a basket crusher and sieved at 140 mm to 140 mesh by 0.3 mm intervals by an ASTM standard sieve, Each population was created. Then
Based on a particle size ratio of 0.1 mm, the particle size ratio is approximately 2 x 2
It was blended so as to have a close-packed particle size distribution of 1/2 to obtain a granular implant material for fixing an artificial head.

【0031】一方、ビーグル老犬2頭(10才犬)を用
意し、上記インプラント材料の有効性を明らかにするこ
とを目的とする立場から荷重負荷である条件を必要とす
るため、左右の後足の人工骨頭置換術を実施した。すな
わち、Richards Manufacturing Company(アメリカ合衆
国テネシー州メンフィス在)製中型犬用人工骨頭を用
い、大腿骨を外側広筋(Vastus lat) 部位近傍で切断
し、骨髄腔に先の顆粒状インプラント材料をステムがほ
ぼ完全に動揺しなくなるまで強く充填することにより固
定した。術後は、1頭は縫合部位にノベクタン(感染防
止剤;商標、吉富製薬(株)製)を散布するに止めて2
週間柵中で飼育し、他の1頭はギプス包帯を用いて後足
側を拘束し、これを2週間持続し、その後は自由歩行に
移した。現在それぞれ20週の経過をみるが、X線所見
としてステム周辺にクリアゾーン等の異常は全く認めら
れず、また、顆粒周辺には雲状の陰影を伴うが、成形外
科学的に見て、特にルーズニングは認められない。
On the other hand, two Beagle old dogs (10-year-old dogs) were prepared and a condition of load loading was required from the standpoint of clarifying the effectiveness of the implant material. An artificial head replacement for the foot was performed. In other words, a femoral bone was cut near the site of the vastus lateralis muscle (Vastus lat) using a medium-sized dog artificial head manufactured by Richards Manufacturing Company (Memphis, Tennessee, USA), and the stem of the granular implant material in the bone marrow cavity was almost removed. It was fixed by filling it strongly until it became completely undisturbed. After the surgery, one animal should stop spraying Novectorin (anti-infective agent; trademark, manufactured by Yoshitomi Pharmaceutical Co., Ltd.) on the sutured site.
The animals were housed in a fence for a week, and the other one was restrained on the hind foot side using a plaster bandage, this was continued for 2 weeks, and thereafter, it was transferred to free walking. At present, 20 weeks each, but no abnormalities such as clear zones around the stem as X-ray findings were observed, and cloud-like shadows around the granules were observed, but plastic surgery showed that Especially loosening is not allowed.

【0032】具体例6 具体例4と同様な方法で焼成し、ふるい分けすることに
より、0.1〜0.5mmの顆粒状インプラント材料を
製造した。この顆粒は、50μmの真球状空間と0.3
μmの微細空間を有していた。脊柱に湾曲の見られる先
天奇形と考えられる雄雑犬に創外固定術による脊柱矯正
術を施し、矯正部位に生じた骨欠損部位に上記の顆粒状
インプラント材料を充填した。術後、経時的にX線像に
基づく所見を得、創外固定器抜去の時期を探索した。術
後1ケ月で充填顆粒の周辺に雲状の陰影像が認められた
が、仮骨形成と骨癒合の進行と判断し、安全性を考慮の
上、術後2ケ月で同固定器の抜去を行った。以降約1ケ
年の経過をみるが、術部位の変形等の異常所見は得られ
ていない。
Specific Example 6 A granular implant material having a diameter of 0.1 to 0.5 mm was produced by firing in the same manner as in Specific Example 4 and sieving. This granule has a true spherical space of 50 μm and 0.3
It had a fine space of μm. A male miscellaneous dog, which is considered to have a congenital malformation with a curved spine, was subjected to spinal orthodontic surgery by external fixation, and the above-mentioned granular implant material was filled in the bone defect site generated in the corrected site. After surgery, findings based on X-ray images were obtained over time, and the time for removal of the external fixator was searched. A cloud-like shadow image was observed around the filled granules 1 month after the operation, but it was judged that the progression of callus formation and bone union was considered, and the safety device was taken into consideration, and the fixator was removed 2 months after the operation. I went. After about a year, no abnormal findings such as deformation of the surgical site have been obtained.

【0033】[0033]

【発明の効果】本発明による多孔質リン酸カルシウム化
合物焼結体から成る機能材料は、生体適合性、特に場の
認識としての新生骨誘起と石灰化の進行という観点から
最適な気孔空間構造を有するインプラント材料であり、
直径が10〜450μmの真球状空間は、骨形成の認識
の場の提供と、血液中の血漿成分の交通に基づく骨形成
細胞の活性化と産生機能とを共存させる場を提供し、
0.01〜0.5μmの微細空間はフィルターの作用を
有し、体液や血液中の血漿成分のみを交通させ、真球状
空間に居住して骨形成に係わる細胞の活性化を促進する
機能を有する。本発明による機能材料は、さらに、本来
必要である血流を妨げずにインプラント組織構造中に骨
の形成に直接関与する細胞成分を供給できる管状通路を
有することができ、この形態は比較的大きいインプラン
ト材料に好適である。管状通路を有する本発明のインプ
ラント材料は、生体の欠損部の血流方向に沿うように埋
入することによってインプラント材料中心部まで空間内
での新生血管の増成と増殖を可能にし、血流の確保がで
きるようになり、骨形成に係わる細胞や栄養成分を充分
に供給することが可能となる。この結果、従来のインプ
ラント材料と比較して極めて早期に骨形成が行われ、か
つ長期にわたって安定した成熟骨化を進行させることが
できる。そして、最終的には生体骨との複合体(Biocom
posite)を形成し、半永久的に骨として要求される機能
を果たすものとなる。
The functional material comprising the porous calcium phosphate compound sintered body according to the present invention is an implant having an optimum pore space structure from the viewpoint of biocompatibility, in particular, induction of new bone and progress of calcification as field recognition. Is the material
The true spherical space having a diameter of 10 to 450 μm provides a place for recognizing bone formation and a place for coexisting the activation and production functions of osteogenic cells based on the traffic of plasma components in blood,
The micro space of 0.01 to 0.5 μm has a function of a filter, transports only plasma components in body fluids and blood, and has a function of occupying the spherical space and promoting activation of cells involved in bone formation. Have. The functional material according to the present invention may further have tubular passages capable of supplying cellular components directly involved in bone formation in the implant tissue structure without obstructing blood flow which is originally required, and this form is relatively large. Suitable for implant materials. The implant material of the present invention having a tubular passage enables the growth and proliferation of new blood vessels in the space up to the central portion of the implant material by being embedded along the blood flow direction of the defect portion of the living body, As a result, it becomes possible to ensure the supply of cells and nutrients involved in bone formation. As a result, compared with the conventional implant material, bone formation is performed at an extremely early stage, and stable mature ossification can be advanced over a long period of time. Finally, the complex with living bone (Biocom
form the posite), and semipermanently perform the function required as bone.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施態様を示す角柱状インプラント
材料の斜視図である。
FIG. 1 is a perspective view of a prismatic implant material showing one embodiment of the present invention.

【図2】図1に示したインプラント材料の断面説明図で
ある。
FIG. 2 is a cross-sectional explanatory view of the implant material shown in FIG.

【図3】同真球状の空間、微細空間、及び環状通路を模
式的に示す図である。
FIG. 3 is a diagram schematically showing the same spherical space, fine space, and annular passage.

【図4】本発明の別の実施態様を示す円柱状インプラン
ト材料の斜視図である。
FIG. 4 is a perspective view of a cylindrical implant material showing another embodiment of the present invention.

【図5】図4に示したインプラント材料の断面説明図で
ある。
5 is a cross-sectional explanatory view of the implant material shown in FIG.

【符号の説明】[Explanation of symbols]

11 11A インプラント材料 12 12A 管状通路 13 真球状空間 14 微細空間 11 11A Implant material 12 12A Tubular passageway 13 True spherical space 14 Fine space

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 リン酸カルシウム系化合物の焼結体から
なり、該焼結体内に直径が10〜450μmの範囲で、
骨形成の場を提供する複数の真球状の空間を有し、かつ
当該空間の周辺に当該空間と材料外表とを連絡しかつ互
いにも連絡する大きさが0.01〜0.5μmの複数の
微細空間を有することを特徴とする骨誘導と骨形成の場
を提供するセラミックス機能材料。
1. A sintered body of a calcium phosphate-based compound, wherein the sintered body has a diameter of 10 to 450 μm.
It has a plurality of spherical spaces that provide a place for bone formation, and a plurality of spaces having a size of 0.01 to 0.5 μm that communicates with the space and the outer surface of the material around the space and also with each other. A ceramic functional material that provides a place for osteoinduction and osteogenesis characterized by having a fine space.
【請求項2】 少なくとも一対の相対する面を有し、そ
の面同士を連絡する直径が0.6〜1.2mmの管状通
路を少なくとも1個有する請求項1記載のセラミックス
機能材料。
2. The ceramic functional material according to claim 1, further comprising at least one tubular passage having at least a pair of opposing surfaces and connecting the surfaces with each other and having a diameter of 0.6 to 1.2 mm.
【請求項3】 相対する面同士を連絡する直径が0.6
〜1.2mmの管状通路を複数個有し、当該通路に直交
する断面上で互いに3〜5mmの間隔で当該通路が存在
する構造を有する請求項2記載のセラミックス機能材
料。
3. The diameter for connecting opposite surfaces to each other is 0.6.
The ceramic functional material according to claim 2, wherein the ceramic functional material has a plurality of tubular passages each having a diameter of up to 1.2 mm, and the passages are present at intervals of 3 to 5 mm on a cross section orthogonal to the passages.
【請求項4】 全体形状が角柱状である請求項1ないし
3に記載のセラミックス機能材料。
4. The ceramic functional material according to claim 1, wherein the overall shape is prismatic.
【請求項5】 全体形状が円柱状である請求項1ないし
3に記載のセラミックス機能材料。
5. The ceramic functional material according to claim 1, wherein the overall shape is cylindrical.
【請求項6】 請求項4または5において、管状通路
は、柱状体の中心の中心管状通路と、この中心管状通路
を中心とする一以上の同心の仮想円上に等間隔で配した
複数個の周辺管状通路とを備えているセラミックス機能
材料。
6. The tubular passage according to claim 4, wherein a plurality of tubular passages are arranged at equal intervals on a central tubular passage at the center of the columnar body and on one or more concentric virtual circles centering on the central tubular passage. A ceramic functional material having a peripheral tubular passage.
【請求項7】 請求項6において、管状通路は、六方対
称に配列されているセラミックス機能材。
7. The ceramic functional material according to claim 6, wherein the tubular passages are arranged in hexagonal symmetry.
【請求項8】 セラミックス原料粉体として、粒径5〜
10μmの球状リン酸カルシウム系化合物粒子を用いて
気孔空間を含むか又は球状熱消失性物質を含む成形体を
作製し、焼成して直径が10〜450μmの範囲の複数
の真球状空間及び当該空間の周辺に当該空間と材料外表
とを連絡しかつ互いにも連絡する大きさが0.01〜
0.5μmの複数の微細空間を有する多孔質焼結体を製
造することを特徴とする骨誘導と骨形成の場を提供する
セラミックス機能材料の製造方法。
8. A ceramic raw material powder having a particle size of 5 to 5.
A spherical calcium phosphate-based compound particle having a diameter of 10 μm is used to prepare a molded body containing a pore space or a spherical heat-dissipating substance, and the molded body is fired to form a plurality of true spherical spaces having a diameter in the range of 10 to 450 μm and the periphery of the space. The size of connecting the space to the outer surface of the material and also to each other is 0.01 to
A method for producing a ceramic functional material for providing a place for osteoinduction and osteogenesis, comprising producing a porous sintered body having a plurality of 0.5 μm fine spaces.
【請求項9】 請求項8記載の成形体を少なくとも一対
の相対する面を有する形状に加工成形し、その面同士を
連絡する、直径が0.6〜1.2mmの管状通路を少な
くとも1個形成する請求項5記載のセラミックス機能材
料の製造方法。
9. At least one tubular passage having a diameter of 0.6 to 1.2 mm, which is formed by processing the molded body according to claim 8 into a shape having at least a pair of opposing surfaces and connecting the surfaces to each other. The method for producing a ceramics functional material according to claim 5, which is formed.
【請求項10】 相対する面同士を連絡する管状通路を
機械加工により形成する請求項6記載のセラミックス機
能材料の製造方法。
10. The method for producing a ceramics functional material according to claim 6, wherein the tubular passages that connect the opposing surfaces are formed by machining.
【請求項11】 粒径5〜10μmの球状リン酸カルシ
ウム系化合物粒子、粒径12〜700μmの球状熱消失
性物質及び1個以上の熱消失性物質から成る直径0.7
〜1.8mmの管状通路形成材を用いて圧粉体を作製
し、焼成する請求項8記載のセラミックス機能材料の製
造方法。
11. A spherical calcium phosphate-based compound particle having a particle size of 5 to 10 μm, a spherical heat-dissipating substance having a particle size of 12 to 700 μm, and a diameter of 0.7 comprising one or more heat-dissipating substances.
The method for producing a ceramics functional material according to claim 8, wherein a green compact is produced using a tubular passage forming material having a diameter of ˜1.8 mm, and the green compact is fired.
【請求項12】 水中に粒径5〜10μmの球状リン酸
カルシウム系化合物粒子及び発泡剤又は粒径12〜70
0μmの球状熱消失性物質を加え、底面が平面である型
内で充分攪拌したスラリー中に、熱消失性物質から成り
少なくとも液面から底面まで達する長さで、かつ直径が
0.7〜1.8mmの管状通路形成材を1個以上垂下さ
せて成形体を作製し、焼成する請求項8記載のセラミッ
クス機能材料の製造方法。
12. Spherical calcium phosphate-based compound particles having a particle size of 5 to 10 μm in water and a foaming agent or a particle size of 12 to 70.
A spherical heat-dissipating substance of 0 μm was added, and the slurry was sufficiently stirred in a mold having a flat bottom surface. The slurry was composed of the heat-dissipating substance and had a length of at least reaching from the liquid surface to the bottom surface and had a diameter of 0.7 to 1. 9. The method for producing a ceramics functional material according to claim 8, wherein one or more 8 mm tubular passage forming materials are hung to form a molded body, and the molded body is fired.
【請求項13】 水中に粒径5〜10μmの球状リン酸
カルシウム系化合物粒子及び発泡剤又は粒径12〜70
0μmの球状熱消失性物質を加え、充分攪拌したスラリ
ーを、底面に直径が0.7〜1.8mmで、液面まで達
する長さの管状通路形成用ピンが1個以上直立する型内
に注型して成形体を作製し、乾燥後、型から取り外した
成形体を焼成する請求項8記載のセラミックス機能材料
の製造方法。
13. A spherical calcium phosphate-based compound particle having a particle size of 5 to 10 μm and a foaming agent or a particle size of 12 to 70 in water.
0 μm of spherical heat-dissipating substance was added, and the slurry was thoroughly stirred into a mold in which one or more tubular passage-forming pins having a diameter of 0.7 to 1.8 mm and reaching the liquid surface were upright on the bottom surface. The method for producing a ceramics functional material according to claim 8, wherein the molded body is cast to prepare a molded body, and after drying, the molded body removed from the mold is fired.
JP6217329A 1993-09-13 1994-09-12 Ceramics functional material providing a place for osteoinduction and bone formation, and method for producing the same Expired - Fee Related JP3061732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6217329A JP3061732B2 (en) 1993-09-13 1994-09-12 Ceramics functional material providing a place for osteoinduction and bone formation, and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP22712793 1993-09-13
JP5-227127 1993-09-13
JP6217329A JP3061732B2 (en) 1993-09-13 1994-09-12 Ceramics functional material providing a place for osteoinduction and bone formation, and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07124241A true JPH07124241A (en) 1995-05-16
JP3061732B2 JP3061732B2 (en) 2000-07-10

Family

ID=26521961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6217329A Expired - Fee Related JP3061732B2 (en) 1993-09-13 1994-09-12 Ceramics functional material providing a place for osteoinduction and bone formation, and method for producing the same

Country Status (1)

Country Link
JP (1) JP3061732B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0930988A (en) * 1995-07-21 1997-02-04 Sumitomo Osaka Cement Co Ltd Sustained release porous ceramic molding for medicine and its production
JPH11178913A (en) * 1997-12-22 1999-07-06 Kyocera Corp Organism prosthetic material
JPH11513590A (en) * 1995-10-16 1999-11-24 オーケスト インコーポレイテッド Bone graft matrix
JP2001137328A (en) * 1999-11-11 2001-05-22 Olympus Optical Co Ltd Bone prosthesis
JP2001231797A (en) * 2000-02-23 2001-08-28 National Institute For Materials Science Modularized artificial bone
JP2003507132A (en) * 1999-08-26 2003-02-25 グロントケア ゲーエムベーハー Resorbable bone substitutes and bone constituents
JP2003320515A (en) * 2002-05-07 2003-11-11 Ngk Spark Plug Co Ltd Method and device for manufacturing porous calcium phosphate body
WO2004039423A1 (en) * 2002-10-31 2004-05-13 Kubo, Akiko Transplantation material for regenerating biological tissue and process for producing the same
JP2004298407A (en) * 2003-03-31 2004-10-28 Olympus Corp Living tissue filling material and method of manufacturing the same
JP2006263445A (en) * 2005-02-25 2006-10-05 Yasuharu Noisshiki Medical material
JP2007528234A (en) * 2003-06-26 2007-10-11 クラサン アーゲー Osteogenic agent and production method
JP2010502355A (en) * 2006-09-11 2010-01-28 メガジェン インプラント カンパニー リミテッド Bone filler and manufacturing method thereof
JPWO2009034876A1 (en) * 2007-09-12 2010-12-24 株式会社クラレ Artificial bone
JP5166864B2 (en) * 2005-02-23 2013-03-21 株式会社ハイレックスコーポレーション Artificial tooth root
WO2017038647A1 (en) * 2015-08-28 2017-03-09 株式会社福山医科 Prosthetic bone block, and method for producing prosthetic bone block

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0930988A (en) * 1995-07-21 1997-02-04 Sumitomo Osaka Cement Co Ltd Sustained release porous ceramic molding for medicine and its production
JPH11513590A (en) * 1995-10-16 1999-11-24 オーケスト インコーポレイテッド Bone graft matrix
JP4526525B2 (en) * 1995-10-16 2010-08-18 ディピュイ アクロメッド インコーポレイテッド Bone graft matrix
JP2007007452A (en) * 1995-10-16 2007-01-18 Depuy Acromed Inc Bone grafting matrix
JPH11178913A (en) * 1997-12-22 1999-07-06 Kyocera Corp Organism prosthetic material
JP2003507132A (en) * 1999-08-26 2003-02-25 グロントケア ゲーエムベーハー Resorbable bone substitutes and bone constituents
JP5014544B2 (en) * 1999-08-26 2012-08-29 グロントケア ゲーエムベーハー Resorbable bone substitute materials and bone constituent materials
JP2001137328A (en) * 1999-11-11 2001-05-22 Olympus Optical Co Ltd Bone prosthesis
JP2001231797A (en) * 2000-02-23 2001-08-28 National Institute For Materials Science Modularized artificial bone
JP2003320515A (en) * 2002-05-07 2003-11-11 Ngk Spark Plug Co Ltd Method and device for manufacturing porous calcium phosphate body
WO2004039423A1 (en) * 2002-10-31 2004-05-13 Kubo, Akiko Transplantation material for regenerating biological tissue and process for producing the same
JP2004298407A (en) * 2003-03-31 2004-10-28 Olympus Corp Living tissue filling material and method of manufacturing the same
JP2007528234A (en) * 2003-06-26 2007-10-11 クラサン アーゲー Osteogenic agent and production method
US8778374B2 (en) 2003-06-26 2014-07-15 Curasan Ag Bone formation agent and method of production
JP5166864B2 (en) * 2005-02-23 2013-03-21 株式会社ハイレックスコーポレーション Artificial tooth root
JP2006263445A (en) * 2005-02-25 2006-10-05 Yasuharu Noisshiki Medical material
JP2010502355A (en) * 2006-09-11 2010-01-28 メガジェン インプラント カンパニー リミテッド Bone filler and manufacturing method thereof
JPWO2009034876A1 (en) * 2007-09-12 2010-12-24 株式会社クラレ Artificial bone
JP5237291B2 (en) * 2007-09-12 2013-07-17 株式会社クラレ Artificial bone
WO2017038647A1 (en) * 2015-08-28 2017-03-09 株式会社福山医科 Prosthetic bone block, and method for producing prosthetic bone block

Also Published As

Publication number Publication date
JP3061732B2 (en) 2000-07-10

Similar Documents

Publication Publication Date Title
US5531794A (en) Ceramic device providing an environment for the promotion and formation of new bone
US11679181B2 (en) Porous biocompatible polymer material and methods
JPH07124241A (en) Ceramic functional material offering field for bone derivation and osteogenesis and its manufacture
US7012034B2 (en) Resorbable bone replacement and bone formation material
CN1230134C (en) Implant, method of making the same and use of the same
JPH025087B2 (en)
AU2002343337A1 (en) Machinable preformed calcium phosphate bone substitute material implants
JPH0359703B2 (en)
ES2803976T3 (en) Bone substitute material
EP1293220B1 (en) Porous calcium phosphate ceramics for in vivo use
ES2939266T3 (en) Collagen matrix or granulated mixture of bone substitute material
US20020104602A1 (en) Ceramic composite and manufacturing method thereof
JP4802317B2 (en) Calcium phosphate ceramic bead assembly and method for constructing the same
JPH0526504B2 (en)
CN109331222B (en) Bone repair material capable of forming 3D porous scaffold in situ and preparation and application thereof
JP2004097259A (en) Artificial bone unit with projections for forming stable structure/bone reproducing space in self-organizing manner, and its use
WO2003075973A1 (en) Spherical calcium phosphate molding and use thereof
JPH10167853A (en) Porous ceramic compact for artificial bone material
JP2006198276A (en) Biomedical ceramic member, and its manufacturing method
JPH07115969B2 (en) Method for producing porous ceramic material
KR950010812B1 (en) Process for the preparation of sintering apatite ceramics
JP4250758B2 (en) Spherical biodegradable plastic with through-hole and use
JPH0583263B2 (en)
CN116637233A (en) Synthetic bone repair material and preparation method and application method thereof
JPH01131082A (en) Filler for deficient part and cavity of bone and production thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees