Nothing Special   »   [go: up one dir, main page]

JPH0690565A - Power converter - Google Patents

Power converter

Info

Publication number
JPH0690565A
JPH0690565A JP5058374A JP5837493A JPH0690565A JP H0690565 A JPH0690565 A JP H0690565A JP 5058374 A JP5058374 A JP 5058374A JP 5837493 A JP5837493 A JP 5837493A JP H0690565 A JPH0690565 A JP H0690565A
Authority
JP
Japan
Prior art keywords
power
phase
group
converters
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5058374A
Other languages
Japanese (ja)
Other versions
JP3019655B2 (en
Inventor
Shigeta Ueda
茂太 上田
Mikiya Nohara
幹也 野原
Mitsusachi Motobe
光幸 本部
Akiteru Ueda
明照 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5058374A priority Critical patent/JP3019655B2/en
Publication of JPH0690565A publication Critical patent/JPH0690565A/en
Application granted granted Critical
Publication of JP3019655B2 publication Critical patent/JP3019655B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Rectifiers (AREA)
  • Inverter Devices (AREA)

Abstract

PURPOSE:To make a power converter a large-capacity one having less higher harmonic waves by multiplying it, using a transformer of the order of the nth power of 2 (n>=2, integer). CONSTITUTION:Open winding sides of converters 10-13 are serially connected to each other through delta.open star connection three-phase transformers 20-23. Open winding sides of converters 14-17 are serially connected to each other through delta.open delta connection three-phase transformers 24-27. A group of converters 100 and a group of converters 200 are connected in series and the connected converter groups are connected to a load or a power system 3. The output of pulse generating circuits 710-717 is inputted as a gate pulse to the converters 10-17 through operation phase difference adding circuits 700-707. The location set values of the operation phase difference adding circuits 700-707 are 0 deg., phi1, phi2 phi1+phi2, 30 deg., 20 deg.+phi1, 30 deg.+phi2, and 30 deg.+phi1+phi2 respectively. By making the output voltages of the two groups of power converters 30 deg. out of phase, a fifth, seventh, 17th, 19th, 29th, 31th... component can be theoretically zero.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、一般産業,電力用,車
両用など大容量半導体電力変換器を使用した装置に係
り、とくに多重変圧器を使用して大容量化した電力変換
器を使用する分野において利用可能である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device using a large-capacity semiconductor power converter for general industries, electric power, vehicles, etc., and particularly to a power converter having a large capacity using a multiple transformer. It can be used in various fields.

【0002】[0002]

【従来の技術】半導体電力変換器の大容量化の方法とし
ては例えばアイ・イー・イー・イー,トランズアクショ
ン オン マグネティクス,26巻,5号(1990
年)2247頁から2249頁(IEEE Trans Magnetics Vo
l.26,No.5(1990),pp2247−224
9)において論じられているように2台の変圧器を使用
して2台の変換器を多重接続するという方法がある。2
台の変換器を位相差30度で運転して大容量化,低高調
波化を図るものである。
2. Description of the Related Art As a method for increasing the capacity of a semiconductor power converter, for example, IEE, Transaction on Magnetics, Vol. 26, No. 5 (1990)
2247 to 2249 (IEEE Trans Magnetics Vo)
L.26, No.5 (1990), pp2247-224
As discussed in 9), there is a method of multiplexing two converters using two transformers. Two
By operating the converters with a phase difference of 30 degrees, a large capacity and low harmonics are achieved.

【0003】また、電気学会「半導体電力変換回路」1
00頁から101頁において論じられているように、千
鳥巻線変圧器を用いて高調波を低減する方法もある。
The Institute of Electrical Engineers of Japan "Semiconductor power conversion circuit" 1
There is also a method of reducing harmonics using staggered winding transformers, as discussed on pages 00-101.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記方法によ
るとさらに高調波を低減する方法については未検討で、
さらに多重化する変換器の台数を増やす場合の効果的方
法あるいは各変換器の運転位相をどのようにすれば高調
波を低減できるかなどについては述べられていない。ま
た、千鳥巻線変圧器を用いる場合には変圧器の構造が複
雑になる。
However, according to the above method, a method for further reducing harmonics has not been studied yet.
Further, there is no mention of an effective method for increasing the number of converters to be multiplexed or how the operating phase of each converter can reduce harmonics. Moreover, when using a zigzag winding transformer, the structure of the transformer becomes complicated.

【0005】本発明の目的は、2のn乗台(n≧2、整
数)の変換器を、特殊な巻線を用いない変圧器を使用し
て多重化することにより、より高調波の少ない大容量電
力変換器を得ることにある。
It is an object of the present invention to multiplex converters in the n-th power of 2 (n ≧ 2, integer) by using a transformer that does not use a special winding so that harmonics are reduced. To obtain a large capacity power converter.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、自己消弧素子を使用した三相電力変換器の2のn乗
台(n≧2、整数)の出力を三相変圧器を用いて多重化
した電力変換装置において、2の(n−1)乗台の電力変
換器群Aはデルタ・オープンスター結線三相変圧器のデ
ルタ結線側に夫々接続し、他の2の(n−1)乗台の電力
変換器群Bはデルタ・オープンデルタ結線三相変圧器の
デルタ結線側に夫々接続し、前記B群の各三相変圧器の
オープンデルタ巻線は同一相で直列接続してデルタ結線
し、前記A群の各三相変圧器のオープンスター巻線は同
一相で直列接続し、該スター巻線の直列接続巻線の各々
一端は前記B群の前記デルタ結線された接続点に各々接
続し、前記スター巻線の直列接続巻線の他端より電力を
出力し、前記A群とB群の三相変圧器の入力側に接続さ
れる前記A群とB群の電力変換器は基本波の出力電圧が
30度の位相差で駆動する電圧位相制御手段を備えた電
力変換装置とする。さらに、各群の電力変換器それぞれ
においても電圧位相を変えるようにする。
In order to achieve the above object, the output of the n-th power of 2 (n ≧ 2, an integer) of a three-phase power converter using a self-extinguishing element is converted into a three-phase transformer. In the power converters that are multiplexed by using the power converter group A on the 2 (n-1) th power, they are connected to the delta connection side of the delta open star connection three-phase transformer, respectively, and the other (n-1) -1) The power converter group B on the platform is connected to the delta connection side of the delta / open delta connection three-phase transformer respectively, and the open delta windings of the three-phase transformers of the group B are connected in series in the same phase. Delta connection, the open star windings of the three-phase transformers of the group A are connected in series in the same phase, and one end of each series connection winding of the star windings is connected in the delta connection of the group B. Each of them is connected to a connection point, and electric power is output from the other end of the series connection winding of the star winding, The power converters of the group A and the group B which are connected to the input side of the three-phase transformer of the group B include a power converter having a voltage phase control means for driving the output voltage of the fundamental wave with a phase difference of 30 degrees. To do. Further, the voltage phase is changed in each power converter of each group.

【0007】例えば、変換器が8台(n=3)の場合に
は各群4台の位相をそれぞれ変えて運転する。この場
合、各群の4台をA1,A2,A3,A4とB1,B2
3,B4とすると、A群についてA1 とA2 間,A3
4 間の運転位相差をともにφ1 にする。さらにA
1(A2)とA3(A4)間の運転位相差をφ2 にする。す
なわち、A1を基準(0°)にするとA2をφ1,A3をφ
2,A4をφ1+φ2で運転する。B群についても同様の関
係とする。この場合、φ1,φ2の値を、2台の変換器の
出力電圧に含まれる第(12×i±1)次高調波(i=
1,2,3,…)が逆相になるように180°/(12
×i±1)(i=1,2,3,…)という値に設定す
る。
For example, when the number of converters is 8 (n = 3), the phase of 4 units in each group is changed to operate. In this case, four units in each group are A 1 , A 2 , A 3 , A 4 and B 1 , B 2 ,
Assuming that B 3 and B 4 , the operating phase difference between A 1 and A 2 and between A 3 and A 4 for group A is φ 1 . Furthermore A
Set the operating phase difference between 1 (A 2 ) and A 3 (A 4 ) to φ 2 . That is, when A 1 is the reference (0 °), A 2 is φ 1 and A 3 is φ
Operate 2 and A 4 at φ 1 + φ 2 . The same applies to group B. In this case, the values of φ 1 and φ 2 are the (12 × i ± 1) th harmonics (i =
180 ° / (12) so that 1, 2, 3, ...
× i ± 1) (i = 1, 2, 3, ...)

【0008】[0008]

【作用】A,B群の電力変換器の出力電圧の位相差を3
0度とすることで第5,7,17,19,29,31…
といった系列の高調波成分を零にできる。さらにφ1
2,…,φn-1の値を上記のように選ぶことにより2台の
変換器間で高調波が逆相で加算されるため多重化により
これらの成分を理論上零にすることができる。以上によ
り2のn乗台の電力変換器により装置を大容量化できか
つ高調波を低減することができる。
The phase difference between the output voltages of the power converters of groups A and B is set to 3
By setting it to 0 degree, the 5th, 7th, 17th, 19th, 29th, 31st ...
The harmonic components of the series can be made zero. Furthermore φ 1 , φ
By selecting the values of 2 ,…, φ n-1 as above, harmonics are added in opposite phase between the two converters, so these components can theoretically be made zero by multiplexing. . As described above, it is possible to increase the capacity of the device and reduce the harmonics by using the power converter of the power of 2 to the nth power.

【0009】[0009]

【実施例】以下、本発明の実施例を図を使用して説明す
る。図1には8台の変換器を用いて多重化する場合の構
成を示す。直流電源4を共通に8台の変換器10〜17
を並列接続する。変換器10〜13をデルタ・オープン
スター結線の三相変圧器20〜23によりオープン巻線
側を直列接続する。変換器14〜17をデルタ・オープ
ンデルタ結線の三相変圧器24〜27によりオープン巻
線側を直列接続する。前者の変換器群100と後者の変
換器群200をさらに直列接続し、さらに負荷または電
力系統3へ接続する。以下、変換器側の変圧器巻線を一
次巻線、負荷側または電力系統側の巻線を二次巻線と呼
ぶ。パルス発生回路710〜717の出力は運転位相差
付加回路700〜707を介して変換器10〜17へゲ
ートパルスとして入力される。運転位相差付加回路70
0〜707の位相設定値を0°,φ1,φ2,φ1+φ2
30°,30°+φ1,30°+φ2,30°+φ1+φ
2 とする。運転位相差付加回路700〜707はタイマ
ーを使用して容易に実現でき、各々運転位相に相当する
時間遅延を発生させればよい。通常はマイクロコンピュ
ータを使用してソフトウェア処理をするので、特別な回
路を付加しなくとも容易に実現できる。図2には変圧器
20〜27の巻線構成を示す。一次巻線は全てデルタ接
続して、第3次高調波成分を零にする。二次巻線を図の
ように直列接続して三相出力端子U,V,Wを得る。巻
線群a1〜a8,b1〜b8,c1〜c8と巻線群A1
〜A4,B1〜B4,C1〜C4および巻線群A5〜A
8,B5〜B8,C5〜C8の巻数比を1:a:√3a
に選び、変換器10と14,11と15,12と16,
13と17をそれぞれ位相差30度で運転する。こうす
ると変圧器二次側線間電圧vUVの第5,7,17,1
9,29,31…次成分を理論上零にすることができ
る。以上により変圧器二次側線間電圧vUVに含まれる高
調波成分を第(12×i±1)次成分のみにすることが
できる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a configuration for multiplexing using eight converters. Eight converters 10 to 17 with a common DC power supply 4
Are connected in parallel. The converters 10 to 13 are connected in series on the open winding side by three-phase transformers 20 to 23 of delta open star connection. The converters 14 to 17 are connected in series on the open winding side by three-phase transformers 24 to 27 having a delta / open delta connection. The former converter group 100 and the latter converter group 200 are further connected in series and further connected to the load or the power system 3. Hereinafter, the transformer winding on the converter side is called a primary winding, and the winding on the load side or the power system side is called a secondary winding. The outputs of the pulse generation circuits 710 to 717 are input as gate pulses to the converters 10 to 17 via the operation phase difference adding circuits 700 to 707. Running phase difference adding circuit 70
The phase setting value of 0 to 707 is 0 °, φ 1 , φ 2 , φ 1 + φ 2 ,
30 °, 30 ° + φ 1 , 30 ° + φ 2 , 30 ° + φ 1 + φ
Set to 2 . The operation phase difference adding circuits 700 to 707 can be easily realized by using a timer, and each may generate a time delay corresponding to the operation phase. Usually, a microcomputer is used to perform software processing, so that it can be easily realized without adding a special circuit. FIG. 2 shows the winding configuration of the transformers 20 to 27. All primary windings are delta connected to zero the third harmonic component. Secondary windings are connected in series as shown to obtain three-phase output terminals U, V, W. Winding group a1 to a8, b1 to b8, c1 to c8 and winding group A1
-A4, B1-B4, C1-C4 and winding group A5-A
8, B5-B8, C5-C8 turns ratio is 1: a: √3a
, Converters 10 and 14, 11 and 15, 12 and 16,
13 and 17 are operated with a phase difference of 30 degrees. In this way, the transformer secondary side line voltage v UV of the 5th, 7th, 17th, 1st
9, 29, 31 ... The next component can theoretically be zero. As described above, the harmonic components included in the transformer secondary side line voltage v UV can be limited to the (12 × i ± 1) th order component.

【0010】一般的に変圧器一次電圧vは高調波成分の
和として次式のように表すことができる。
Generally, the transformer primary voltage v can be expressed as the sum of the harmonic components as follows.

【0011】[0011]

【数1】 [Equation 1]

【0012】この時、変圧器二次側線間電圧vUVには第
(12×i±1)次高調波成分のみが含まれるから、次
式のように表わすことができる。
At this time, since the transformer secondary side line voltage v UV includes only the (12 × i ± 1) th order harmonic component, it can be expressed as the following equation.

【0013】[0013]

【数2】 [Equation 2]

【0014】(数2)式でk1 ,k12i±1は各次成分の
電圧低減係数であり、(数3)式に示す。
In the equation (2), k 1 and k 12i ± 1 are voltage reduction coefficients of each order component, and are shown in the equation (3).

【0015】[0015]

【数3】 [Equation 3]

【0016】図3に示すように、運転位相差付加回路7
00〜707の設定値を変換器群100では全て0度、
変換器群200では30度(φ1=φ2=0°)とすれ
ば、各群1台の変換器で構成した場合の4倍の出力電圧
が得られ、変換器の大容量化を図ることができる。この
場合(数3)式の電圧低減係数は全て「1」となる。次
に各群の4台の変換器を異なった位相で運転する場合を
考える。図1に示したように、変換器10を基準(0
°)とし変換器11をφ1,変換器12をφ2,変換器1
3をφ1+φ2で運転する。変換器群200についても同
様の関係とする。こうすると変換器10と変換器11
間,変換器12と変換器13間の運転位相差はφ1、変
換器10,11と変換器12,13間の運転位相差はφ
2となる。φ1とφ2 を180°/(12×i±1)に設
定すれば、2台のインバータで発生する第(12×i±
1)次高調波電圧が逆相となり多重化により打ち消すこ
とができるので、理論上この成分を零にすることができ
る。φ1とφ2を異なった値にすれば2種類の次数の高調
波成分を零にすることができる。通常は、高調波フィル
タ設備を小型化するため低い次数の成分から除去してい
く。従って、11次,13次成分を零にするようにφ2
=180°/11,φ1=180°/13とする。この
場合にはk11=k13=0となり、11次,13次成分を
零にできる。図4にはφ1,φ2の選び方と電圧低減係数
12i±1の関係を示す。
As shown in FIG. 3, the operation phase difference adding circuit 7
The set values of 00 to 707 are all 0 degrees in the converter group 100,
In the converter group 200, if it is set to 30 degrees (φ 1 = φ 2 = 0 °), an output voltage that is four times as large as that of one converter in each group is obtained, and the capacity of the converter is increased. be able to. In this case, all the voltage reduction coefficients of the equation (3) are "1". Next, consider the case where four converters in each group are operated in different phases. As shown in FIG. 1, the converter 10 is used as a reference (0
°), the converter 11 is φ 1 , the converter 12 is φ 2 , and the converter 1 is
Run 3 at φ 1 + φ 2 . The same applies to the converter group 200. In this way, the converter 10 and the converter 11
, The operating phase difference between the converter 12 and the converter 13 is φ 1 , and the operating phase difference between the converters 10 and 11 and the converters 12 and 13 is φ.
It becomes 2 . If φ 1 and φ 2 are set to 180 ° / (12 × i ± 1), the 2nd inverter (12 × i ± 1)
1) Since the second harmonic voltage has an opposite phase and can be canceled by multiplexing, this component can theoretically be made zero. If φ 1 and φ 2 are set to different values, the two types of harmonic components can be made zero. Usually, in order to downsize the harmonic filter equipment, components of low order are removed. Therefore, φ 2 should be set so that the 11th and 13th components should be zero.
= 180 ° / 11 and φ 1 = 180 ° / 13. In this case, k 11 = k 13 = 0, and the 11th and 13th order components can be made zero. FIG. 4 shows the relationship between the selection method of φ 1 and φ 2 and the voltage reduction coefficient k 12i ± 1 .

【0017】前記実施例では、φ1=180°/13,
φ2=180°/11(図4のケース1)としたが、図
4から、iが異なるようにφ1とφ2を選択する。例え
ば、図5に示したようにφ1=180°/25,φ2=1
80°/13(ケース5)とすれば、図4からk25とk
13を零にでき、さらにこれ以外の次数の電圧低減係数k
11とk23も小さくできる。従って、高調波成分を全体に
低減できるという効果がある。これは、12×i±1の
iが同一で複号が異なる場合、180°/(12×i+
1)と180°/(12×i−1)の値の差が少ないた
め、180°/(12×i+1)の運転位相差で第(1
2×i+1)次高調波を逆相にして打ち消せば、他方の
第(12×i−1)次高調波もほぼ逆相の関係になるか
らである。
In the above embodiment, φ 1 = 180 ° / 13,
Although φ 2 = 180 ° / 11 (case 1 in FIG. 4) is set, φ 1 and φ 2 are selected from FIG. 4 so that i is different. For example, as shown in FIG. 5, φ 1 = 180 ° / 25, φ 2 = 1
If 80 ° / 13 (case 5), then k 25 and k from FIG.
13 can be made zero, and voltage reduction coefficient k of other orders
11 and k 23 can also be made small. Therefore, there is an effect that harmonic components can be reduced as a whole. This means that if i of 12 × i ± 1 is the same and the double sign is different, 180 ° / (12 × i +
1) and the value of 180 ° / (12 × i−1) are small, the operation phase difference of 180 ° / (12 × i + 1) causes
This is because if the 2 × i + 1) -order higher harmonic wave is made to have an opposite phase and is canceled, the other (12 × i−1) th-order harmonic wave also has a substantially opposite phase relationship.

【0018】前記実施例では特定の次数の高調波成分を
零にするように運転位相差を設定したが、特定次数を零
にしない場合の実施例を以下で説明する。高調波低減係
数はφ1とφ2の関数であり、(数3)に示すようにCOS
(nφ1/2)とCOS(nφ2/2)の積で表わすことができ
る。COS(nφ/2)とφの関係を図6に示す。(a)は
n=11、(b)はn=13、(c)はn=23、
(d)はn=25の場合を示す。横軸は運転位相差φ
で、2つの値を選択することができる。この値をφ1
φ2 とする。第11,13次成分を低減するためには一
方のφを領域2付近に、第23,25次成分を低減する
ためには他方のφを領域1付近に設定すればよいことが
わかる。領域1,2付近の拡大を図7に示す。(a)は
|COS(23φ/2)|と|COS(25φ/2)|の値を示
し、(b)は|COS(11φ/2)|と|COS(13φ/
2)|の値を示す。仮に第11次高調波だけに着目して
零にするためにφ1,φ2のうち一方の値を180°/1
1(領域2の右端)、他方を0°とすると|COS(11
φ/2)|=0,|COS(13φ/2)|=0.28 と
なる。従って、|k11|=0,|k13|=0.28となり
第13次高調波成分低減の効果は28%となる。逆に第
13次高調波だけに着目して零にするためにφ1,φ2
うち一方の値を180°/13(領域2の左端)、他方を
0°とすると|COS(11φ/2)|=0.24,|COS
(13φ/2)|=0となる。従って、|k11|=0.24,|
13|=0となり第11次高調波成分低減の効果は24
%となる。同様のことが領域1においても言える。
φ1.φ2のうち一方の値を180°/23(領域1の右
端)他方を0°とすると|COS(23φ/2)|=0とな
り第23次高調波を零にできるものの|k25|=0.1
4 となり第25次高調波低減の効果は14%となる。
逆に、一方の値を180°/25(領域1の左端)他方
を0°とすると|COS(23φ/2)|=0.13となり第
25次高調波を零にできるものの|k23|=0.13 とな
り第23次高調波低減の効果は13%となる。前記実施
例では、各領域において、左右端の値を選択する方法を
述べたものであったが、各領域の間の値を選択するほう
が、どちらも零にはできないものの2つの関数の値は同
時に小さくできる。例えば、中間の値として領域1では
180°/24とすると|COS(23φ/2)|=|COS
(25φ/2)|=0.065 となり、両端の値を選択し
た場合の約1/2となる。領域2では180°/12と
すると|COS(11φ/2)|=|COS(13φ/2)|
=0.13となり、両端の値を選択した場合の約1/2
となる。最終的には2つの領域から選択した値の積が高
調波低減係数k12i±1 となるから、領域1においては
180°/24,領域2において180°/12と運転位
相差を設定すれば、第11,13,23,25次といっ
た低次の成分を全体的に低減することができる。この場
合、各次数の高調波低減係数は|k11|≒0.10,|
13|≒0.09,|k23|≒0.07,|k25|≒0.07
となり、どの次数の成分も平均して低減することができ
る。
In the above embodiment, the operation phase difference is set so that the harmonic component of a specific order is zero, but an embodiment in which the specific order is not zero will be described below. The harmonic reduction coefficient is a function of φ 1 and φ 2 , and as shown in (Equation 3), the COS
Can be expressed by the product of (nφ 1/2) and COS (nφ 2/2). Figure 6 shows the relationship between COS (nφ / 2) and φ. (A) is n = 11, (b) is n = 13, (c) is n = 23,
(D) shows the case where n = 25. Horizontal axis is the operation phase difference φ
, Two values can be selected. This value is φ 1 ,
φ 2 It can be seen that one φ can be set near the region 2 to reduce the 11th and 13th order components, and the other φ can be set near the region 1 to reduce the 23rd and 25th order components. FIG. 7 shows an enlargement in the vicinity of regions 1 and 2. (A) shows the values of | COS (23φ / 2) | and | COS (25φ / 2) |, and (b) shows | COS (11φ / 2) | and | COS (13φ /
2) Indicates the value of |. If we focus only on the 11th harmonic and set it to zero, set one of φ 1 and φ 2 to 180 ° / 1.
1 (the right end of region 2) and the other at 0 ° | COS (11
φ / 2) | = 0 and | COS (13φ / 2) | = 0.28. Therefore, | k 11 | = 0, | k 13 | = 0.28, and the effect of reducing the 13th harmonic component is 28%. Conversely, if only one of φ 1 and φ 2 is set to 180 ° / 13 (the left end of region 2) and the other is set to 0 ° in order to make only the 13th harmonic zero, then | COS (11φ / 2) | = 0.24, | COS
(13φ / 2) | = 0. Therefore, | k 11 | = 0.24, |
Since k 13 | = 0, the effect of reducing the 11th harmonic component is 24
%. The same can be said for region 1.
φ 1 . If one of φ 2 is 180 ° / 23 (the right end of region 1) and the other is 0 °, then | COS (23φ / 2) | = 0 and the 23rd harmonic can be made zero, but | k 25 | = 0.1
4 and the effect of reducing the 25th harmonic is 14%.
Conversely, if one value is 180 ° / 25 (the left end of region 1) and the other is 0 °, then | COS (23φ / 2) | = 0.13, and the 25th harmonic can be made zero, but | k 23 | = 0.13, and the effect of reducing the 23rd harmonic is 13%. In the above-described embodiment, the method of selecting the values at the left and right ends in each area was described. However, selecting values between the areas does not make both values zero, but the values of the two functions are Can be made small at the same time. For example, assuming that the intermediate value is 180 ° / 24 in the region 1, | COS (23φ / 2) | = | COS
(25φ / 2) | = 0.065, which is about 1/2 of the value at both ends. In region 2, assuming 180 ° / 12, | COS (11φ / 2) | = | COS (13φ / 2) |
= 0.13, which is about 1/2 of the value at both ends
Becomes Finally, the product of the values selected from the two regions becomes the harmonic reduction coefficient k 12i ± 1 , so if the operating phase difference is set to 180 ° / 24 in region 1 and 180 ° / 12 in region 2, , The 11th, 13th, 23rd, and 25th order components can be reduced as a whole. In this case, the harmonic reduction coefficient of each order is | k 11 | ≈0.10, |
k 13 | ≈0.09, | k 23 | ≈0.07, | k 25 | ≈0.07
And the components of any order can be reduced on average.

【0019】前記実施例では、各領域の値として180
°/(12×i)という値を選んだが、各領域のちょう
ど中間の値を選択してもほぼ同様の効果が得られる。φ
を180°/25と180°/23の間、φ2 を1
80°/13と180°/11の間に値を選べばよい。
In the above embodiment, the value of each area is 180
Although a value of ° / (12 × i) is selected, almost the same effect can be obtained by selecting a value in the middle of each area. φ
1 is between 180 ° / 25 and 180 ° / 23, φ 2 is 1
A value may be selected between 80 ° / 13 and 180 ° / 11.

【0020】以上の実施例では、n=3、すなわち変換
器台数が8台の場合であったが、16台(n=4),3
2台(n=5)と増加した場合には、選択可能な角度φ
の個数が3,4と増え、その分、高調波低減の効果がさ
らに大きくなる。16台の場合の選択可能な角度は
φ1 ,φ2 ,φ3 の3種類で、これらを組み合わせて、
各変換器の運転位相を図8に示したようにする。
In the above embodiment, n = 3, that is, the number of converters is 8, but 16 (n = 4), 3
If the number increases to 2 (n = 5), selectable angle φ
The number of 3 is increased to 3 and 4, and the effect of reducing harmonics is further increased accordingly. In the case of 16 units, the selectable angles are φ 1 , φ 2 , and φ 3 , and by combining these,
The operating phase of each converter is as shown in FIG.

【0021】また、パルス幅(PWM)制御を併用すれ
ば、(数2)式における変換器1台で発生する高調波電
圧V12i±1そのものを少なくできるので、さらに高調波
を低減することができる。
Further, if pulse width (PWM) control is also used, the harmonic voltage V 12i ± 1 itself generated by one converter in the equation (2) can be reduced, so that the harmonic can be further reduced. it can.

【0022】以上の実施例では、逆変換器側の構成を多
重化して負荷側あるいは電力系統側の高調波電圧を低減
したが、順変換器側も同様の構成にした図9のような主
回路構成にも適用できる。電力系統6に順変換器を接続
し、直流部のコンデンサ4,5を介して逆変換器へ接続
する。本実施例では、電力系統6側の高調波をも低減で
きるので同一電力系統に接続された機器に対する高調波
障害を低減できるという効果がある。
In the above embodiments, the configuration of the inverse converter side is multiplexed to reduce the harmonic voltage on the load side or the power system side, but the forward converter side has the same configuration as shown in FIG. It can also be applied to circuit configurations. A forward converter is connected to the power system 6 and is connected to the reverse converter via the capacitors 4 and 5 in the DC part. In the present embodiment, the harmonics on the side of the power system 6 can also be reduced, so that there is an effect that the harmonic interference to the devices connected to the same power system can be reduced.

【0023】[0023]

【発明の効果】本発明によれば、変圧器を用いて多重化
することにより電力変換器の容量を単器容量の2のn乗
倍に大容量化できるとともに出力電圧に含まれる高調波
成分を減らすことができ、その分、他機器へ与える高調
波障害を減らすことができるという効果がある。また、
これによって、発生高調波を除去するためのフィルタの
設備容量を減らすことができるという効果もある。
According to the present invention, the capacity of a power converter can be increased to a power of 2n times the capacity of a single unit by multiplexing with a transformer, and harmonic components contained in the output voltage can be achieved. It is possible to reduce the noise, and to that extent, it is possible to reduce the harmonic interference given to other devices. Also,
This also has the effect of reducing the installed capacity of the filter for removing the generated harmonics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の主回路構成図である。FIG. 1 is a configuration diagram of a main circuit according to an embodiment of the present invention.

【図2】本発明の一実施例の変圧器巻線構成図である。FIG. 2 is a configuration diagram of a transformer winding according to an embodiment of the present invention.

【図3】本発明の動作を説明する電圧波形を示す図であ
る。
FIG. 3 is a diagram showing voltage waveforms for explaining the operation of the present invention.

【図4】運転位相差と電圧低減係数の関係を示す図であ
る。
FIG. 4 is a diagram showing a relationship between an operation phase difference and a voltage reduction coefficient.

【図5】本発明の動作を説明する電圧波形を示す図であ
る。
FIG. 5 is a diagram showing voltage waveforms for explaining the operation of the present invention.

【図6】各次数ごとの運転位相差と電圧低減係数の関係
を示す図である。
FIG. 6 is a diagram showing a relationship between an operation phase difference and a voltage reduction coefficient for each order.

【図7】各次数ごとの運転位相差と電圧低減係数の関係
を示す拡大図である。
FIG. 7 is an enlarged view showing a relationship between an operation phase difference and a voltage reduction coefficient for each order.

【図8】本発明の他の実施例を示す主回路構成図であ
る。
FIG. 8 is a main circuit configuration diagram showing another embodiment of the present invention.

【図9】本発明の他の実施例を示す主回路構成図であ
る。
FIG. 9 is a main circuit configuration diagram showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

3…負荷あるいは電力系統、φ1,φ2,φ3,…,φn-1
…位相差、k1 …基本波低減係数、k12i±1…第(12
×i±1)次高調波成分低減係数、700〜707…運
転位相差付加回路、a…変圧器巻数比、710〜717
…パルス発生回路。
3 ... Load or power system, φ 1 , φ 2 , φ 3 , ..., φ n-1
… Phase difference, k 1 … fundamental wave reduction coefficient, k 12i ± 1 … the (12
Xi ± 1) Reduction coefficient of the harmonic component of the order 700 to 707 ... Operation phase difference adding circuit, a ... Transformer turn ratio, 710 to 717
... pulse generator circuit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 植田 明照 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akiteru Ueda 4026 Kuji Town, Hitachi City, Ibaraki Prefecture Hitachi Research Laboratory, Hitachi, Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】自己消弧素子を使用した三相電力変換器の
2のn乗台(n≧2,整数)の出力を三相変圧器を用い
て多重化し、2の(n−1)乗台の電力変換器群Aはデル
タ・オープンスター結線三相変圧器のデルタ結線側に夫
々接続し、他の2の(n−1)乗台の電力変換器群Bはデ
ルタ・オープンデルタ結線三相変圧器のデルタ結線側に
夫々接続し、前記B群の各三相変圧器のオープンデルタ
巻線は同一相で直列接続してデルタ結線し、前記A群の
各三相変圧器のオープンスター巻線は同一相で直列接続
し、該スター巻線の直列接続巻線の各々一端は前記B群
の前記デルタ結線された接続点に各々接続し、前記スタ
ー巻線の直列接続巻線の他端より電力を出力する電力変
換装置において、各電力変換器の基本波の出力電圧位相
制御手段を各変換器ごとに備えたことを特徴とする電力
変換装置。
1. The output of the n-th power of 2 (n ≧ 2, integer) of a three-phase power converter using a self-extinguishing element is multiplexed using a three-phase transformer, and (n-1) of 2 is used. The power converter group A on the platform is connected to the Delta connection side of the Delta / Open star connection three-phase transformer, and the power converter group B on the other 2 (n-1) platform is connected to the Delta / Open Delta connection. The three-phase transformers are respectively connected to the delta connection side, and the open delta windings of the three-phase transformers of the group B are connected in series in the same phase to form a delta connection, and the three-phase transformers of the group A are opened. The star windings are connected in series in the same phase, one end of each of the series connection windings of the star winding is connected to each of the delta connection points of the group B, and the series connection windings of the star windings are connected. In a power converter that outputs power from the other end, the output voltage phase control means for the fundamental wave of each power converter is provided in each converter. A power conversion device characterized by being provided for each.
【請求項2】請求項1記載の電力変換器の電圧位相制御
手段において、前記A群の各電力変換器で出力電圧の位
相差を異ならせ、前記B群の各電力変換器の出力電圧の
位相差は前記A群の各位相差にさらに30度の位相差を
持たせたことを特徴とする電力変換装置。
2. The voltage phase control means of the power converter according to claim 1, wherein the phase difference of the output voltage is made different in each of the power converters of group A, and the output voltage of each of the power converters of group B is changed. The phase difference is such that each phase difference of the group A is further provided with a phase difference of 30 degrees.
【請求項3】請求項2において、各群の電力変換器の任
意の1台の電力変換器の電圧位相を基準とし、残りの電
力変換器の電圧位相は180°/(12×i±1)(i
=1,2,…,n−1)で得られる中のn−1種類の角
度に基づいて設定することを特徴とする電力変換装置。
3. The voltage phase of any one of the power converters of each group is used as a reference, and the voltage phases of the remaining power converters are 180 ° / (12 × i ± 1). ) (I
= 1, 2, ..., N-1), and sets based on n-1 kinds of angles obtained.
【請求項4】請求項3において、残りの電力変換器の電
圧位相は180°/(12×i±1)(i=1,2,
…,n−1)における±の複号を各iにわたって一方の
みに選択することを特徴とする電力変換装置。
4. The voltage phase of the remaining power converter according to claim 3, wherein the voltage phase is 180 ° / (12 × i ± 1) (i = 1, 2,
, N-1) is selected as only one of the double signs over each i.
【請求項5】請求項1において、各群の電力変換器の任
意の1台の電力変換器の電圧位相を基準とし、残りの電
力変換器の電圧位相は、各i(=1,2,…,n−1)
について180°/(12×i+1)から180°/
(12×i−1)の中間から選択した値を有するn−1
種類の角度およびこれらを組み合わせてできる(2の
(n−1)乗−n)種類の角度に基づいて設定する電圧
位相制御手段を前記2のn乗台の三相電力変換器ごとに
備えたことを特徴とする電力変換装置。
5. The voltage phase of any one power converter of the power converters of each group is used as a reference, and the voltage phases of the remaining power converters are i (= 1, 2, …, N-1)
About 180 ° / (12 × i + 1) to 180 ° /
N−1 having a value selected from the middle of (12 × i−1)
Each of the n-th power 3 phase power converters of the n-th power of 2 is provided with a voltage phase control means which is set on the basis of the angle of the type and the angle of the (2 (n-1) th power-n) type which is a combination thereof. A power converter characterized by the above.
【請求項6】請求項1において、各群の電力変換器の任
意の1台の電力変換器の電圧位相を基準とし、残りの電
力変換器の電圧位相は、各i(=1,2,…,n−1)
について180°×{1/(12×i+1)+1/(1
2×i−1)}/2なる(n−1)種類の角度およびこ
れらを組み合わせてできる(2の(n−1)乗−n)種
類の角度に基づいて電圧位相制御手段の位相を設定する
ことを特徴とする電力変換装置。
6. The voltage phase of any one of the power converters in each group is used as a reference, and the voltage phases of the remaining power converters are i (= 1, 2, …, N-1)
About 180 ° × {1 / (12 × i + 1) + 1 / (1
The phase of the voltage phase control means is set based on (n-1) kinds of angles of 2 × i-1) / 2 and (2 (n-1) th power-n) kinds of angles formed by combining these. A power conversion device characterized by:
【請求項7】請求項1において、各群の電力変換器の任
意の1台の電力変換器の電圧位相を基準とし、残りの電
力変換器の電圧位相は、各i(=1,2,…,n−1)
について180°/(12×i)なる(n−1)種類の
角度およびこれらを組み合わせてできる(2の(n−
1)乗−n)種類の角度に基づいて電圧位相制御手段の
位相を設定することを特徴とする電力変換装置。
7. The voltage phase of any one power converter of the power converters of each group is used as a reference, and the voltage phases of the remaining power converters are i (= 1, 2, …, N-1)
About 180 ° / (12 × i) of (n−1) types of angles and combinations thereof ((n−2 of 2
1) A power conversion device characterized in that the phase of the voltage phase control means is set based on the angle of the power-n) type.
JP5058374A 1992-07-23 1993-03-18 Power converter Expired - Lifetime JP3019655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5058374A JP3019655B2 (en) 1992-07-23 1993-03-18 Power converter

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP19674092 1992-07-23
JP4-196740 1992-07-23
JP5058374A JP3019655B2 (en) 1992-07-23 1993-03-18 Power converter

Publications (2)

Publication Number Publication Date
JPH0690565A true JPH0690565A (en) 1994-03-29
JP3019655B2 JP3019655B2 (en) 2000-03-13

Family

ID=26399425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5058374A Expired - Lifetime JP3019655B2 (en) 1992-07-23 1993-03-18 Power converter

Country Status (1)

Country Link
JP (1) JP3019655B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010233292A (en) * 2009-03-26 2010-10-14 Fuji Electric Holdings Co Ltd Method of reducing noise in power conversion system
US9712070B2 (en) 2013-06-04 2017-07-18 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010233292A (en) * 2009-03-26 2010-10-14 Fuji Electric Holdings Co Ltd Method of reducing noise in power conversion system
US9712070B2 (en) 2013-06-04 2017-07-18 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion device

Also Published As

Publication number Publication date
JP3019655B2 (en) 2000-03-13

Similar Documents

Publication Publication Date Title
US5124904A (en) Optimized 18-pulse type AC/DC, or DC/AC, converter system
US7449867B2 (en) Multi-phase buck converter with a plurality of coupled inductors
US6340851B1 (en) Modular transformer arrangement for use with multi-level power converter
US5337227A (en) Harmonic neutralization of static inverters by successive stagger
DE10108766A1 (en) Pulse width modulation controlled power conversion unit
US20080084717A1 (en) Multi-phase buck converter with a plurality of coupled inductors
EP0398176A2 (en) Harmonic reduction for multi bridge converters
CN112421975A (en) Multilevel power converter with AFE power cell phase control
JP2000166251A (en) Power conversion device
JPH04145870A (en) Three-phase multiplex voltage type pwm inverter
EP0472267A2 (en) Optimized, 18-pulse type AC/DC, or DC/AC, converter system
US11469685B2 (en) Filter and AFE power cell phase control
JPS611270A (en) Load wiring method with inverter
JPH0690565A (en) Power converter
Tekwani et al. Five-level inverter scheme for an induction motor drive with simultaneous elimination of common-mode voltage and DC-link capacitor voltage imbalance
JP2005045846A (en) Power conversion apparatus
JP4977040B2 (en) Control device, power conversion device, and control method
JPH11122953A (en) Voltage-type inverter
US5852553A (en) Harmonic neutralized voltage sourced inverter employing phase shifting interphase transformers
JP2009131107A (en) Ac-dc converter
Du et al. Reduced switching frequency computed PWM method for multilevel converter control
CN113572366A (en) Multi-directional active bridge converter, control method thereof and power conversion device
JPH09102723A (en) Line filter
JPH10290568A (en) Multiplex pulse width modulation cycloconverter and control method therefor
CN115833618A (en) Cascade frequency converter and carrier phase-shifting optimization method thereof