Nothing Special   »   [go: up one dir, main page]

JPH07109324B2 - Heat storage type air conditioner - Google Patents

Heat storage type air conditioner

Info

Publication number
JPH07109324B2
JPH07109324B2 JP7222789A JP7222789A JPH07109324B2 JP H07109324 B2 JPH07109324 B2 JP H07109324B2 JP 7222789 A JP7222789 A JP 7222789A JP 7222789 A JP7222789 A JP 7222789A JP H07109324 B2 JPH07109324 B2 JP H07109324B2
Authority
JP
Japan
Prior art keywords
heat
heat storage
refrigerant
storage
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7222789A
Other languages
Japanese (ja)
Other versions
JPH02251051A (en
Inventor
信英 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP7222789A priority Critical patent/JPH07109324B2/en
Publication of JPH02251051A publication Critical patent/JPH02251051A/en
Publication of JPH07109324B2 publication Critical patent/JPH07109324B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、冷熱を蓄えた蓄熱槽の蓄熱媒体により冷媒の
過冷却を行う蓄熱式空気調和装置に係り、特にその信頼
性向上対策に関する。
Description: TECHNICAL FIELD The present invention relates to a heat storage type air conditioner that supercools a refrigerant by a heat storage medium of a heat storage tank that stores cold heat, and particularly relates to a reliability improvement measure thereof.

(従来の技術) 従来より、例えば特開昭61−125551号公報に開示される
如く、圧縮機、室外熱交換器、減圧機構および室外熱交
換器を順次接続してなる冷凍回路を備えた空気調和装置
において、蓄冷熱可能な蓄熱媒体を内蔵する蓄熱槽と、
該蓄熱槽の内部に冷凍回路中の冷媒と蓄熱媒体との熱交
換を行うための熱交換器とを配置するとともに、該熱交
換器を冷媒回路の液ラインから吸入ライン側へのバイパ
ス路に介設して、通常冷房運転時には冷媒を冷媒回路内
で循環させる一方、蓄熱媒体に冷熱を蓄える蓄冷熱運転
時には冷媒を液ラインからバイパス路を経て吸入ライン
に、その蓄冷熱を利用する蓄冷熱回収冷房運転時には冷
媒を液ラインからバイパス路を経て液ラインに戻すよう
に、それぞれ冷媒の循環経路を切換えることにより、上
記蓄熱槽の共通の熱交換器を利用するようにしたものは
知られている。
(Prior Art) Conventionally, as disclosed in, for example, Japanese Patent Application Laid-Open No. 61-125551, air provided with a refrigeration circuit in which a compressor, an outdoor heat exchanger, a pressure reducing mechanism, and an outdoor heat exchanger are sequentially connected. In the harmony device, a heat storage tank containing a heat storage medium capable of storing cold heat,
A heat exchanger for exchanging heat between the refrigerant in the refrigeration circuit and the heat storage medium is arranged inside the heat storage tank, and the heat exchanger is provided as a bypass path from the liquid line of the refrigerant circuit to the suction line side. During the normal cooling operation, the refrigerant circulates in the refrigerant circuit, while during the cold storage operation that stores the cold heat in the heat storage medium, the refrigerant uses the cold storage heat from the liquid line to the suction line through the bypass passage to use the cold storage heat. It is known to use a common heat exchanger of the heat storage tank by switching the circulation path of each refrigerant so that the refrigerant is returned from the liquid line to the liquid line through the bypass passage during the recovery cooling operation. There is.

(発明が解決しようとする問題点) しかしながら、上記従来のものでは下記のような問題が
ある。
(Problems to be Solved by the Invention) However, the above conventional ones have the following problems.

すなわち、通常冷房運転時と蓄冷熱回収冷房運転時とで
は冷媒の循環経路を冷媒回路側とバイパス路側とに切換
える必要があるために、循環経路の切換時に冷媒の状態
に変動をきたし、制御が不安定になる等、信頼性が低下
する。
That is, in the normal cooling operation and the cold storage heat recovery cooling operation, since it is necessary to switch the refrigerant circulation path between the refrigerant circuit side and the bypass path side, the state of the refrigerant fluctuates when the circulation path is switched, and the control is Reliability is reduced, such as instability.

加えて、蓄冷熱回収冷房運転時に、蓄冷熱の利用率を必
要に応じて調節することができない。
In addition, the utilization rate of the cold storage heat cannot be adjusted as necessary during the cold storage heat recovery cooling operation.

そこで、蓄冷熱回収用熱交換器だけを蓄熱槽の外部、つ
まり冷媒回路側に設けることが考えられるが、その場
合、蓄熱槽側と冷媒回路側との2箇所に熱交換器が配置
され、冷媒の循環経路をそのそれぞれに切換える必要が
生じるので、構成が複雑になるという問題がある。
Therefore, it is conceivable to provide only the heat exchanger for recovering cold storage heat on the outside of the heat storage tank, that is, on the refrigerant circuit side. In that case, the heat exchangers are arranged at two positions on the heat storage tank side and the refrigerant circuit side, Since it is necessary to switch the circulation path of the refrigerant to each of them, there is a problem that the configuration becomes complicated.

本発明は斯かる点に鑑みてなされたものであり、その目
的は、蓄冷熱用熱交換器と蓄冷熱回収用熱交換器とを共
通化して蓄熱槽外部の冷媒回路に設けることにより、循
環経路の切換に伴なう冷媒状態の変動を抑制して信頼性
の向上を図るとともに、蓄熱槽と蓄冷熱回収用熱交換器
との間の熱移動量の調節により、蓄冷熱利用率の調節を
可能にすることにある。
The present invention has been made in view of such a point, and an object thereof is to provide a cold storage heat exchanger and a cold storage heat recovery heat exchanger in common in a refrigerant circuit outside the heat storage tank, thereby circulating the heat. Controls the fluctuation of the refrigerant state due to the switching of the route to improve reliability, and adjusts the heat transfer rate between the heat storage tank and the heat exchanger for recovery of cold storage heat to adjust the rate of utilization of cold storage heat. Is to enable.

(問題点を解決するための手段) 上記目的を達成するため第1の解決手段は、第1図〜第
3図に示すように、圧縮機(1)、熱源側熱交換器
(2)、主減圧機構(3)及び利用側熱交換器(4)を
冷媒配管(6)で順次接続してなる冷媒回路(7)と、
蓄冷熱可能な蓄熱材を貯溜する蓄熱槽(9)とを備えた
蓄熱式空気調和装置を対象とする。
(Means for Solving Problems) A first solving means for achieving the above object is, as shown in FIGS. 1 to 3, a compressor (1), a heat source side heat exchanger (2), A refrigerant circuit (7) in which the main decompression mechanism (3) and the utilization side heat exchanger (4) are sequentially connected by a refrigerant pipe (6),
A heat storage type air conditioner provided with a heat storage tank (9) for storing a heat storage material capable of storing cold heat.

そして、上記冷媒回路(7)の熱源側熱交換器(2)と
主減圧機構(3)との間に介設され、蓄熱槽(9)の蓄
熱媒体との間で熱交換を行うための蓄熱熱交換器(10)
と、該蓄熱熱交換器(10)と上記蓄熱槽(9)とを熱移
動可能に循環接続する循環路(11)と、該循環路(11)
に介設され、強制的に熱移動させる強制循環手段(12)
と、上記冷媒回路(7)の蓄熱熱交換器(10)と熱源側
熱交換器(2)との間に設けられ、蓄熱熱交換器(10)
における蓄冷熱時に冷媒の減圧を行う蓄冷熱用減圧機構
(13)と、冷媒回路(7)の冷媒を上記蓄冷熱用減圧機
構(13)をバイパスして流通させる第1バイパス路(1
4)と、冷媒回路(7)の冷媒の流れを上記蓄熱用減圧
機構(13)側と第1バイパス路(14)側とに切換える第
1切換手段(15)と、冷媒回路(7)の蓄熱熱交換器
(10)と主減圧機構(3)との間の冷媒配管(6)を吸
入ライン(6b)側に主減圧機構(3)及び利用側熱交換
器(4)をバイパスして接続する第2バイパス路(16)
と、冷媒回路(7)の冷媒の流れを主減圧機構(3)側
と第2バイパス路(16)側とに切換える第2切換手段
(30)とを設けるものとする。
And, it is provided between the heat source side heat exchanger (2) of the refrigerant circuit (7) and the main decompression mechanism (3), and performs heat exchange with the heat storage medium of the heat storage tank (9). Heat storage heat exchanger (10)
And a circulation path (11) that circulates the heat storage heat exchanger (10) and the heat storage tank (9) so that heat can be transferred, and the circulation path (11)
Forced circulation means (12) that is installed in the machine and forcibly transfers heat
And the heat storage heat exchanger (10) of the refrigerant circuit (7) and the heat source side heat exchanger (2).
In the cold storage heat depressurizing mechanism (13) for depressurizing the refrigerant during the cold storage heat, and the first bypass path (1) for circulating the refrigerant in the refrigerant circuit (7) by bypassing the cold storage heat depressurizing mechanism (13).
4), a first switching means (15) for switching the flow of the refrigerant in the refrigerant circuit (7) between the heat storage decompression mechanism (13) side and the first bypass path (14) side, and the refrigerant circuit (7). The refrigerant pipe (6) between the heat storage heat exchanger (10) and the main pressure reducing mechanism (3) is bypassed to the suction line (6b) side by the main pressure reducing mechanism (3) and the use side heat exchanger (4). Second bypass path to connect (16)
And a second switching means (30) for switching the flow of the refrigerant in the refrigerant circuit (7) between the main pressure reducing mechanism (3) side and the second bypass passage (16) side.

さらに、蓄冷熱運転時には、上記強制循環手段(12)を
作動させ、かつ冷媒が畜冷熱用減圧機構(13)で減圧さ
れ蓄熱熱交換器(10)で蒸発して第2バイパス路(16)
を経て圧縮機(1)に戻るように、蓄冷熱回収運転時に
は上記強制循環手段(12)を作動させ、かつ冷媒が第1
バイパス路(14)を経て蓄熱熱交換器(10)で過冷却さ
れ利用側熱交換器(4)で蒸発して圧縮機(1)に戻る
ように、通常冷房運転時には、上記強制循環手段(12)
を停止させ、かつ冷媒が上記蓄冷熱回収運転時と同様に
循環するように、上記強制循環手段(12)並びに第1及
び第2切換手段(15),(30)を制御する運転制御手段
(20)を設ける構成としたものである。
Further, during the cold storage heat operation, the forced circulation means (12) is operated, and the refrigerant is depressurized by the storage heat depressurization mechanism (13) and evaporated in the heat storage heat exchanger (10) and then the second bypass passage (16).
The forced circulation means (12) is operated during the cold heat recovery operation so that the refrigerant returns to the compressor (1) via the first
During the normal cooling operation, the forced circulation means (such as the above-mentioned forced circulation means () so as to be supercooled in the heat storage heat exchanger (10) via the bypass passage (14) and evaporated in the utilization side heat exchanger (4) to return to the compressor (1). 12)
Operation control means for controlling the forced circulation means (12) and the first and second switching means (15), (30) so that the refrigerant is circulated in the same manner as during the cold storage heat recovery operation. 20) is provided.

第2の解決手段は、上記第1の解決手段における強制循
環手段(12)を熱移動量の調節可能に構成し、運転制御
手段(20)を、蓄冷熱回収運転時、運転条件に応じた熱
移動量にするよう上記強制循環手段(12)を制御するよ
うに構成したものである。
In the second solution means, the forced circulation means (12) in the first solution means is configured so that the amount of heat transfer can be adjusted, and the operation control means (20) is adapted to the operation condition during the cold heat recovery operation. The forced circulation means (12) is configured to control the heat transfer amount.

第3の解決手段は、上記第1又は第2の解決手段におい
て、蓄熱材を水とし、蓄熱槽(9)に水と熱交換媒体と
の熱交換により水を製氷する製氷コイル(19)を設け、
循環路(11)を蓄熱熱交換器(10)と製氷コイル(19)
とを接続するものとする。
A third solving means is the above first or second solving means, wherein the heat storage material is water, and the heat storage tank (9) is provided with an ice making coil (19) for making water by heat exchange between the water and the heat exchange medium. Provided,
The circulation path (11) is connected to the heat storage heat exchanger (10) and the ice making coil (19).
Shall be connected.

そして、上記製氷コイル(19)と蓄熱熱交換器(10)と
の間で循環路(11)を介してブライン等の熱交換媒体が
循環し、該熱交換媒体により冷媒と水との間の熱移動を
するように構成したものである。
Then, a heat exchange medium such as brine circulates between the ice making coil (19) and the heat storage heat exchanger (10) via the circulation path (11), and the heat exchange medium causes the heat exchange medium between the refrigerant and the water to flow. It is configured to transfer heat.

第4の解決手段は、上記第1又は第2の解決手段におい
て、蓄熱槽(9)に、潜熱蓄熱材を有するカプセル(2
1)を内蔵し、循環路(11)を蓄熱熱交換器(10)と蓄
熱槽(9)とを接続する往路(11a)と復路(11b)とで
構成する。
A fourth solving means is the capsule (2) having the latent heat storage material in the heat storage tank (9) according to the first or second solving means.
1) is built in, and the circulation path (11) is constituted by a forward path (11a) and a return path (11b) that connect the heat storage heat exchanger (10) and the heat storage tank (9).

そして、蓄熱槽(9)と蓄熱熱交換器(10)との間で循
環路(11)を介してブライン等の熱交換媒体が循環し、
該熱交換媒体により冷媒と潜熱蓄熱材との間の熱移動を
するように構成したものである。
Then, a heat exchange medium such as brine circulates between the heat storage tank (9) and the heat storage heat exchanger (10) via the circulation path (11),
The heat exchange medium is configured to transfer heat between the refrigerant and the latent heat storage material.

(作用) 以上の構成により、請求項(1)の発明では、運転制御
手段(20)により、第1,第2切換手段(15),(30)に
よる回路接続の切換をすることなく、強制循環手段(1
2)による蓄熱槽(9)から蓄熱熱交換器(10)への熱
移動の有無だけで、通常冷房運転と蓄冷熱回収冷房運転
との切換えが行われる。すなわち、冷媒の循環経路が切
換えられないので、冷媒の状態の変動が生じることな
く、信頼性が向上することになる。
(Operation) With the above configuration, in the invention of claim (1), the operation control means (20) does not force the circuit connection by the first and second switching means (15) and (30) to force the operation. Circulation means (1
The normal cooling operation and the cold storage heat recovery cooling operation are switched only by the presence or absence of heat transfer from the heat storage tank (9) to the heat storage heat exchanger (10) by 2). That is, since the circulation path of the refrigerant cannot be switched, the state of the refrigerant does not change and the reliability is improved.

請求項(2)の発明では、上記請求項(1)の発明にお
ける蓄冷熱回収冷房運転時に、運転制御手段(20)によ
り、循環路(11)の強制循環手段(12)の熱移動量が調
節され、蓄熱槽(9)の蓄冷熱の利用率が調節される。
したがって、室内側の要求能力や蓄冷熱の残量等に応じ
て蓄冷熱の取り出し量が制御され、運転効率が向上する
ことになる。
According to the invention of claim (2), the heat transfer amount of the forced circulation means (12) of the circulation path (11) is controlled by the operation control means (20) during the cold storage heat recovery cooling operation in the invention of claim (1). The utilization rate of the cold storage heat of the heat storage tank (9) is adjusted.
Therefore, the taken-out amount of the cold storage heat is controlled according to the required capacity on the indoor side, the remaining amount of the cold storage heat, and the like, and the operation efficiency is improved.

請求項(3)の発明では、上記請求項(1)又は(2)
の発明の作用において、循環路(11)にブライン等の熱
交換媒体が流通し、該熱交換媒体を介して蓄熱槽(9)
と蓄熱熱交換器(10)との間の熱移動が行われる。そし
て、製氷コイル(19)により、蓄冷熱冷房運転時には蓄
熱槽(9)内の水が製氷され、顕熱だけでなく潜熱を利
用した蓄冷熱が行われるので、大きな蓄冷熱量が確保さ
れることになる。
In the invention of claim (3), the above claim (1) or (2)
In the operation of the invention of claim 1, a heat exchange medium such as brine flows through the circulation path (11), and the heat storage tank (9) is passed through the heat exchange medium.
Heat is transferred between the heat storage heat exchanger (10) and the heat storage heat exchanger (10). The ice-making coil (19) makes ice in the water in the heat-storage tank (9) during the cold-storage heat-cooling operation, so that not only sensible heat but also latent heat is used to store cold heat, so that a large amount of cold storage heat can be secured. become.

請求項(4)の発明では、蓄冷熱運転時には、冷媒との
熱交換により水に付与された冷熱でカプセル(21)内の
潜熱蓄熱材が固化され、製氷コイル等を蓄熱槽(9)に
設けることなく、潜熱を利用した高い蓄冷熱量が確保さ
れるので、簡易な構成でもって高い蓄冷熱量が得られ
る。
In the invention of claim (4), during the cold heat storage operation, the latent heat storage material in the capsule (21) is solidified by the cold heat given to the water by heat exchange with the refrigerant, and the ice making coil or the like is stored in the heat storage tank (9). Since a high amount of cold storage heat using latent heat is secured without providing, a high amount of cold storage heat can be obtained with a simple configuration.

(実施例) 以下、本発明の実施例について、図面に基づき説明す
る。
(Example) Hereinafter, the Example of this invention is described based on drawing.

第1図は請求項(1)及び(2)の発明を適用した第1
実施例に係る冷房専用の蓄熱式空気調和装置の全体構成
を示し、(1)は圧縮機、(2)は室外に配置され、上
記圧縮機(1)からの吐出冷媒を凝縮する凝縮器として
機能する熱源側熱交換器、(3)は液冷媒を減圧する主
減圧機構としての第1膨張弁、(4)は室内に配置さ
れ、蒸発器として機能する利用側熱交換器、(5)は吸
入冷媒中の液冷媒を除去するためのアキュムレータであ
って、上記各機器(1)〜(5)は冷媒配管(6)によ
り冷媒の流通可能に順次接続され、室外空気との熱交換
により得た冷熱を室内空気に付与する冷媒回路が構成さ
れている。
FIG. 1 is a first example to which the inventions of claims (1) and (2) are applied.
The whole structure of the heat storage type air conditioner for exclusive use of the cooling which concerns on an Example is shown, (1) is a compressor, (2) is arrange | positioned outdoors and as a condenser which condenses the refrigerant | coolant discharged from the said compressor (1). A functioning heat source side heat exchanger, (3) a first expansion valve as a main decompression mechanism for decompressing a liquid refrigerant, (4) an indoor side heat utilization side heat exchanger functioning as an evaporator, (5) Is an accumulator for removing the liquid refrigerant in the suction refrigerant, and the above-mentioned devices (1) to (5) are sequentially connected to each other through a refrigerant pipe (6) so that the refrigerant can flow, and by heat exchange with outdoor air. A refrigerant circuit that applies the obtained cold heat to the indoor air is configured.

そして、装置には、蓄熱材としての水を貯溜してなる蓄
熱槽(9)が配置され、上記主冷媒回路(7)の熱源側
熱交換器(2)と第1膨張弁(3)との間には、上記蓄
熱槽(9)の水との間で熱交換を行うための蓄熱熱交換
器(10)が介設されていて、該蓄熱熱交換器(10)と蓄
熱槽(9)との間には、往路(11a)と復路(11b)とか
らなり、水の循環による熱移動可能な循環路(11)が設
けられている。そして、上記往路(11a)には、水を循
環させて強制的に熱移動させる強制循環手段としてのポ
ンプ(12)が介設されている。
And the heat storage tank (9) which stores water as a heat storage material is arrange | positioned at an apparatus, The heat-source side heat exchanger (2) of the said main refrigerant circuit (7), and the 1st expansion valve (3). A heat storage heat exchanger (10) for exchanging heat with the water of the heat storage tank (9) is interposed between the heat storage tank (9) and the heat storage tank (9). ) With a forward path (11a) and a return path (11b), a circulation path (11) capable of heat transfer by water circulation is provided. A pump (12) as a forced circulation means that circulates water to forcibly transfer heat is interposed in the outward path (11a).

また、主冷媒回路(7)の上記蓄熱熱交換器(10)と熱
源側熱交換器(2)との間には、蓄冷熱運転時に冷媒の
減圧を行う蓄冷熱用減圧機構としての第2膨張弁(13)
が設けられていて、該第2膨張弁(13)の前後で主冷媒
回路(7)の冷媒を上記第2膨張弁(13)をバイパスし
て流通させる第1バイパス路(14)が設けられている。
そして、この第1バイパス路(14)には、主冷媒回路
(7)の冷媒の流れを上記第2膨張弁(13)側と第1バ
イパス路(14)側とに切換える第1切換手段としての第
1電磁開閉弁(15)が介設されている。
In addition, between the heat storage heat exchanger (10) and the heat source side heat exchanger (2) of the main refrigerant circuit (7), a second cold storage heat reducing mechanism for reducing the pressure of the refrigerant during the cold storage heat operation is provided. Expansion valve (13)
And a first bypass passage (14) for allowing the refrigerant in the main refrigerant circuit (7) to flow before and after the second expansion valve (13) by bypassing the second expansion valve (13). ing.
The first bypass passage (14) serves as first switching means for switching the flow of the refrigerant in the main refrigerant circuit (7) between the second expansion valve (13) side and the first bypass passage (14) side. The first solenoid on-off valve (15) is interposed.

一方、主冷媒回路(7)の蓄熱熱交換器(10)と第1膨
張弁(3)との間の冷媒配管(6a)を吸入ライン(6b)
側に第1膨張弁(3)及び利用側熱交換器(4)をバイ
パスして接続する第2バイパス路(16)が設けられてい
て、該第2バイパス路(16)に、第2バイパス路(16)
を開閉する第2開閉弁(17)が介設されている。さら
に、主冷媒回路(7)の第2バイパス路(16)との接続
部と上記第1膨張弁(3)との間には、主冷媒回路
(7)を開閉するための第3開閉弁(18)が介設されて
いて、上記第2開閉弁(17)及び第3開閉弁(18)によ
り、主冷媒回路(7)の冷媒の流れを第1膨張弁(3)
側と第2バイパス路(16)側とに切換える第2切換手段
(30)が構成されている。
On the other hand, the refrigerant pipe (6a) between the heat storage heat exchanger (10) of the main refrigerant circuit (7) and the first expansion valve (3) is connected to the suction line (6b).
A second bypass passage (16) for bypassing and connecting the first expansion valve (3) and the utilization side heat exchanger (4) is provided on the side, and the second bypass passage (16) has a second bypass passage. Road (16)
A second opening / closing valve (17) for opening and closing is installed. Further, a third opening / closing valve for opening / closing the main refrigerant circuit (7) is provided between the connection portion of the main refrigerant circuit (7) with the second bypass passage (16) and the first expansion valve (3). (18) is interposed, and the flow of the refrigerant in the main refrigerant circuit (7) is made to flow through the first expansion valve (3) by the second on-off valve (17) and the third on-off valve (18).
Second switching means (30) for switching between the side and the side of the second bypass (16).

そして、装置には装置全体の運転を制御する運転制御手
段としてのコントローラ(20)が配置されている。
A controller (20) as an operation control means for controlling the operation of the entire device is arranged in the device.

以下、該コントローラ(20)による運転の制御につい
て、第1図ないし第3図に基づき説明するに、通常冷房
運転時には、第1,第3電磁開閉弁(15)(18)が開き、
第2電磁開閉弁(17)がとじた状態で運転が行われ、第
1図の矢印に示すように、熱源側熱交換器(2)で凝縮
された冷媒が主冷媒回路(7)からいったん第1バイパ
ス路(14)に流れて主冷媒回路(7)に戻り、第1膨張
弁(3)で減圧されて利用側熱交換器(4)で蒸発した
後圧縮機(1)に戻るように循環する。このとき、上記
循環路(11)のポンプ(12)は停止しており、蓄熱槽
(9)と蓄熱熱交換器(10)との間の熱移動は行わない
ようになされている。
Hereinafter, the control of the operation by the controller (20) will be described with reference to FIGS. 1 to 3. During normal cooling operation, the first and third electromagnetic on-off valves (15) (18) open,
The operation is performed with the second electromagnetic on-off valve (17) closed, and the refrigerant condensed in the heat source side heat exchanger (2) is once discharged from the main refrigerant circuit (7) as shown by the arrow in FIG. It flows into the first bypass passage (14), returns to the main refrigerant circuit (7), is decompressed by the first expansion valve (3), is evaporated in the use side heat exchanger (4), and then returns to the compressor (1). Circulate to. At this time, the pump (12) of the circulation path (11) is stopped so that heat is not transferred between the heat storage tank (9) and the heat storage heat exchanger (10).

蓄冷熱運転時には、第1,第3電磁開閉弁(15),(18)
が閉じ、第2電磁開閉弁(17)が開いた状態で運転が行
われ、第2図の矢印に示すように、熱源側熱交換器
(2)で凝縮された冷媒が第2膨張弁(13)で減圧さ
れ、蓄熱熱交換器(10)で蒸発した後、第2バイパス路
(16)から吸入ライン(6b)を経て圧縮機(1)に戻る
ように循環する。このとき、循環路(11)のポンプ(1
2)は作動しており、蓄熱熱交換器(10)で冷媒との熱
交換により、水に付与された冷熱を蓄熱槽(9)に移動
させるようになされている。
During cold heat storage operation, the first and third solenoid on-off valves (15), (18)
Is closed and the second electromagnetic on-off valve (17) is opened, and the refrigerant condensed in the heat source side heat exchanger (2) is transferred to the second expansion valve (17) as shown by the arrow in FIG. After being decompressed in 13) and evaporated in the heat storage heat exchanger (10), it is circulated from the second bypass passage (16) to the compressor (1) via the suction line (6b). At this time, the pump (1
2) is operating, and the cold heat applied to the water is transferred to the heat storage tank (9) by heat exchange with the refrigerant in the heat storage heat exchanger (10).

上記蓄冷熱運転で蓄えた冷熱を冷房運転に利用する蓄冷
熱回収冷房運転時には、第1〜第3電磁開閉弁(15),
(17),(18)の開閉は上記通常冷房運転時と同じにし
て、つまり第3図に示すように、冷媒の循環経路はその
ままで、循環路(11)のポンプ(12)を作動させて運転
が行われ、蓄熱槽(9)の蓄冷熱を蓄熱熱交換器(10)
に移動させて、その冷熱を冷媒に付与することにより、
主冷媒回路(7)の冷媒を過冷却した後、利用側熱交換
器(4)で蒸発させるようにしている。
During the cold storage heat recovery cooling operation in which the cold heat stored in the cold storage operation is used for the cooling operation, the first to third electromagnetic on-off valves (15),
The opening and closing of (17) and (18) are made the same as in the above normal cooling operation, that is, as shown in FIG. 3, the pump (12) of the circulation path (11) is operated while the refrigerant circulation path remains the same. Operation is performed, and the cold storage heat of the heat storage tank (9) is stored in the heat storage heat exchanger (10).
By moving the cold heat to the refrigerant,
After supercooling the refrigerant in the main refrigerant circuit (7), the refrigerant is evaporated in the use side heat exchanger (4).

また、上記蓄冷熱回収冷房運転時、循環路(11)のポン
プ(12)の回転数を上記コントローラ(20)で制御する
ことにより、蓄冷熱の利用率を要求能力、残留蓄冷熱、
運転時刻等の諸条件に応じて調節するようにしている。
Further, during the cold storage heat recovery cooling operation, by controlling the number of rotations of the pump (12) of the circulation path (11) by the controller (20), the utilization rate of the cold storage heat, the required capacity, the residual cold storage heat,
It is adjusted according to various conditions such as driving time.

以上により、請求項(1)の発明では、通常冷房運転と
蓄冷熱回収冷房運転とで同じ各開閉弁(15),(17),
(18)の開閉状態を維持したまま運転が行われる。つま
り、循環路(11)のポンプ(強制循環手段)(12)が作
動すると蓄熱槽(9)から蓄熱熱交換器(10)への熱移
動が行われて蓄熱槽(9)に蓄えられた冷熱が冷媒に付
与されるが、ポンプ(12)が作動しないと蓄熱槽(9)
と蓄熱熱交換器(10)の間の熱移動がないので、蓄熱槽
(9)の蓄冷熱が蓄熱熱交換器(10)で冷媒に付与され
ず、通常冷房運転となるのである。
As described above, according to the invention of claim (1), the same on-off valves (15), (17), and the same in the normal cooling operation and the cold storage heat recovery cooling operation are used.
Operation is performed while maintaining the open / closed state of (18). That is, when the pump (forced circulation means) (12) of the circulation path (11) operates, heat is transferred from the heat storage tank (9) to the heat storage heat exchanger (10) and stored in the heat storage tank (9). Cold heat is applied to the refrigerant, but if the pump (12) does not operate, the heat storage tank (9)
Since there is no heat transfer between the heat storage heat exchanger (10) and the heat storage heat exchanger (10), the heat stored in the heat storage tank (9) is not added to the refrigerant in the heat storage heat exchanger (10), and the normal cooling operation is performed.

すなわち、冷媒の循環経路を切換える必要がないので、
冷媒の状態の変動を生じることなく、運転条件に応じて
蓄冷熱の利用,非利用を選択することができ、よって、
信頼性の向上を図ることができる。
That is, since it is not necessary to switch the circulation path of the refrigerant,
It is possible to select the use or non-use of the cold storage heat according to the operating conditions without changing the state of the refrigerant.
It is possible to improve reliability.

請求項(2)の発明では、上記請求項(1)の発明にお
ける蓄冷熱回収冷房運転時に、循環路(11)のポンプ
(12)の回転数、つまり水の循環量が調節され、蓄熱槽
(9)の蓄冷熱の利用率が調節される。したがって、室
内側の要求能力や蓄冷熱の残量等に応じて蓄冷熱の取り
出し量を制御することができ、ひいては運転効率の向上
を図ることができるのである。
According to the invention of claim (2), the rotational speed of the pump (12) of the circulation path (11), that is, the circulating amount of water is adjusted during the cold storage heat recovery cooling operation in the invention of the above claim (1), and the heat storage tank The utilization rate of the cold storage heat of (9) is adjusted. Therefore, the amount of cold storage heat taken out can be controlled according to the required capacity on the indoor side, the amount of cold storage heat remaining, and the like, which in turn can improve operating efficiency.

次に、請求項(3)の発明に係る第2実施例について説
明する。
Next, a second embodiment according to the invention of claim (3) will be described.

第4図は本実施例における蓄熱槽(9)の構造を示し、
蓄熱槽(9)内には蓄熱材としての水が貯溜されるとと
もに、水を製氷するための製氷コイル(19)が設けられ
ていて、該製氷コイル(19)と上記蓄熱熱交換器(10)
との間に、循環路(11)が設けられている。
FIG. 4 shows the structure of the heat storage tank (9) in this embodiment,
Water as a heat storage material is stored in the heat storage tank (9), and an ice making coil (19) for making water is provided, the ice making coil (19) and the heat storage heat exchanger (10). )
A circulation path (11) is provided between and.

すなわち、循環路(11)にブライン等の熱交換媒体を流
通させて、蓄冷熱運転時には、蓄熱熱交換器(10)で冷
媒との熱交換により得た冷熱をブライン等の熱交換媒体
を介して蓄熱槽(9)側に熱移動させて水を製氷する一
方、蓄冷熱回収冷房運転時には、氷を融解させて取出し
た冷熱を蓄熱熱交換器(10)に移動させて冷媒を過冷却
するようになされている。なお、その他の構成は、上記
第1実施例と同様である。
That is, a heat exchange medium such as brine is circulated in the circulation path (11), and during cold heat storage operation, cold heat obtained by heat exchange with the refrigerant in the heat storage heat exchanger (10) is passed through the heat exchange medium such as brine. Heat is transferred to the heat storage tank (9) side to make water, and during the cold storage heat recovery cooling operation, the cold heat extracted by melting the ice is transferred to the heat storage heat exchanger (10) to supercool the refrigerant. It is done like this. The other configurations are the same as those in the first embodiment.

したがって、請求項(3)の発明では、蓄熱槽(9)内
の製氷コイル(19)により、水を製氷して顕熱だけでな
く、潜熱を利用した蓄冷熱をすることができ、よって、
大きな蓄冷熱量を得ることができる。
Therefore, in the invention of claim (3), the ice making coil (19) in the heat storage tank (9) can make not only sensible heat but also cold storage heat using latent heat by making ice in water.
A large amount of cold storage heat can be obtained.

次に、請求項(4)の発明に係る第3実施例について説
明するに、第5図は、本実施例における蓄熱槽(9)内
の状態を示し、蓄熱槽(9)の水中には水よりも高い融
点を有する潜熱蓄熱材を内包してなる多くのカプセル
(21)が内蔵されていて、循環路(11)を水が循環して
蓄熱槽(9)と蓄熱熱交換器(10)との間の熱移動を行
うようになされている。すなわち、蓄冷熱運転時には、
冷媒との熱交換により水に付与された冷熱でカプセル
(21)内の潜熱蓄熱材を固化させて蓄冷熱し、蓄冷熱回
収冷房運転時には、潜熱蓄熱材を融解させて得た冷熱を
冷媒に付与して冷媒の過冷却を行うようになされてい
る。
Next, the third embodiment according to the invention of claim (4) will be described. FIG. 5 shows the state in the heat storage tank (9) in this embodiment, and A large number of capsules (21) containing a latent heat storage material having a melting point higher than that of water are incorporated, and water circulates in the circulation path (11) to store the heat storage tank (9) and the heat storage heat exchanger (10). ) Is designed to do heat transfer with. That is, during the cold storage operation,
The cold heat given to the water by heat exchange with the refrigerant solidifies the latent heat storage material in the capsule (21) to store the cold heat, and during the cold storage heat recovery cooling operation, the cold heat obtained by melting the latent heat storage material is given to the refrigerant. Then, the refrigerant is supercooled.

したがって、請求項(4)の発明では、潜熱蓄熱材を有
するカプセル(21)を蓄熱槽(9)に内蔵させることに
より、請求項(3)の発明のように、製氷コイル(19)
を蓄熱槽(9)に設けることなく、潜熱を利用した高い
蓄冷熱量を確保することができ、よって、簡易な構成で
もって高い蓄冷熱量を維持することができる利点があ
る。
Therefore, in the invention of claim (4), the capsule (21) having the latent heat storage material is incorporated in the heat storage tank (9), so that the ice making coil (19) can be obtained as in the invention of claim (3).
Is not provided in the heat storage tank (9), a high amount of cold storage heat utilizing latent heat can be secured, and therefore, there is an advantage that a high amount of cold storage heat can be maintained with a simple configuration.

(発明の効果) 以上説明したように、請求項(1)の発明によれば、蓄
熱材を貯溜する蓄熱槽を配置した蓄熱式空気調和装置に
おいて、冷媒回路中に蓄冷熱と蓄冷熱回収とを共に行う
蓄熱熱交換器を介説し、蓄熱槽と蓄熱熱交換器との間を
循環路を介して熱移動させるようにしたので、通常冷房
運転と蓄冷熱回収冷房運転とで冷媒の循環経路を切換え
る必要がなく、よって、冷媒の状態の変動を有効に防止
して、信頼性の向上を図ることができる。
(Effect of the invention) As described above, according to the invention of claim (1), in the heat storage type air conditioner in which the heat storage tank for storing the heat storage material is arranged, the cold heat storage and the cold heat recovery are performed in the refrigerant circuit. The heat storage heat exchanger that performs both of the above is used to transfer heat between the heat storage tank and the heat storage heat exchanger through the circulation path.Therefore, the refrigerant is circulated in the normal cooling operation and the cold storage heat recovery cooling operation. Since it is not necessary to switch the path, it is possible to effectively prevent the change of the state of the refrigerant and improve the reliability.

請求項(2)の発明によれば、上記請求項(1)の発明
において、蓄冷熱回収冷房運転時、循環路における熱移
動量を運転条件に応じて調節するようにしたので、要求
能力や蓄冷熱の残量に応じた蓄冷熱の利用率を制御する
ことができ、運転効率の向上を図ることができる。
According to the invention of claim (2), in the invention of claim (1), the heat transfer amount in the circulation path is adjusted according to the operating condition during the cold storage heat recovery cooling operation. The utilization rate of the cold storage heat can be controlled according to the remaining amount of the cold storage heat, and the operation efficiency can be improved.

請求項(3)の発明によれば、上記請求項(1)又は
(2)の発明において、蓄熱材として水を使用するとと
もに蓄熱槽内に製氷コイルを設けて、製氷コイルと蓄熱
熱交換器との間の循環路にブライン等の熱交換媒体を流
通させ、熱交換媒体を介して蓄熱槽と蓄熱熱交換器との
間を熱移動させるようにしたので、水の製氷による潜熱
を利用した高い蓄冷熱量を確保することができる。
According to the invention of claim (3), in the invention of claim (1) or (2), water is used as the heat storage material, and an ice making coil is provided in the heat storage tank, and the ice making coil and the heat storage heat exchanger are provided. Since a heat exchange medium such as brine was circulated in the circulation path between and, and heat was transferred between the heat storage tank and the heat storage heat exchanger via the heat exchange medium, latent heat of ice making of water was used. A high amount of cold storage heat can be secured.

請求項(4)の発明によれば、上記請求項(1)又は
(1)の発明において、蓄熱槽内に潜熱蓄熱材を内包す
るカプセルを内蔵させ、循環路を介して蓄熱槽と蓄熱熱
交換器との間で水を循環させるようにしたので、蓄熱槽
内に製氷コイル等を設けることなく、簡易な構成で潜熱
を利用した高い蓄冷熱量を確保することができる。
According to the invention of claim (4), in the invention of claim (1) or (1), a capsule containing a latent heat storage material is built in the heat storage tank, and the heat storage tank and the heat storage heat are provided via a circulation path. Since water is circulated between the heat exchanger and the heat storage tank, it is possible to secure a high amount of cold heat storage using latent heat with a simple structure without providing an ice making coil or the like in the heat storage tank.

【図面の簡単な説明】[Brief description of drawings]

図面は本発明の実施例を示し、第1図〜第3図は空気調
和装置の全体構成と各運転モードにおける冷媒の循環経
路とを示す冷媒配管系統図であって、第1図は通常冷房
運転、第2図は蓄冷熱運転、第3図は蓄冷熱回収運転に
おける図、第4図は第2実施例における蓄熱槽の構成を
示す縦断面図、第5図は第3実施例における蓄熱槽の縦
断面図である。 1……圧縮機 2……熱源側熱交換器 3……第1電動膨張弁(主減圧機構) 4……利用側熱交換器 6……冷媒配管 6b……吸入ライン 7……主冷媒回路 9……蓄熱槽 10……蓄熱熱交換器 11……循環路 11a……往路 11b……復路 12……ポンプ(強制循環手段) 13……第2電動膨張弁(減圧機構) 14……第1バイパス路 15……第1電磁開閉弁(第1切換手段) 16……第2バイパス路 19……製氷コイル 20……コントローラ(運転制御手段) 21……カプセル 30……第2切換手段
The drawings show an embodiment of the present invention, and FIGS. 1 to 3 are refrigerant piping system diagrams showing the overall configuration of an air conditioner and a refrigerant circulation path in each operation mode, and FIG. 1 is a normal cooling system. Operation, FIG. 2 is a cold storage operation, FIG. 3 is a view in cold storage recovery operation, FIG. 4 is a longitudinal sectional view showing the configuration of the heat storage tank in the second embodiment, and FIG. 5 is heat storage in the third embodiment. It is a longitudinal cross-sectional view of the tank. 1 ... Compressor 2 ... Heat source side heat exchanger 3 ... First electric expansion valve (main decompression mechanism) 4 ... Utilization side heat exchanger 6 ... Refrigerant piping 6b ... Suction line 7 ... Main refrigerant circuit 9 ...... Heat storage tank 10 ...... Heat storage heat exchanger 11 ...... Circulation path 11a ...... Forward path 11b ...... Return path 12 ...... Pump (forced circulation means) 13 ...... Second electric expansion valve (pressure reducing mechanism) 14 ...... 1 by-pass passage 15 …… first electromagnetic on-off valve (first switching means) 16 …… second bypass passage 19 …… ice making coil 20 …… controller (operation control means) 21 …… capsule 30 …… second switching means

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】圧縮機(1)、熱源側熱交換器(2)、主
減圧機構(3)及び利用側熱交換器(4)を冷媒配管
(6)で順次接続してなる冷媒回路(7)と、蓄冷熱可
能な蓄熱材を貯溜する蓄熱槽(9)とを備えた蓄熱式空
気調和装置において、 上記冷媒回路(7)の熱源側熱交換器(2)と主減圧機
構(3)との間に介設され、蓄熱槽(9)の蓄熱媒体と
の間で熱交換を行うための蓄熱熱交換器(10)と、該蓄
熱熱交換器(10)と上記蓄熱槽(9)とを熱移動可能に
循環接続する循環路(11)と、該循環路(11)に介設さ
れ、強制的に熱移動させる強制循環手段(12)と、上記
冷媒回路(7)の蓄熱熱交換器(10)と熱源側熱交換器
(2)との間に設けられ、蓄熱熱交換器(10)における
蓄冷熱時に冷媒の減圧を行う蓄冷熱用減圧機構(13)
と、冷媒回路(7)の冷媒を上記蓄冷熱用減圧機構(1
3)をバイパスして流通させる第1バイパス路(14)
と、冷媒回路(7)の冷媒の流れを上記蓄熱用減圧機構
(13)側と第1バイパス路(14)側とに切換える第1切
換手段(15)と、冷媒回路(7)の蓄熱熱交換器(10)
と主減圧機構(3)との間の冷媒配管(6)を吸入ライ
ン(6b)側に主減圧機構(3)及び利用側熱交換器
(4)をバイパスして接続する第2バイパス路(16)
と、冷媒回路(7)の冷媒の流れを主減圧機構(3)側
と第2バイパス路(16)側とに切換える第2切換手段
(30)とを備えるとともに、 蓄冷熱運転時には、上記強制循環手段(12)を作動さ
せ、かつ冷媒が蓄冷熱用減圧機構(13)で減圧され蓄熱
熱交換器(10)で蒸発して第2バイパス路(16)を経て
圧縮機(1)に戻るように、蓄冷熱回収運転時には上記
強制循環手段(12)を作動させ、かつ冷媒が第1バイパ
ス路(14)を経て蓄熱熱交換器(10)で過冷却され利用
側熱交換器(4)で蒸発して圧縮機(1)に戻るよう
に、通常冷房運転時には、上記強制循環手段(12)を停
止させ、かつ冷媒が上記蓄冷熱回収運転時と同様に循環
するように、上記強制循環手段(12)並びに第1及び第
2切換手段(15),(30)を制御する運転制御手段(2
0)を備えたことを特徴とする蓄熱式空気調和装置。
1. A refrigerant circuit (1) in which a compressor (1), a heat source side heat exchanger (2), a main pressure reducing mechanism (3) and a use side heat exchanger (4) are sequentially connected by a refrigerant pipe (6). 7) and a heat storage tank (9) for storing a heat storage material capable of storing cold heat, in a heat storage type air conditioner, wherein the heat source side heat exchanger (2) of the refrigerant circuit (7) and the main pressure reducing mechanism (3). ), A heat storage heat exchanger (10) for exchanging heat with the heat storage medium of the heat storage tank (9), the heat storage heat exchanger (10) and the heat storage tank (9). ) And a circulation path (11) for circulatory connection so that heat can be transferred, forced circulation means (12) interposed in the circulation path (11) for forcibly transferring heat, and heat storage in the refrigerant circuit (7). A cold storage heat reducing mechanism (13) provided between the heat exchanger (10) and the heat source side heat exchanger (2) for reducing the pressure of the refrigerant during cold storage heat in the heat storage heat exchanger (10).
And the refrigerant in the refrigerant circuit (7) to store the cold storage heat reducing mechanism (1
First bypass path (14) for bypassing 3) for circulation
And a first switching means (15) for switching the flow of the refrigerant in the refrigerant circuit (7) to the heat storage decompression mechanism (13) side and the first bypass path (14) side, and the heat storage heat of the refrigerant circuit (7). Exchanger (10)
A second bypass passage (6) for connecting the refrigerant pipe (6) between the main decompression mechanism (3) and the main decompression mechanism (3) to the suction line (6b) side by bypassing the main decompression mechanism (3) and the use side heat exchanger (4). 16)
And a second switching means (30) for switching the flow of the refrigerant in the refrigerant circuit (7) between the main pressure reducing mechanism (3) side and the second bypass path (16) side, and during the cold storage heat operation, the forced operation is performed. The circulation means (12) is operated, and the refrigerant is decompressed by the decompression mechanism (13) for heat storage, evaporated in the heat storage heat exchanger (10) and returned to the compressor (1) via the second bypass passage (16). As described above, during the cold storage heat recovery operation, the forced circulation means (12) is operated, and the refrigerant is supercooled in the heat storage heat exchanger (10) through the first bypass passage (14) and is used side heat exchanger (4). In order to evaporate and return to the compressor (1), the forced circulation means (12) is stopped during the normal cooling operation, and the forced circulation is performed so that the refrigerant circulates in the same manner as during the cold heat recovery operation. Operation control means (2) for controlling the means (12) and the first and second switching means (15), (30)
A heat storage type air conditioner characterized by being equipped with 0).
【請求項2】強制循環手段(12)は熱移動量の調節可能
に構成されており、運転制御手段(20)は、蓄冷熱回収
運転時、運転条件に応じた熱移動量にするよう上記強制
循環手段(12)を制御することを特徴とする請求項
(1)記載の蓄熱式空気調和装置。
2. The forced circulation means (12) is constructed so that the amount of heat transfer can be adjusted, and the operation control means (20) sets the amount of heat transfer according to the operating conditions during the cold storage heat recovery operation. The heat storage type air conditioner according to claim 1, wherein the forced circulation means (12) is controlled.
【請求項3】蓄熱材は水であり、蓄熱槽(9)には水と
熱交換媒体との熱交換により水を製氷する製氷コイル
(19)が設けられ、循環路(11)は蓄熱熱交換器(10)
と製氷コイル(19)とを接続するものであり、上記製氷
コイル(19)と蓄熱熱交換器(10)との間で循環路(1
1)を介してブライン等の熱交換媒体が循環し、該熱交
換媒体により冷媒と水との間の熱移動をするように構成
されていることを特徴とする請求項(1)又は(2)記
載の蓄熱式空気調和装置
3. The heat storage material is water, the heat storage tank (9) is provided with an ice making coil (19) for making water by heat exchange between the water and the heat exchange medium, and the circulation path (11) stores the heat storage heat. Exchanger (10)
And an ice making coil (19) are connected, and a circulation path (1) is provided between the ice making coil (19) and the heat storage heat exchanger (10).
A heat exchange medium such as brine is circulated through 1), and the heat exchange medium is configured to transfer heat between a refrigerant and water. ) Heat storage type air conditioner
【請求項4】蓄熱槽(9)には、潜熱蓄熱材を有するカ
プセル(21)が内蔵され、循環路(11)は蓄熱熱交換器
(10)と蓄熱槽(9)とを接続する往路(11a)と復路
(11b)とからなり、蓄熱槽(9)と蓄熱熱交換器(1
0)との間で循環路(11)を介してブライン等の熱交換
媒体が循環し、該熱交換媒体により冷媒と潜熱蓄熱材と
の間の熱移動をするように構成されていることを特徴と
する請求項(1)又は(2)記載の蓄熱式空気調和装
置。
4. A heat storage tank (9) contains a capsule (21) containing a latent heat storage material, and a circulation path (11) connects a heat storage heat exchanger (10) with the heat storage tank (9). (11a) and the return path (11b), the heat storage tank (9) and the heat storage heat exchanger (1
0) and a heat exchange medium such as brine circulate through the circulation path (11), and the heat exchange medium causes heat transfer between the refrigerant and the latent heat storage material. The heat storage type air conditioner according to claim (1) or (2).
JP7222789A 1989-03-24 1989-03-24 Heat storage type air conditioner Expired - Lifetime JPH07109324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7222789A JPH07109324B2 (en) 1989-03-24 1989-03-24 Heat storage type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7222789A JPH07109324B2 (en) 1989-03-24 1989-03-24 Heat storage type air conditioner

Publications (2)

Publication Number Publication Date
JPH02251051A JPH02251051A (en) 1990-10-08
JPH07109324B2 true JPH07109324B2 (en) 1995-11-22

Family

ID=13483167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7222789A Expired - Lifetime JPH07109324B2 (en) 1989-03-24 1989-03-24 Heat storage type air conditioner

Country Status (1)

Country Link
JP (1) JPH07109324B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5386709A (en) * 1992-12-10 1995-02-07 Baltimore Aircoil Company, Inc. Subcooling and proportional control of subcooling of liquid refrigerant circuits with thermal storage or low temperature reservoirs
JP6020549B2 (en) * 2014-12-26 2016-11-02 ダイキン工業株式会社 Thermal storage air conditioner
JP2016125730A (en) * 2014-12-26 2016-07-11 ダイキン工業株式会社 Heat storage type air conditioner
JP2018155452A (en) * 2017-03-17 2018-10-04 ダイキン工業株式会社 Freezing device

Also Published As

Publication number Publication date
JPH02251051A (en) 1990-10-08

Similar Documents

Publication Publication Date Title
CN107110570A (en) Heat storage type air conditioner
US5381671A (en) Air conditioning apparatus with improved ice storage therein
JP3882056B2 (en) Refrigeration air conditioner
JP5145026B2 (en) Air conditioner
JPH07109324B2 (en) Heat storage type air conditioner
JP2001263848A (en) Air conditioner
JP3284582B2 (en) Heat storage type air conditioner and cool storage device for air conditioner
JP4650086B2 (en) Thermal storage heat recovery device
JP2004143951A (en) Scroll compressor
KR20130081396A (en) A combined refrigerating and air conditioning system
JPS58124138A (en) Controlling method of driving auxiliary heat source in regenerative air conditioner
JP2006336949A (en) Heat storage type air conditioner
JP2003329316A (en) Cold generation system
JP2924460B2 (en) Air conditioner
JP3253276B2 (en) Thermal storage type air conditioner and operation method thereof
JP2800573B2 (en) Air conditioner
KR100727124B1 (en) Thermal storage airconditioner
JPH0788987B2 (en) Heat storage type air conditioner
JPS6032534Y2 (en) Heat recovery air conditioner
JPH10170086A (en) Air conditioner
JP2000035255A (en) Thermal storage type air conditioner
JPH0244154A (en) Operating control device for heat storage type air conditioner
JPH074768A (en) Thermal storage type air-conditioning apparatus
JP2006342994A (en) Ice heat storage air conditioner
JPH01167543A (en) Ice regenerative air-conditioning system