Nothing Special   »   [go: up one dir, main page]

JPH07118851A - High melting point metallic foil and its production - Google Patents

High melting point metallic foil and its production

Info

Publication number
JPH07118851A
JPH07118851A JP26727793A JP26727793A JPH07118851A JP H07118851 A JPH07118851 A JP H07118851A JP 26727793 A JP26727793 A JP 26727793A JP 26727793 A JP26727793 A JP 26727793A JP H07118851 A JPH07118851 A JP H07118851A
Authority
JP
Japan
Prior art keywords
substrate
tungsten
foil
thickness
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26727793A
Other languages
Japanese (ja)
Inventor
Takehiko Hayashi
武彦 林
Akira Ichida
晃 市田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Tungsten Co Ltd
Original Assignee
Tokyo Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Tungsten Co Ltd filed Critical Tokyo Tungsten Co Ltd
Priority to JP26727793A priority Critical patent/JPH07118851A/en
Publication of JPH07118851A publication Critical patent/JPH07118851A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To produce high m.p. metallic foil of high quality at a considerably reduced total draft by forming a tungsten foil laminated in parallel and having a specified thickness on a substrate by chemical vapor deposition. CONSTITUTION:A high m.p. metallic layer having 5-500mum thickness and a metallic structure of the shape of at least one of traces of columnar and fine crystals in the thickness direction is formed on a substrate from tungsten or a tungsten-rhenium alloy by chemical vapor deposition. The metallic layer is separated from the substrate by the difference in the coefft. of thermal expansion between them and the layer is rolled to obtain the objective metallic foil having <=8mum surface roughness Rmax. This high m.p. metallic foil almost free from ruggedness on the front and rear faces and having about 5-100mum thickness is obtd. in a high yield.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,タングステン(W)及
びタングステン−レニウム(W−Re)合金等の高融点
金属からなる高融点金属箔とその製造方法に関し,詳し
くは,陰極管(CRT)カソード用のパイプ又はスリー
ブ,熱間静水圧プレス(HIP)キャンニング用の高温
耐熱金属膜,電子ビーム(EB)等での高融点物質溶解
用内張りライニング材,コイルしたリボン状ヒータ材等
に用いられ得る高融点金属箔とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refractory metal foil made of refractory metal such as tungsten (W) and a tungsten-rhenium (W-Re) alloy, and a method for producing the same, more specifically, a cathode ray tube (CRT). Used for cathode pipe or sleeve, high temperature heat resistant metal film for hot isostatic pressing (HIP) canning, lining material for melting high melting point substances such as electron beam (EB), coiled ribbon heater material, etc. High melting point metal foil and a method for producing the same.

【0002】[0002]

【従来の技術】従来,CRTカソード用のパイプ又はス
リーブには,Ta又はMo等が用いられている。また,
HIPキャンニング用の高温耐熱金属膜には,ステンレ
ス鋼(SUS)が用いられており,一方,EB等での高
融点物質溶解用には,内張ライニング材は用いられてお
らず,Cuの裸地で使用されている。これらの用途にタ
ングステン等の高融点金属箔を用いることができれば,
耐熱性も向上し,高温で使用される部品の寿命を延ばす
ことができる。ところで,現在製造されている最も薄い
高融点金属箔は,タングステン(W)箔であり,その厚
さは約100μmである。このW箔は,粉末冶金法によ
り焼結することによりタングステン・スラグを作製し,
このタングステン・スラグの加熱・圧延を繰り返すこと
により得られている。
2. Description of the Related Art Conventionally, Ta, Mo or the like has been used for a pipe or sleeve for a CRT cathode. Also,
Stainless steel (SUS) is used for the high temperature heat resistant metal film for HIP canning, while no lining lining material is used for melting high melting point substances such as EB. Used in bare land. If high melting point metal foil such as tungsten can be used for these applications,
Heat resistance is also improved, and the life of parts used at high temperatures can be extended. Incidentally, the thinnest refractory metal foil currently manufactured is a tungsten (W) foil, and its thickness is about 100 μm. This W foil is made by sintering by powder metallurgy to make tungsten slag,
It is obtained by repeating the heating and rolling of this tungsten slag.

【0003】[0003]

【発明が解決しようとする課題】しかしながら,Wは難
加工性材料であり割れが生じやすいため,粉末冶金法に
よる場合,スラグから数百μmの厚さまで加工する場
合,圧延が困難であり,且つ歩留りが非常に悪くなるた
め,結果として実用に供し得る品質の箔は得られなかっ
た。また,W−Re合金もまた難加工性材料であること
が知られており,上記したW箔と同様の欠点があった。
このように,WおよびW−Re合金は難加工性材料であ
り,100μm以下の金属箔は得られていない。
However, since W is a difficult-to-work material and is prone to cracking, it is difficult to roll when using the powder metallurgy method, when processing from the slag to a thickness of several hundred μm, and The yield was very poor, and as a result, a foil of quality that could be put to practical use could not be obtained. Further, the W-Re alloy is also known to be a difficult-to-work material, and has the same drawbacks as the above-mentioned W foil.
Thus, W and W-Re alloys are difficult-to-work materials, and metal foils with a thickness of 100 μm or less have not been obtained.

【0004】一方,高融点金属として知られているモリ
ブデン(Mo)については,パッキング材料,被覆材料
やパイプ用材料としての実例があるが,Wはその耐熱性
を生かしたくとも,従来の粉末冶金法にて薄板を作製す
るにおいては加工性が特に悪く,その歩留りの悪さが工
業的に製造する大きな障害となっている。
On the other hand, molybdenum (Mo), which is known as a refractory metal, has been practically used as a packing material, a coating material, and a pipe material, but W is a conventional powder metallurgy even if it is desired to make full use of its heat resistance. The workability is particularly poor in the production of thin plates by the method, and the poor yield is a major obstacle to industrial production.

【0005】そこで,本発明の技術的課題は,50〜5
00μmのW又はW−Re合金の薄板を形成し,従来の
W又はW−Re合金の粉末冶金法に比較し,圧延におけ
る総加工率を大幅に低減でき,良質の箔を得ることがで
きる高融点金属箔及びその製造方法を提供することにあ
る。
Therefore, the technical problem of the present invention is 50 to 5
Compared with the conventional powder metallurgical method of W or W-Re alloy, a thin plate of 00 μm W or W-Re alloy can be formed, and the total working rate in rolling can be greatly reduced, and high quality foil can be obtained. To provide a melting point metal foil and a manufacturing method thereof.

【0006】[0006]

【課題を解決するための手段】本発明は,W箔又はW−
Re合金箔の製造方法とし従来の粉末冶金法によるもの
ではなく,化学的気相析出法(以下CVD法と呼ぶ)を
用いることを提案するものであり,このCVD法による
W箔またはW−Re合金箔を基板上へ形成する工程と基
板からのW箔またはW−Re合金箔の分離の工程との2
工程によるもの,及び追加工程として分離したW箔,ま
たはW−Re合金箔の圧延加工の3工程から成るもので
ある。
The present invention is a W foil or W-
It is proposed to use a chemical vapor deposition method (hereinafter referred to as a CVD method) as a method for producing a Re alloy foil, not by the conventional powder metallurgy method. 2 steps of forming the alloy foil on the substrate and separating the W foil or the W-Re alloy foil from the substrate
It consists of three steps, that is, depending on the process, and as an additional process, the W foil or the W-Re alloy foil which is separated is rolled.

【0007】本発明によれば,タングステンまたはタン
グステン−レニウム合金からなり,5〜500μmの厚
さを有し,厚み方向に対して柱状及び微細な結晶の痕跡
のうちの少なくとも一方の形状の金属組織を備えている
ことを特徴とする高融点金属箔が得られる。
According to the present invention, the metallographic structure is made of tungsten or a tungsten-rhenium alloy, has a thickness of 5 to 500 μm, and has at least one of columnar and fine crystal traces in the thickness direction. It is possible to obtain a high melting point metal foil having the following features.

【0008】本発明によれば,前記高融点金属箔におい
て,化学的気相析出法によって形成された金属組織が一
面に平行に積層化されていることを特徴とする高融点金
属箔が得られる。
According to the present invention, in the refractory metal foil, a refractory metal foil is obtained in which a metal structure formed by a chemical vapor deposition method is laminated in parallel on one surface. .

【0009】本発明によれば,前記いずれかの高融点金
属箔において,5〜100μmの厚さを有し,Rmax は
8μm以下であることを特徴とする高融点金属箔が得ら
れる。
According to the present invention, in any of the above high melting point metal foils, a high melting point metal foil having a thickness of 5 to 100 μm and Rmax of 8 μm or less can be obtained.

【0010】本発明によれば,化学的気相析出法によっ
て基板上に厚さ5〜500μmのタングステンまたはタ
ングステン−レニウム合金からなる高融点金属層を形成
し,圧延してRmax 8μm以下の良好な表面を形成する
ことを特徴とする高融点金属圧延箔の製造方法が得られ
る。
According to the present invention, a refractory metal layer made of tungsten or a tungsten-rhenium alloy having a thickness of 5 to 500 μm is formed on a substrate by a chemical vapor deposition method and rolled to obtain a favorable Rmax of 8 μm or less. A method for producing a high-melting-point metal rolled foil characterized by forming a surface is obtained.

【0011】本発明によれば,化学的気相析出法によっ
て基板上に厚さ5〜500μmのタングステンまたはタ
ングステン−レニウム合金からなる高融点金属層を形成
し,前記高融点金属層を前記基板から分離する高融点金
属箔の製造方法であって,前記基板と前記高融点金属層
との熱膨張率の差が6×10-6-1以上であることを特
徴とする高融点金属箔の製造方法が得られる。
According to the present invention, a refractory metal layer made of tungsten or a tungsten-rhenium alloy having a thickness of 5 to 500 μm is formed on a substrate by a chemical vapor deposition method, and the refractory metal layer is formed on the substrate. A method for producing a high-melting point metal foil, wherein the difference in coefficient of thermal expansion between the substrate and the high-melting point metal layer is 6 × 10 -6 K -1 or more. A manufacturing method is obtained.

【0012】本発明によれば,化学的気相析出法によっ
て金属製の基板上に厚さ5〜500μmのタングステン
からなる高融点金属層を形成し,前記基板を弗酸と硝酸
の混合液以外の酸性溶液にて除去することを特徴とする
高融点金属箔の製造方法が得られる。
According to the present invention, a refractory metal layer made of tungsten having a thickness of 5 to 500 μm is formed on a metal substrate by a chemical vapor deposition method, and the substrate is made of a liquid mixture of hydrofluoric acid and nitric acid. A method for producing a high-melting point metal foil, which comprises removing the metal foil with an acidic solution of 1.

【0013】本発明によれば,化学的気相析出法によっ
て黒鉛製基板上に厚さ5〜500μmのタングステンま
たはタングステン−レニウム合金からなる高融点金属層
を800℃以下の温度にて形成し,前記基板を機械的に
除去することを特徴とする高融点金属箔の製造方法が得
られる。
According to the present invention, a refractory metal layer made of tungsten or a tungsten-rhenium alloy having a thickness of 5 to 500 μm is formed on a graphite substrate by a chemical vapor deposition method at a temperature of 800 ° C. or lower. A method for producing a high melting point metal foil, characterized in that the substrate is mechanically removed, is obtained.

【0014】ここで,本発明の詳細を高融点金属として
Wを例にとり説明する。
Here, the details of the present invention will be explained by taking W as an example of the refractory metal.

【0015】まず,本発明の第1の工程であるCVD法
にてWを得る方法として,(1)六弗化タングステンガ
ス(WF6 )を水素還元する方法,(2)塩化タングス
テンガス(WCl6 ) を水素還元する方法,(3)塩化
タングステンガス(WCl6) を熱分解する方法などが
挙げられる。
First, as a method of obtaining W by the CVD method which is the first step of the present invention, (1) a method of reducing tungsten hexafluoride gas (WF 6 ) with hydrogen, (2) a tungsten chloride gas (WCl) 6 ) is reduced by hydrogen, and (3) tungsten chloride gas (WCl 6 ) is thermally decomposed.

【0016】近年の技術動向としては,上記(1)の方
法が最も安定してWを得るために適している。なおCV
D法は気相から生成することから一般に高純度のWが得
られることが知られている。
As a recent technological trend, the method (1) is most suitable for obtaining W in the most stable manner. CV
Since the method D is produced from the gas phase, it is generally known that highly pure W can be obtained.

【0017】本発明者等も,またCVD法にて表面状態
の滑らかなWが基板上に得られることを確認しており,
ガス不純物及び金属不純物ともに少ない,純度6N(ni
ne)のWを得ることができた。
The present inventors have also confirmed that W having a smooth surface state can be obtained on the substrate by the CVD method.
Both gas impurities and metal impurities are low, and the purity is 6N (ni
I got a ne) W.

【0018】具体的には,水素ガス(H2 )に対し,W
6 を1/3〜1/10の割合にて供給し,成膜基板を
400〜1000℃に加熱することにより,Wが得られ
る。ここで後工程の圧延に適した組織とするために,C
VD結晶組織(以下CVD層と呼ぶ)は基板に対して水
平方向に積層したものが望ましい。このようなCVD層
は基材を回転させるなど,原料ガスを間欠供給すること
により得られ,本発明者らは,1層の厚さ0.2〜0.
6μmのWのCVD積層組織を得ている。このCVD層
結晶が基板面に対して垂直方向に伸びている場合,圧延
工程において垂直方向の外力が加わると割れが生じやす
くなるという欠点があり好ましくない。なおCVD法に
より形成するW層の厚さは5〜500μm,好ましくは
50〜200μmが好ましい。CVD層形成後の膜厚方
向のCVD層は5層以上あれば金属的特性を有すること
が期待され,その観点から言えばCVD層厚さは3μm
が限界である。その理由は,形成されたCVD層の厚さ
が薄すぎる場合,分離したW箔の強度が不足し,逆に厚
すぎる場合には,圧延回数を多くする必要があり,圧延
工程が増加するばかりでなく,圧延加工に起因するW箔
表面の硬化が生じ歩留りも悪くなるからである。なお,
CVD法によりW−Re合金を形成する場合,所定の組
成比となるように六弗化レニウムガス(ReF6 )を原
料ガスに添加することにより得られる。
Specifically, for hydrogen gas (H 2 ), W
W is obtained by supplying F 6 at a rate of 1/3 to 1/10 and heating the film formation substrate to 400 to 1000 ° C. Here, in order to make the structure suitable for rolling in the subsequent process, C
It is desirable that the VD crystal structure (hereinafter referred to as a CVD layer) be laminated in the horizontal direction on the substrate. Such a CVD layer is obtained by intermittently supplying a raw material gas such as rotating a substrate, and the present inventors have found that the thickness of one layer is 0.2 to 0.
A 6 μm W CVD layered structure is obtained. When the CVD layer crystal extends in the direction perpendicular to the substrate surface, there is a disadvantage that cracks easily occur when an external force in the direction perpendicular is applied in the rolling process, which is not preferable. The thickness of the W layer formed by the CVD method is 5 to 500 μm, preferably 50 to 200 μm. It is expected that the CVD layer in the film thickness direction after the formation of the CVD layer will have metallic characteristics if it has 5 or more layers. From that viewpoint, the CVD layer thickness is 3 μm.
Is the limit. The reason is that if the thickness of the formed CVD layer is too thin, the strength of the separated W foil is insufficient, and conversely if it is too thick, it is necessary to increase the number of times of rolling, and the number of rolling processes increases. Not only that, the W foil surface is hardened due to the rolling process and the yield is deteriorated. In addition,
When a W-Re alloy is formed by the CVD method, it can be obtained by adding a rhenium hexafluoride gas (ReF 6 ) to a source gas so that a predetermined composition ratio is obtained.

【0019】次に,本発明の第2の工程であるCVD法
により得られたW箔またはW−Re合金箔を基板から分
離する方法について述べる。
Next, a method for separating the W foil or the W-Re alloy foil obtained by the CVD method, which is the second step of the present invention, from the substrate will be described.

【0020】方法としては(4)基板と形成されたW箔
またはW−Re合金箔との熱膨張の差を利用する,
(5)基板を化学的処理にて除去する,(6)基板を機
械的方法にて除去するという3種の方法が挙げられる。
The method (4) utilizes the difference in thermal expansion between the substrate and the formed W foil or W-Re alloy foil,
There are three methods: (5) removing the substrate by chemical treatment, and (6) removing the substrate by a mechanical method.

【0021】まず,上記(4)の基板との熱膨張率の差
を利用する方法について述べる。Wの20〜500℃に
おける熱膨張率は4.6×10-6-1であり,基板は熱
膨張率が6.0×10-6-1以上,好ましくは6〜19
×10-6-1が適する。熱膨張率の差が大きすぎる場
合,基板から分離した際,そりが大きく生じたり,割れ
が生じる恐れがある。このように熱膨張率に差のある基
板上でWを400〜1000℃に加熱し成膜した後,冷
却することにより基板からの分離が可能となる。
First, a method of utilizing the difference in the coefficient of thermal expansion from the substrate of (4) will be described. The thermal expansion coefficient of W at 20 to 500 ° C. is 4.6 × 10 −6 K −1 , and the substrate has a thermal expansion coefficient of 6.0 × 10 −6 K −1 or more, preferably 6 to 19
× 10 -6 K -1 is suitable. If the difference in the coefficient of thermal expansion is too large, large warpage or cracking may occur when the substrate is separated from the substrate. Thus, W can be separated from the substrate by heating W to 400 to 1000 ° C. to form a film on the substrate having a different coefficient of thermal expansion and then cooling.

【0022】なお,W箔と基板の分離性向上のため基板
表面は滑らかである程望ましい。これまでの本発明者ら
の経験から,基板として,20〜500℃における熱膨
張率18.4×10-6-1のステンレス鋼(SUS30
4)を用いた場合,W箔形成の後,室温まで徐冷するこ
とにより基板を分離することができた。また,基板とし
て20〜500℃における熱膨脹率が,11.1×10
-6-1のチタン,同様にW箔形成後,室温まで徐冷した
場合も,分離可能であった。
It is preferable that the surface of the substrate is smooth in order to improve the separation between the W foil and the substrate. From the experience of the present inventors up to now, as a substrate, a stainless steel (SUS30) having a thermal expansion coefficient of 18.4 × 10 −6 K −1 at 20 to 500 ° C.
In the case of using 4), the substrate could be separated by gradually cooling to room temperature after forming the W foil. The thermal expansion coefficient of the substrate at 20 to 500 ° C. is 11.1 × 10.
-6 K -1 titanium, likewise when W foil was formed and then slowly cooled to room temperature, separation was possible.

【0023】このようにして基板から分離されたW箔は
その表面の不純物付着状態によっては弗酸と硝酸の混合
液等で極短時間のエッチングを行なうことが望ましい。
It is desirable that the W foil separated from the substrate in this manner be etched for a very short time with a mixed solution of hydrofluoric acid and nitric acid depending on the state of impurities adhering to the surface.

【0024】また,W−Re合金の熱膨張率は,その組
成により異なるが,基板の熱膨張率が8×10-6-1
上の場合,Wの場合と同様に分離できる。
The coefficient of thermal expansion of the W-Re alloy varies depending on its composition, but when the coefficient of thermal expansion of the substrate is 8 × 10 -6 K -1 or more, it can be separated as in the case of W.

【0025】次に,上記(5)の基板を化学的処理によ
り分離除去する方法について述べる。
Next, a method of separating and removing the substrate of (5) by a chemical treatment will be described.

【0026】Wは耐蝕性に優れた材料として工業的に用
いられており,弗酸と硝酸の混合溶液(HF+HN
3 )には急速に,塩酸と硝酸との混合液(HCl+H
NO3 )には僅かに腐食されるが,その他の酸性溶液,
苛性ソーダ(NaOH),アンモニア水(NH3 aq)に
は腐食されないことが知られている。このWの耐蝕性を
利用して金属製基板を化学的に除去する方法が可能とな
る。例えば,Moを基板とする場合,熱膨張率が比較的
近いため,W箔形成温度から室温への冷却時において
は,熱膨張の差により分離することは困難である。しか
し,Moは硝酸(HNO3 ),高濃度硫酸(H2
4 )および塩酸と硝酸との混合液(HCl+HN
3 )に強く腐食されるため形成されたW箔との分離が
可能となる。この方法によれば,WとMo基板との熱膨
張の差が少なく分離したW箔に冷却時に多大な応力がか
からないため,分離後のそりも少ないW箔が得られると
いう長所がある。また必要とするWに大きな強度を必要
としない場合,後工程の圧延をすることなくW箔が得ら
れることは言うまでもない。
W is industrially used as a material having excellent corrosion resistance, and is a mixed solution of hydrofluoric acid and nitric acid (HF + HN).
O 3 ) rapidly mixes hydrochloric acid and nitric acid (HCl + H
NO 3 ) is slightly corroded, but other acidic solutions,
It is known that it is not corroded by caustic soda (NaOH) and aqueous ammonia (NH 3 aq). It becomes possible to chemically remove the metal substrate by utilizing the corrosion resistance of W. For example, when Mo is used as the substrate, since the thermal expansion coefficient is relatively close, it is difficult to separate the W foil during the cooling from room temperature to room temperature due to the difference in thermal expansion. However, Mo is nitric acid (HNO 3 ), high concentration sulfuric acid (H 2 S
O 4 ) and a mixture of hydrochloric acid and nitric acid (HCl + HN
Since it is strongly corroded by O 3 ), it can be separated from the formed W foil. According to this method, since the difference in thermal expansion between W and Mo substrates is small and the separated W foil is not subjected to a great stress during cooling, there is an advantage that a W foil with less warpage after separation can be obtained. Needless to say, when the required W does not require high strength, the W foil can be obtained without rolling in the subsequent step.

【0027】なお,W−Re合金箔の場合,Reが硝酸
に溶解することから,この方法は好ましくない。
In the case of a W-Re alloy foil, Re dissolves in nitric acid, so this method is not preferable.

【0028】さらに,上記(6)の基板を機械的方法に
より除去する方法について,Wを例に述べる。形成した
W箔の厚さが比較的薄い場合,基板除去時の外力が大き
いときW箔の強度不足が問題となる。このため機械的方
法により基板除去を行う場合形成するWの厚さは100
μm以上とすることが好ましい。具体的な基板除去方法
としてはブラスト処理,及び切削等が挙げられる。
Furthermore, the method of removing the substrate of (6) above by a mechanical method will be described by taking W as an example. When the thickness of the formed W foil is relatively thin, insufficient strength of the W foil becomes a problem when the external force when removing the substrate is large. Therefore, when the substrate is removed by a mechanical method, the thickness of W formed is 100.
It is preferable that the thickness is at least μm. Specific substrate removing methods include blasting and cutting.

【0029】例えば,基板として機械的除去が比較的容
易な黒鉛を用いCVD法によりWを形成した後,アルミ
ナ砥粒を用いたブラスト処理にて黒鉛基板の除去を行な
い,W箔を得ることができた。なお,黒鉛を基板として
用いる場合,黒鉛とWの界面において炭化タングステン
を生成させないため,CVD法にてWを生成させる際,
加熱温度は800℃以下にする必要がある。このように
して基板から分離されたW箔はその表面の不純物付着状
態によっては,HF+HNO3 等で極短時間のエッチン
グを行なうことが望ましい。なお,W−Re合金箔の場
合も同様に得ることができる。
For example, a W foil can be obtained by forming W by a CVD method using graphite, which is relatively easy to mechanically remove as a substrate, and then removing the graphite substrate by blasting using alumina abrasive grains. did it. When graphite is used as the substrate, tungsten carbide is not generated at the interface between graphite and W. Therefore, when W is generated by the CVD method,
The heating temperature needs to be 800 ° C. or lower. It is desirable that the W foil separated from the substrate in this way be etched with HF + HNO 3 or the like for an extremely short time depending on the state of impurities adhering to the surface. Note that the same can be obtained in the case of W-Re alloy foil.

【0030】次に,本発明の第3の工程である分離した
WまたはW−Re合金箔の圧延加工について説明する。
この工程は,CVD法により得られたWまたはW−Re
合金箔形成時に生じた表面の10〜30μmの凹凸を除
去すると共に必要板厚まで圧延することを目的としてい
る。圧延されるWまたはW−Re合金箔の結晶組織は,
基板に対して水平方向に積層しているため圧延の際に与
えられる外力に対して比較的強いが,好ましくはステン
レスなど他の金属に挟み圧延することが適している。な
お圧延は冷間圧延にて可能であり,Rmax 3μm以下の
良質のものが得られる。本発明者等の観察によれば,上
記圧延によって得られた合金箔の結晶組織は,0.05
〜5μmの微細な結晶の痕跡を残していた。
Next, the rolling process of the separated W or W-Re alloy foil, which is the third step of the present invention, will be described.
This process consists of W or W-Re obtained by the CVD method.
The purpose is to remove irregularities of 10 to 30 μm on the surface generated during the formation of the alloy foil and to roll to the required plate thickness. The crystal structure of the rolled W or W-Re alloy foil is
Since it is laminated in the horizontal direction on the substrate, it is relatively strong against the external force applied during rolling, but it is suitable to sandwich it between other metals such as stainless steel for rolling. It should be noted that rolling can be performed by cold rolling, and a high quality product having Rmax of 3 μm or less can be obtained. According to the observation of the present inventors, the crystal structure of the alloy foil obtained by the above rolling is 0.05
Traces of fine crystals of ˜5 μm were left.

【0031】以上のように,本発明においては,上記3
つの工程により,例えば,厚さ30μm以上,Rmax 5
μm以下等の非常に平滑なWまたはW−Re合金箔を提
供するものであり,高温下で使用される耐熱材料,また
ガス成分も少ないことから高真空下における耐熱材料と
しても有用である。
As described above, in the present invention, the above 3
Depending on the two processes, for example, thickness of 30μm or more, Rmax 5
It provides a very smooth W or W-Re alloy foil having a thickness of not more than μm, and is useful as a heat-resistant material used at high temperatures and also as a heat-resistant material under high vacuum since it contains few gas components.

【0032】[0032]

【実施例】以下,本発明の実施例について説明する。EXAMPLES Examples of the present invention will be described below.

【0033】(実施例1)基板として直径100mmのス
テンレス板(SUS304)を用い500℃に加熱し,
回転速度10rpm にて回転させた。原料ガスとして,W
6 ガスを100cc/分,H2 ガスを1000cc/分に
て夫々1時間供給し,W層を120μm成膜した。室温
まで徐冷することにより,W層すなわちW箔を基板から
分離することができた。エッチング後の組織を観察した
結果,1層あたり約0.2μmの微細結晶粒の積層組織
となっていることが確認された。なお,SUS304,
及びWの20〜500℃における熱膨張率は各々18.
4×10-6-1,4.6×10-6-1であった。このW
組織を図1に示した。得られたW箔の表面粗さRmaxは
12μmであった。これを厚さ1mmのステンレス板に挟
み冷間圧延を行ない,厚さ100μm,Rmax 2μmの
W箔が得られた。
Example 1 A stainless steel plate (SUS304) having a diameter of 100 mm was used as a substrate and heated to 500 ° C.
It was rotated at a rotation speed of 10 rpm. W as a source gas
F 6 gas was supplied at 100 cc / min and H 2 gas was supplied at 1000 cc / min for 1 hour to form a W layer of 120 μm. By gradually cooling to room temperature, the W layer, that is, the W foil could be separated from the substrate. As a result of observing the structure after etching, it was confirmed that the layered structure had a fine crystal grain of about 0.2 μm per layer. In addition, SUS304,
And the coefficient of thermal expansion of W at 20 to 500 ° C. is 18.
4 × 10 -6 K -1, was 4.6 × 10 -6 K -1. This W
The structure is shown in FIG. The surface roughness Rmax of the obtained W foil was 12 μm. This was sandwiched between 1 mm thick stainless steel plates and cold rolled to obtain a W foil having a thickness of 100 μm and Rmax of 2 μm.

【0034】(実施例2)基板として直径100mm,厚
さ1mmのMo板を用い,実施例1と同様の方法でW箔を
40μm生成した。W,Moの20〜500℃における
熱膨張率は各々4.6×10-6-1,5.7×10-6
-1であり,冷却後,得られたW箔と基板のMo板は分離
しなかった。また形成したW層表面のRmax は5μmで
あった。このW箔を基板であるMoと共に王水中へ浸漬
した。これによりMoを除去し,厚さ40μmのW箔が
得られた。これを厚さ1mmのステンレス板に挟み加工率
50%の冷間圧延を行なった。以上の操作により厚さ2
0μm,Rmax 2μmのW箔が得られた。
Example 2 A Mo foil having a diameter of 100 mm and a thickness of 1 mm was used as a substrate, and 40 μm of W foil was produced in the same manner as in Example 1. The thermal expansion coefficients of W and Mo at 20 to 500 ° C. are 4.6 × 10 −6 K −1 and 5.7 × 10 −6 K, respectively.
It was -1 , and the W foil obtained and the Mo plate of the substrate were not separated after cooling. The Rmax of the formed W layer surface was 5 μm. This W foil was immersed in aqua regia together with Mo that was the substrate. As a result, Mo was removed, and a W foil having a thickness of 40 μm was obtained. This was sandwiched between 1 mm-thick stainless steel plates and cold-rolled at a working rate of 50%. Thickness is 2 by the above operation
A W foil of 0 μm and Rmax of 2 μm was obtained.

【0035】(実施例3)基板として直径100mm,厚
さ1mmの黒鉛板を用い,500℃に加熱し,回転速度1
0rpm にて回転させた。原料ガスとして,WF6 を10
0cc/分,ReF6 ガスを5cc/分,H2 ガスを100
0cc/分にて1.2時間供給し,W−5%Re合金箔を
150μm成膜した。得られたW−5%Re合金箔のR
max は15であった。黒鉛基板を除去するためアルミナ
砥粒を用いブラスト処理を行なった。W−5%Re合金
箔のブラスト処理を行なった面のRmax は7μmであっ
た。得られたW−5%Re合金箔を厚さ1mmのステンレ
ス板に挟み冷間圧延を行なった。以上の操作により厚さ
120μm,Rmax が3μmのW−5%Re合金箔が得
られた。
Example 3 A graphite plate having a diameter of 100 mm and a thickness of 1 mm was used as a substrate, heated to 500 ° C., and rotated at a rotation speed of 1
It was rotated at 0 rpm. As a raw material gas, 10 WF 6
0cc / min, ReF 6 gas 5cc / min, H 2 gas 100
It was supplied at 0 cc / min for 1.2 hours to form a W-5% Re alloy foil in a thickness of 150 μm. R of the obtained W-5% Re alloy foil
max was 15. A blast treatment was performed using alumina abrasive grains to remove the graphite substrate. The Rmax of the blasted surface of the W-5% Re alloy foil was 7 μm. The obtained W-5% Re alloy foil was sandwiched between stainless plates having a thickness of 1 mm and cold rolled. By the above operation, a W-5% Re alloy foil having a thickness of 120 μm and Rmax of 3 μm was obtained.

【0036】[0036]

【発明の効果】以上に説明したように,本発明は,CV
D法によるWまたはW−Re合金層の基板上への形成,
基板と分離,そして圧延加工の3工程により,Wまたは
W−Re合金箔を得ることを提案するものであり,第1
の工程としてCVD法により5〜500μmの薄板を形
成することにより,従来の粉末冶金法に比較し,圧延工
程を大幅に省略することができるものである。これによ
り表面凹凸も少なく,厚さ5〜100μmのWまたはW
−Re合金箔が歩留まりよく得られるとともに,CVD
法によるWまたはW−Re合金であるため高純度の箔が
形成できる。
As described above, according to the present invention, the CV
Formation of a W or W-Re alloy layer on a substrate by the D method,
It is proposed to obtain a W or W-Re alloy foil by three steps of separating from the substrate and rolling.
By forming a thin plate having a thickness of 5 to 500 μm by the CVD method as the step of 1, the rolling step can be largely omitted as compared with the conventional powder metallurgy method. As a result, there are few surface irregularities, and W or W with a thickness of 5 to 100 μm
-Re alloy foil can be obtained with high yield and CVD
Since it is a W or W-Re alloy produced by the method, a high-purity foil can be formed.

【0037】また本発明によれば,高純度のW箔を得る
ことができるから,反射板などの炉内構造部品,ヒート
シンク等の耐熱部品または高真空下における耐熱材料と
して有用である。
Further, according to the present invention, since a high-purity W foil can be obtained, it is useful as a structural member in a furnace such as a reflector, a heat-resistant component such as a heat sink, or a heat-resistant material under high vacuum.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1に係るW層の金属組織を示す
図である。
FIG. 1 is a diagram showing a metallographic structure of a W layer according to a first embodiment of the present invention.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 タングステンまたはタングステン−レニ
ウム合金からなり,5〜500μmの厚さを有し,厚み
方向に対して柱状及び微細な結晶の痕跡のうちの少なく
とも一方の形状の金属組織を備えていることを特徴とす
る高融点金属箔。
1. A metal structure made of tungsten or a tungsten-rhenium alloy, having a thickness of 5 to 500 μm, and having a metal structure of at least one of a columnar shape and traces of fine crystals in the thickness direction. High melting point metal foil characterized by the above.
【請求項2】 請求項1記載の高融点金属箔において,
化学的気相析出法によって形成された金属組織が一面に
平行に積層化されていることを特徴とする高融点金属
箔。
2. The high melting point metal foil according to claim 1,
A refractory metal foil having a metal structure formed by a chemical vapor deposition method, which is laminated parallel to one surface.
【請求項3】 請求項1又は2記載の高融点金属箔にお
いて,5〜100μmの厚さを有し,Rmax は8μm以
下であることを特徴とする高融点金属箔。
3. The high melting point metal foil according to claim 1, which has a thickness of 5 to 100 μm and Rmax of 8 μm or less.
【請求項4】 化学的気相析出法によって基板上に厚さ
5〜500μmのタングステンまたはタングステン−レ
ニウム合金からなる高融点金属層を形成し,圧延して,
少なくとも一表面がRmax 8μm以下の表面粗さ有する
ことを特徴とする高融点金属圧延箔の製造方法。
4. A refractory metal layer made of tungsten or a tungsten-rhenium alloy having a thickness of 5 to 500 μm is formed on a substrate by a chemical vapor deposition method, and is rolled.
At least one surface has a surface roughness of Rmax of 8 μm or less.
【請求項5】 化学的気相析出法によって基板上に厚さ
5〜500μmのタングステンまたはタングステン−レ
ニウム合金からなる高融点金属層を形成し,前記高融点
金属層を前記基板から分離する高融点金属箔の製造方法
であって,前記基板と前記高融点金属層との熱膨張率の
差が6×10-6-1以上であることを特徴とする高融点
金属箔の製造方法。
5. A high melting point metal layer, which is made of tungsten or a tungsten-rhenium alloy and has a thickness of 5 to 500 μm, is formed on the substrate by a chemical vapor deposition method, and the high melting point metal layer is separated from the substrate. A method for producing a metal foil, wherein the difference in coefficient of thermal expansion between the substrate and the refractory metal layer is 6 × 10 -6 K -1 or more.
【請求項6】 化学的気相析出法によって金属製の基板
上に厚さ5〜500μmのタングステンからなる高融点
金属層を形成し,前記基板を弗酸と硝酸の混合液以外の
酸性溶液にて除去することを特徴とする高融点金属箔の
製造方法。
6. A refractory metal layer of tungsten having a thickness of 5 to 500 μm is formed on a metal substrate by a chemical vapor deposition method, and the substrate is exposed to an acidic solution other than a mixed solution of hydrofluoric acid and nitric acid. A method for producing a high-melting point metal foil, which comprises removing the metal foil with a high melting point.
【請求項7】 化学的気相析出法によって黒鉛製基板上
に厚さ5〜500μmのタングステンまたはタングステ
ン−レニウム合金からなる高融点金属層を800℃以下
の温度にて形成し,前記基板を機械的に除去することを
特徴とする高融点金属箔の製造方法。
7. A refractory metal layer made of tungsten or a tungsten-rhenium alloy having a thickness of 5 to 500 μm is formed at a temperature of 800 ° C. or lower on a graphite substrate by a chemical vapor deposition method, and the substrate is machined. A method for producing a high-melting-point metal foil, which is characterized in that it is removed selectively.
JP26727793A 1993-10-26 1993-10-26 High melting point metallic foil and its production Pending JPH07118851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26727793A JPH07118851A (en) 1993-10-26 1993-10-26 High melting point metallic foil and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26727793A JPH07118851A (en) 1993-10-26 1993-10-26 High melting point metallic foil and its production

Publications (1)

Publication Number Publication Date
JPH07118851A true JPH07118851A (en) 1995-05-09

Family

ID=17442606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26727793A Pending JPH07118851A (en) 1993-10-26 1993-10-26 High melting point metallic foil and its production

Country Status (1)

Country Link
JP (1) JPH07118851A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111155069A (en) * 2020-03-24 2020-05-15 昆明理工大学 Preparation method of easily-machined high-purity tungsten plate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55134170A (en) * 1979-04-04 1980-10-18 Oyo Kagaku Kenkyusho Manufacture of deformed tungusten structure
JPS63286574A (en) * 1987-05-18 1988-11-24 Nisshin Steel Co Ltd Vapor deposition method of tungsten by cvd method
JPH01222027A (en) * 1988-02-29 1989-09-05 Showa Denko Kk Tantalum foil and its manufacture
JPH0394061A (en) * 1989-09-07 1991-04-18 Nisshin Steel Co Ltd Production of tungsten crucible
JPH04231471A (en) * 1990-06-26 1992-08-20 L'air Liquide Formation of self-supporting shape of refractory metal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55134170A (en) * 1979-04-04 1980-10-18 Oyo Kagaku Kenkyusho Manufacture of deformed tungusten structure
JPS63286574A (en) * 1987-05-18 1988-11-24 Nisshin Steel Co Ltd Vapor deposition method of tungsten by cvd method
JPH01222027A (en) * 1988-02-29 1989-09-05 Showa Denko Kk Tantalum foil and its manufacture
JPH0394061A (en) * 1989-09-07 1991-04-18 Nisshin Steel Co Ltd Production of tungsten crucible
JPH04231471A (en) * 1990-06-26 1992-08-20 L'air Liquide Formation of self-supporting shape of refractory metal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111155069A (en) * 2020-03-24 2020-05-15 昆明理工大学 Preparation method of easily-machined high-purity tungsten plate

Similar Documents

Publication Publication Date Title
US8231744B2 (en) Tantalum and niobium billets and methods of producing the same
US8715386B2 (en) Process for preparing metal powders having low oxygen content, powders so-produced and uses thereof
AU2006243448B2 (en) Coating process for manufacture or reprocessing of sputter targets and X-ray anodes
JP5341292B2 (en) Niobium sputter element, niobium metal and articles containing the same
JP2001509548A (en) Titanium sputter target and method of manufacturing the same
US20040065546A1 (en) Method to recover spent components of a sputter target
JPH1180942A (en) Ta sputtering target, its production and assembled body
KR101452607B1 (en) Sputtering target
JP5571196B2 (en) Titanium target for sputtering
JPH06264232A (en) Ta sputtering target and its production
JPH07118851A (en) High melting point metallic foil and its production
JPH06158300A (en) High-melting-point metallic target material and its production
CN114438472A (en) Large-size ultra-pure vanadium sputtering target material for integrated circuit chip and preparation process thereof
JP2003293116A (en) HIGHLY CORROSION RESISTANT, HIGH STRENGTH, HIGH TOUGHNESS, NITRIDING-TREATED Mo ALLOY WORKED MATERIAL AND PRODUCTION METHOD THEREFOR
JP2003183761A (en) Tool material for fine working
JP2617154B2 (en) Corrosion-resistant material for molten metal containing zinc and method for producing the same
JP2003277924A (en) Method of producing ruthenium sputtering target and target obtained thereby
JP2020164902A (en) Joint body of target material and backing plate, and method of manufacturing joint body of target material and backing plate
JP7546594B2 (en) Surface modification method for titanium substrate and titanium alloy substrate
JPH06228746A (en) High melting point metallic sputtering target
JPH05214520A (en) Sputtering target for titanium
Alnutt et al. Zirconium Metal, Its Manufacture, Fabrication and Properties
RU2365673C2 (en) High-purity sputtering molybdenum target and method of its production
JPH10323724A (en) Covering form member
CN114525485A (en) Large-size high-entropy high-purity refractory metal alloy sputtering target material and preparation process thereof

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980422