Nothing Special   »   [go: up one dir, main page]

JPH07107588A - Method for constructing sound source - Google Patents

Method for constructing sound source

Info

Publication number
JPH07107588A
JPH07107588A JP5299167A JP29916793A JPH07107588A JP H07107588 A JPH07107588 A JP H07107588A JP 5299167 A JP5299167 A JP 5299167A JP 29916793 A JP29916793 A JP 29916793A JP H07107588 A JPH07107588 A JP H07107588A
Authority
JP
Japan
Prior art keywords
sound source
audible
signal
sound
focus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5299167A
Other languages
Japanese (ja)
Other versions
JP3356847B2 (en
Inventor
Yoshimichi Yonezawa
義道 米沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP29916793A priority Critical patent/JP3356847B2/en
Publication of JPH07107588A publication Critical patent/JPH07107588A/en
Application granted granted Critical
Publication of JP3356847B2 publication Critical patent/JP3356847B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Circuit For Audible Band Transducer (AREA)

Abstract

PURPOSE:To provide a required acoustic signal without sending the acoustic signal to the unrequired space and without the physical restriction by emitting the soundwave corresponding to the audible modulation signal by taking the space corresponding to the focusing position of the rotating ellipsoid as a sound source. CONSTITUTION:An originating ultrasonic transducer 3 is installed on the inside focus 2 of a part 1 of a rotating body. The ultrasonic output of the transducer 3 is emitted towards the part 1 of the rotating ellipsoid. Then, it is converted into another focus 8 and it is further converged and diverged. In passing the route, the ultrasonic wave takes the audible signal whose amplitude is modulated as the isolate sound source gradually and it is separated and generated. Thus, the audible soundwave is included in the direction shown by the doted lines. Thus, when a listner 9 is in the divergence area after the convergence, he hears the soundwave as the sound source of the sound wave is in the focus 8. In this case, the audible sound wave is not beyond the doted line range and the listner 9 does not hear the sound source other than the focus 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は特徴ある可聴域信号の音
源を源発音体以外の空間に構成する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of constructing a sound source of a characteristic audible range signal in a space other than a sound source.

【0002】[0002]

【従来の技術】従来可聴域の音響信号を発生させる方式
としてはスピーカ等のトランスジューサを駆動する方法
が普通である。このため音の発生する位置即ち音源はそ
の振動板の位置となる。ステレオ受聴方式では二つのス
ピーカの中間部位置で鳴っているように聞こえるがこれ
は感覚的な音源位置であってその位置に音源がある訳で
はない。またスピーカを球面上に配列してその中心部に
音波を収束することもできるが、実際の配列スピーカは
それぞれ球の中心方向へ音波を送るだけでなく、それ以
外の方向にも音波を放射するので球面の中心を音源とす
るはっきりした音源効果は得られない。また一定の方向
にのみ音波を送るビーム状音波形成方法については、特
殊な配列のスピーカと遮蔽板及び駆動方式の工夫によっ
てある程度の効果が得られているが調整や駆動装置が大
がかりとなる。またビーム状可聴音を得るために本発明
と同様の原理を用いて、トランスジューサを平面上に多
数配列する方式が試みられているがトランスジューサの
中心軸上のエネルギーのみを用いるために効率が悪い。
2. Description of the Related Art Conventionally, a method of driving a transducer such as a speaker is generally used as a method of generating an acoustic signal in an audible range. Therefore, the position where the sound is generated, that is, the sound source is the position of the diaphragm. In the stereo listening system, it sounds as if it is sounding at the middle position between the two speakers, but this is a sensory sound source position, and there is no sound source at that position. It is also possible to arrange the speakers on a spherical surface and focus the sound waves on the center of the spherical surface, but the actual array speakers not only send the sound waves toward the center of the sphere, but also radiate the sound waves in other directions. Therefore, a clear sound source effect with the center of the sphere as the sound source cannot be obtained. Also, regarding the beam-shaped sound wave forming method that sends sound waves only in a certain direction, some effects have been obtained by devising the speaker, the shielding plate, and the driving method of a special arrangement, but the adjustment and the driving device become large. Further, a method of arraying a large number of transducers on a plane has been attempted by using the same principle as that of the present invention in order to obtain a beam-shaped audible sound, but the efficiency is poor because only energy on the central axis of the transducer is used.

【0003】[0003]

【発明が解決しようとする課題】本発明は物理的な存在
である発音体の無いところに実際の音源を設置する技術
に関するもので以下のような場合において人間生活の向
上に役立つものである。 (1)従来音波についてはその音源より距離を置いて聴
取することが習慣である。例えば音楽を聴く場合にはし
ばしば部屋の一隅にスピーカを一対設置してかなりの音
響エネルギーを放射させ鑑賞する。このため同部屋の中
には聴取者以外の方向にも音波の伝播が起こり隣室や屋
外あるいは隣家までが音楽の影響を受ける場合がある。
これをなくすためにはヘッドホンの使用も考えられるが
新たな拘束感の発生があり、長時間の使用は難しい。 (2)使用者に用件が伝達されればよい音声を発生する
OA機器の使用なども同室内のその音情報を必要としな
い部分にまで伝わり騒音となる場合がある。 (3)テレビ受聴において個人的な聴取のために部屋中
に受聴音声を拡散させていることも他人にとっては雑音
をまき散らしているとしか取られない場合が在るし、逆
に難聴のひとにとっては個人的に他の人より高レベルの
音響信号が欲しい場合もある。 (4)会議の出席者にメッセイジを伝えたい場合には個
人的な伝令が行く場合が多い。それは個人的に音声信号
を送る方法が無いからである。
SUMMARY OF THE INVENTION The present invention relates to a technique for installing an actual sound source in a place where there is no physical sounding body, and is useful for improving human life in the following cases. (1) It is customary to listen to conventional sound waves at a distance from the sound source. For example, when listening to music, a pair of speakers are often installed in one corner of a room to emit considerable acoustic energy for viewing. Therefore, in the same room, sound waves may propagate in directions other than the listener, and the adjacent room, the outdoors, or even the adjacent house may be affected by the music.
To eliminate this, it is possible to use headphones, but this creates a new feeling of restraint and it is difficult to use for a long time. (2) The use of an OA device that generates a voice that only needs to be communicated to the user may be transmitted to a portion of the room where the sound information is not needed, resulting in noise. (3) When listening to TV, the fact that the received voice is diffused throughout the room for personal listening may only be taken by other people as scattering noise, and conversely for people with hearing loss. May personally want a higher level acoustic signal than others. (4) If you want to convey a message to attendees at a meeting, you often have a personal messenger. This is because there is no way to send a voice signal personally.

【0004】上記の必要例の場合においては、不要な空
間を音響信号で汚す事無く、かつ、肉体的な拘束を受け
ずに必要な音響信号を得る必要がある。このためには、
聞き手の耳のそばに物として存在しない形態の音源を設
置して小さな音量レベル伝達するか、ビーム状の音波を
遠方より聞き手の耳に目がけて送る方式が考えられる。
本発明はそのいずれの方式をも実現しようとするもので
ある。
In the case of the above-mentioned required example, it is necessary to obtain the necessary acoustic signal without contaminating the unnecessary space with the acoustic signal and without being physically restricted. For this,
It is conceivable to install a sound source that does not exist as an object near the listener's ear to transmit a small volume level, or to send a beam-shaped sound wave to the listener's ear from a distance.
The present invention intends to realize either of these methods.

【0005】本発明の原理について述べれば、可聴音域
信号によって振幅変調した超音波領域の電気信号によっ
て駆動した発信用超音波トランスージューサからの超音
波が空中を伝播中に空気の音波に対する非線形特性から
自己復調して該可聴音域信号に対応した音波が発生する
パラメトリックアレイ効果を応用するものである。即
ち、請求項1の具体例である請求項3の場合は、上述の
トランスジューサを回転楕円体の内面の片方(第1)の
焦点に置き、ここから上述の超音波を発生させると回転
楕円体の内面による反射波は全てもう一つ(第2)の焦
点に収束し、その後再び発散して行く。 この経路の間
にパラメトリックアレイ効果によって変調信号の可聴音
域変調信号成分は復調され、この信号に対応した音波が
同様に収束し、発散する。この様子は第2の焦点を音源
とするスピーカと同一の波面となるから、この波面の伝
播領域空間に居る聞き手には可聴音が第2の焦点から聞
こえてくる。また、この可聴音波はその発生が調度可聴
域のスピーカを進行方向にアレイ状に並べたのと同じ効
果で元の超音波の進行方向に鋭い指向性を持つため、収
束性が良く聞き手はこの経路の音のみを聴くことになる
のが特徴である。
To explain the principle of the present invention, a nonlinear characteristic with respect to a sound wave of air is generated while an ultrasonic wave from an ultrasonic transducer for transmission driven by an electric signal in an ultrasonic range amplitude-modulated by an audible sound range signal propagates in the air. It applies the parametric array effect in which a sound wave corresponding to the audible range signal is generated by self-demodulation from. That is, in the case of claim 3 which is a specific example of claim 1, when the transducer is placed at one (first) focal point of the inner surface of the spheroid and the ultrasonic wave is generated from there, the spheroid is generated. All the waves reflected by the inner surface of the laser converge on another (second) focal point and then diverge again. During this path, the audible range modulated signal component of the modulated signal is demodulated by the parametric array effect, and the sound waves corresponding to this signal are similarly converged and diverged. Since this state is the same wavefront as the speaker whose sound source is the second focus, an audible sound is heard from the second focus by the listener in the propagation area space of this wavefront. In addition, this audible sound wave has a sharp directivity in the traveling direction of the original ultrasonic wave with the same effect as that in which the speakers in the audible range of tuning are arranged in an array in the traveling direction. The feature is that only the sound of the route is heard.

【0006】また請求項2の具体例である請求項4の場
合は請求項3の場合における焦点間の距離が極端に遠
く、第2の焦点が無限大の場合であって、第1の焦点か
ら発射して内面で反射した音波は平面波面となってビー
ム状に進行する。このため音波は発散によるエネルギー
の損失が少ない状態で遠方まで届きビーム径の範囲内に
のみ可聴信号を伝達できる。本方式はトランスジューサ
から発生する音響エネルギーを反射面でまとめるために
全て目的の音源として利用できるので効率がよく、特に
上記パラメトリックアレイで発生する可聴音は原理的に
指向性が高いので比較的小さな反射面でその全てをまと
めることができ、トランスジューサを平面上に配列して
ビーム状とする方式より高い効率が得られる。
In the case of claim 4, which is a specific example of claim 2, the distance between the focal points in the case of claim 3 is extremely large, and the second focal point is infinite. Sound waves emitted from the and reflected on the inner surface become a plane wavefront and travel in the form of a beam. For this reason, the sound wave can reach a long distance with a small energy loss due to divergence, and can transmit an audible signal only within the range of the beam diameter. This method is efficient because all of the acoustic energy generated from the transducer can be used as the target sound source because it is collected by the reflecting surface. In particular, the audible sound generated by the parametric array has a high directivity in principle, so it is a relatively small reflection. All of them can be combined in a plane, and a higher efficiency can be obtained than the method of arranging transducers on a plane to form a beam.

【0007】[0007]

【課題を解決するための手段】本発明の構成方法例によ
る音源は音声を含む可聴音波に相当する電気信号によっ
て振幅変調された超音波領域の正弦波電気信号を生成す
る駆動回路と、この信号によって駆動される発信用超音
波トランスジューサと、回転楕円体の内面の二焦点を結
ぶ線に垂直な部分を含むある面積を持った凹面の一部に
よるもので構成され、同回転楕円体の焦点の位置に当た
る空間を音源として可聴音変調信号に対応する音波を発
する。
A sound source according to an example of a configuration method of the present invention is a sound source, and a drive circuit for generating a sinusoidal electric signal in an ultrasonic range which is amplitude-modulated by an electric signal corresponding to an audible sound wave including voice, and this signal. It consists of an ultrasonic transducer for transmission driven by and a part of a concave surface having an area including a part perpendicular to the line connecting the two focal points of the inner surface of the spheroid, A sound wave corresponding to an audible sound modulation signal is emitted using a space corresponding to a position as a sound source.

【0008】また、回転楕円体の極端な寸法の例とし
て、焦点と楕円体内面までの距離に比べて二焦点間の距
離がはるかに長い場合には、第2の焦点は遠くなり反射
体の大きさに対応した面積の平面波面を持つビーム状可
聴音波を発する。
As an example of the extreme size of the spheroid, when the distance between the two focal points is much longer than the distance between the focal point and the inner surface of the ellipsoid, the second focal point becomes far and the reflector becomes It emits a beam-shaped audible sound wave having a plane wavefront of an area corresponding to the size.

【0009】ここで原理として用いるパラメトリックア
レイ効果は原振幅変調信号とは異なった波型の復調信号
を出力する。典型的な条件では振幅変調された超音波信
号の振幅の2乗の2回微分の出力波型となることが知ら
れている。このような場合においても変調信号に対応し
た信号成分は含まれているので信号が音声の場合などで
は充分内容を聴くことができるが特に必要であればあら
かじめ振幅変調波形を出力時に必要とする形となるよう
に加工して置けばよい。また以上の場合においてトラン
スジューサは必ずしも焦点位置にある必要は無く焦点か
ら発生した音波と等価な波面を持つ様に配置されたもの
であればよい。
The parametric array effect used as a principle here outputs a wave-shaped demodulation signal different from the original amplitude modulation signal. Under typical conditions, it is known that the output waveform is the second derivative of the square of the amplitude of the amplitude-modulated ultrasonic signal. Even in such a case, since the signal component corresponding to the modulation signal is included, it is possible to listen to the contents sufficiently when the signal is a voice, etc. It should be processed so that In the above case, the transducer does not necessarily have to be at the focal position, and may be arranged so as to have a wavefront equivalent to the sound wave generated from the focal point.

【0010】[0010]

【実施例】次に、本発明について図1を参照して説明す
る。図1は本発明の請求項3場合の実施例の断面図であ
り、回転楕円体の一部分1の内部の焦点2に発信用超音
波トランスジューサ3が設置されている。このトランス
ジューサの駆動信号は超音波帯の正弦波を発信する発振
器4の出力を可聴域信号5によって振幅変調する変調器
6の出力7が入力している。トランスジューサの超音波
出力は回転楕円体の一部1に向けて発射されており、楕
円の法則からこの音波は破線の経路をたどって反射後も
う一つの焦点8に向かって収束し、さらに収束後発散し
ていく。この経路をたどる内に、超音波はその振幅を変
調している可聴域の信号を徐々に独立の音波とし分離発
生して同行するようになる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to FIG. FIG. 1 is a sectional view of an embodiment according to claim 3 of the present invention, in which a transmitting ultrasonic transducer 3 is installed at a focal point 2 inside a part 1 of a spheroid. The drive signal of this transducer is input to the output 7 of the modulator 6 that amplitude-modulates the output of the oscillator 4 that emits a sine wave in the ultrasonic band with the audible range signal 5. The ultrasonic output of the transducer is emitted toward the part 1 of the spheroid, and according to the law of the ellipse, this sound wave follows the path of the broken line and then converges toward another focal point 8 after reflection, and after further convergence. Diversify. While following this path, the ultrasonic wave gradually changes the amplitude-modulated signal in the audible range into independent sound waves, separates and generates them, and accompanies them.

【0011】このため破線矢印の方向には可聴域音波も
含まれている。よって収束後の発散領域に聞き手9がい
れば、この人にとって音波は音源が焦点8にあるように
聞こえることになる。この場合に可聴音波は前述の指向
性から破線の範囲以外には出ないため聞き手9は8以外
の他の音源を聴くことは無いのが特徴である。また音源
を聞き手の近くに設置できるために音量は十分小さくて
よいから、この音波が聞き手の後方に散乱してもそれほ
ど後方の雑音にはならない。また、必要であれば聞き手
の後方に吸音効果の大きな壁面を用意してもよい。
Therefore, the sound wave in the audible range is also included in the direction of the broken line arrow. Therefore, if the listener 9 is present in the divergent area after convergence, the sound wave will be heard by this person as if the sound source were at the focal point 8. In this case, since the audible sound wave does not go out from the above-mentioned directivity outside the range of the broken line, the listener 9 is characterized by not hearing any sound source other than 8. Further, since the sound source can be installed near the listener, the volume may be sufficiently low, so that even if this sound wave is scattered to the rear of the listener, it does not become so much noise behind. If necessary, a wall surface having a large sound absorbing effect may be provided behind the listener.

【0012】実施例(1) 両焦点間の距離0.6m、
両焦点を結ぶ軸上での焦点と反射面までの距離0.6m
で決められる回転楕円体の、該軸と楕円体面との交点を
中心として半径0.5mの部分を石膏により形成し、焦
点に圧電型セラミックトランスジューサ(murata
40SR)を設置して、1KHzの方形波によって10
0%変調した実効値10Vの40KHzの電気信号を加
えたところ、第2の焦点から1KHzの方形波成分の発
生していることをマイクロホン(アコー4017)によ
る音圧分布から確認し、焦点から10cmの位置て゛6
5dB(A)の値を得た。また実際に耳でも確認した。
Embodiment (1) The distance between both focal points is 0.6 m,
Distance between the focal point and the reflecting surface on the axis connecting both focal points 0.6m
A part of the spheroid determined by the center of the intersection of the axis and the ellipsoidal surface is formed with gypsum, and a piezoelectric ceramic transducer (murata) is formed at the focal point.
40SR) and installed a square wave of 1 KHz for 10
It was confirmed from the sound pressure distribution by the microphone (Acor 4017) that a square wave component of 1 KHz was generated from the second focus when an electric signal of 40 KHz with an effective value of 10 V that was 0% modulated was applied, and 10 cm from the focus. Position 6
A value of 5 dB (A) was obtained. I also confirmed it by ear.

【0013】図2は焦点間の距離を無限大とした請求項
4の場合である。このことは反射曲面を回転楕円体から
回転放物面としたことに等価である。反射面10に焦点
11位置からトランスジューサ12によって発射された
前記と同様の振幅変調超音波は破線のように反射され、
各部での反射音がいずれも平行に進行する。また放物面
の原理から波面は進行に直角で平面である。このため聞
き手13はこの音波の進行領域の中に居るとある距離範
囲内では距離を問わず同様な条件で可聴音波を聴くこと
ができる。
FIG. 2 shows the case of claim 4 in which the distance between the focal points is infinite. This is equivalent to changing the reflection curved surface from a spheroid to a paraboloid of revolution. Amplitude-modulated ultrasonic waves similar to the above emitted from the transducer 12 from the position of the focal point 11 on the reflecting surface 10 are reflected as shown by the broken line,
The reflected sound at each part proceeds in parallel. In addition, the wavefront is a plane that is perpendicular to the traveling direction due to the parabolic principle. Therefore, the listener 13 can listen to the audible sound waves under the same condition regardless of the distance within a certain distance range when the listener 13 is in the traveling area of the sound waves.

【0014】実施例(2) 焦点と中心までの距離0.
3mで決められる放物面を半径0.2m分石膏で形成し
て実施例(1)と同様の超音波信号を焦点から発生させ
たところ放物面中心と焦点を結ぶ軸上に1KHzの方形
波成分のビーム状分布を確認した。軸上で約62dB
(A)を得た。また耳でも確認した。
Embodiment (2) Distance between focal point and center 0.
A parabolic surface determined by 3 m was formed from gypsum with a radius of 0.2 m, and an ultrasonic signal similar to that in Example (1) was generated from the focus, and a square of 1 KHz was formed on the axis connecting the center of the parabola and the focus. The beam-like distribution of wave components was confirmed. About 62 dB on the axis
(A) was obtained. I also confirmed it by ear.

【0015】[0015]

【発明の効果】以上説明したように、本発明では空中の
一点を音源とすること及びビーム状の音波を形成するこ
とができる。前者の方法によっては聞き手の目の前に音
源を設置することができるので小さな音量でもその聞き
手に音響情報を伝えることができる。聞き手はヘッドホ
ンのような拘束を受けない。また後者の方法による音源
では遠方の聞き手のいる方向に音響信号を送ることがで
きる。この場合音響信号はビーム状となりそのビーム外
では音響信号を聴くことができない。本方式は、従来考
えられていたトランスジューサの平面的な配列と異なり
パラメトリックアレイの出力信号を効果的に利用するの
で効率良く可聴音を得ることができる。このような特性
を持つ音源は従来なかったものであり、個人的な空中音
響通信方式としてさまざまな用途がある。
As described above, according to the present invention, a point in the air can be used as a sound source and a beam-like sound wave can be formed. Depending on the former method, the sound source can be installed in front of the listener's eyes, so that the acoustic information can be transmitted to the listener even at a low volume. The listener is not as restrained as headphones. The sound source of the latter method can send an acoustic signal in the direction of a listener at a distance. In this case, the acoustic signal becomes a beam and the acoustic signal cannot be heard outside the beam. Unlike the conventional planar arrangement of transducers, this method effectively uses the output signal of the parametric array, so that an audible sound can be efficiently obtained. A sound source having such characteristics has never existed before and has various uses as a personal airborne acoustic communication system.

【図面の簡単な説明】[Brief description of drawings]

【図1】回転楕円体反射面を用いる本発明の原理図。FIG. 1 is a principle diagram of the present invention using a spheroidal reflecting surface.

【図2】回転放物体内面を用いる本発明の原理図 1 回転楕円体反射面 2 第1の焦点 3 超音波トランスジューサ 4 正弦波発振器 5 可聴信号 6 変調器 7 振幅変調信号 8 第2の焦点 9 聞き手 10 回転放物面体反射面 11 焦点 12 トランスジューサ 13 聞き手FIG. 2 is a view showing the principle of the present invention using the inner surface of a paraboloid of revolution. 1 spheroidal reflecting surface 2 first focus 3 ultrasonic transducer 4 sinusoidal oscillator 5 audible signal 6 modulator 7 amplitude modulation signal 8 second focus 9 Listener 10 Rotating parabolic reflective surface 11 Focus 12 Transducer 13 Listener

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 可聴領域の信号によって振幅変調された
超音波信号を、発射形態と反射形態の組み合わせによっ
て反射波を収束させられるように設置した曲面に向けて
発射し、収束後の再発散空間において、収束地点が該可
聴領域の信号に対応した可聴音の音源として機能するこ
とを特徴とする音源構成法。
1. An ultrasonic signal amplitude-modulated by a signal in an audible region is emitted toward a curved surface installed so that a reflected wave can be converged by a combination of an emission form and a reflection form, and a re-occurrence space after convergence is emitted. 2. The sound source configuration method according to, wherein the convergence point functions as a sound source of audible sound corresponding to the signal in the audible region.
【請求項2】 請求項1において、収束地点を反射面よ
り無限大の遠距離地点とすることにより、収束途上でビ
ーム状の該可聴領域の信号に対応した可聴音を得ること
を特徴とする音源構成法。
2. The audible sound corresponding to a beam-shaped signal in the audible region during convergence, wherein the convergence point is an infinite far distance point from the reflecting surface. Sound source configuration method.
【請求項3】 請求項1において超音波を回転楕円体の
内面の片方(第1)の焦点から発射させ、該内面の一部
で反射させ他方(第2)の焦点に収束、通過させること
で第2の焦点を該可聴領域の信号に対応した可聴音の音
源とすることを特徴とする音源構成法。
3. The ultrasonic wave according to claim 1, wherein the ultrasonic wave is emitted from one (first) focal point of the inner surface of the spheroid, reflected by a part of the inner surface, and converged and passed to the other (second) focal point. 2. A sound source configuration method, wherein the second focus is a sound source of audible sound corresponding to a signal in the audible region.
【請求項4】 請求項3において両焦点間の距離を無限
大とする請求項2の音源構成法。
4. The sound source constructing method according to claim 2, wherein the distance between both focal points is infinite.
【請求項5】 請求項1及び2において、該反射曲面に
該超音波を吸収する機能を付加したことを特徴とする音
源構成法。
5. The sound source construction method according to claim 1, wherein a function of absorbing the ultrasonic wave is added to the reflection curved surface.
JP29916793A 1993-09-20 1993-09-20 Sound source configuration method Expired - Fee Related JP3356847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29916793A JP3356847B2 (en) 1993-09-20 1993-09-20 Sound source configuration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29916793A JP3356847B2 (en) 1993-09-20 1993-09-20 Sound source configuration method

Publications (2)

Publication Number Publication Date
JPH07107588A true JPH07107588A (en) 1995-04-21
JP3356847B2 JP3356847B2 (en) 2002-12-16

Family

ID=17868998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29916793A Expired - Fee Related JP3356847B2 (en) 1993-09-20 1993-09-20 Sound source configuration method

Country Status (1)

Country Link
JP (1) JP3356847B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000050387A (en) * 1998-07-16 2000-02-18 Massachusetts Inst Of Technol <Mit> Parameteric audio system
JP2000082162A (en) * 1998-09-04 2000-03-21 Toshiba Corp Information input and output device and automatic transaction machine
JP2003102084A (en) * 2001-09-19 2003-04-04 Yoshimichi Yonezawa Sound source configuration device
JP2003153369A (en) * 2001-11-09 2003-05-23 Nippon Telegr & Teleph Corp <Ntt> Acoustic reproduction method and apparatus thereof
JP2018076689A (en) * 2016-11-08 2018-05-17 ヤマハ株式会社 Wall structure and section structure
JP2018204289A (en) * 2017-06-02 2018-12-27 ヤマハ株式会社 Wall structure
JP2019039167A (en) * 2017-08-23 2019-03-14 清水建設株式会社 Acoustic system
JP2023552238A (en) * 2020-12-28 2023-12-14 西安定華電子株式有限会社 How to determine the steering reflective surface and external measurement liquid level gauge focus steering

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000050387A (en) * 1998-07-16 2000-02-18 Massachusetts Inst Of Technol <Mit> Parameteric audio system
US8027488B2 (en) 1998-07-16 2011-09-27 Massachusetts Institute Of Technology Parametric audio system
US9036827B2 (en) 1998-07-16 2015-05-19 Massachusetts Institute Of Technology Parametric audio system
JP2000082162A (en) * 1998-09-04 2000-03-21 Toshiba Corp Information input and output device and automatic transaction machine
JP2003102084A (en) * 2001-09-19 2003-04-04 Yoshimichi Yonezawa Sound source configuration device
JP2003153369A (en) * 2001-11-09 2003-05-23 Nippon Telegr & Teleph Corp <Ntt> Acoustic reproduction method and apparatus thereof
JP2018076689A (en) * 2016-11-08 2018-05-17 ヤマハ株式会社 Wall structure and section structure
JP2021177066A (en) * 2016-11-08 2021-11-11 ヤマハ株式会社 Partition
JP2018204289A (en) * 2017-06-02 2018-12-27 ヤマハ株式会社 Wall structure
JP2019039167A (en) * 2017-08-23 2019-03-14 清水建設株式会社 Acoustic system
JP2023552238A (en) * 2020-12-28 2023-12-14 西安定華電子株式有限会社 How to determine the steering reflective surface and external measurement liquid level gauge focus steering

Also Published As

Publication number Publication date
JP3356847B2 (en) 2002-12-16

Similar Documents

Publication Publication Date Title
US5859915A (en) Lighted enhanced bullhorn
JP3267231B2 (en) Super directional speaker
US6577738B2 (en) Parametric virtual speaker and surround-sound system
JP2004527968A5 (en)
US7747029B2 (en) Screen for playing audible signals by demodulating ultrasonic signals having the audible signals
US20050286346A1 (en) High intensity directional electroacoustic sound generating system for communications targeting
KR20100068247A (en) An audio reproduction system comprising narrow and wide directivity loudspeakers
JPH1127774A (en) Parametric loudspeaker
US20030215103A1 (en) Parametric virtual speaker and surround-sound system
JP3356847B2 (en) Sound source configuration method
JPH0754995B2 (en) Parametric speaker
JPH0576839B2 (en)
JP2022089801A (en) Glasses with parametric audio unit
JP4395692B2 (en) Tone generator
JP2006060330A (en) Stereo reproducing apparatus
KR100548076B1 (en) Sound Focus Speaker of Gas-filled Sound Lens Attachment Type
JP2006197539A (en) Hybrid ultrasonic speaker and broadcasting system
Olszewski et al. Highly directional multi-beam audio loudspeaker
JP3700841B2 (en) Sound field control device
JP2003102084A (en) Sound source configuration device
JP2890722B2 (en) Directional speaker device
JP2018201175A (en) speaker
Kumar HEAVY HYPERSONIC DUAL ACOUSTIC SYSTEM
JPH0728463B2 (en) Parametric speaker
JPS6128293A (en) Parametric array speaker

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees