Nothing Special   »   [go: up one dir, main page]

JPH0688083A - Production of solid fuel from combustible waste - Google Patents

Production of solid fuel from combustible waste

Info

Publication number
JPH0688083A
JPH0688083A JP4238113A JP23811392A JPH0688083A JP H0688083 A JPH0688083 A JP H0688083A JP 4238113 A JP4238113 A JP 4238113A JP 23811392 A JP23811392 A JP 23811392A JP H0688083 A JPH0688083 A JP H0688083A
Authority
JP
Japan
Prior art keywords
combustible waste
solid fuel
waste
compound
combustible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4238113A
Other languages
Japanese (ja)
Inventor
Kunio Kato
邦夫 加藤
Yasuyuki Takarada
恭之 宝田
Toshio Haneda
壽夫 羽田
Naoyoshi Oda
直芳 小田
Shinai Koizumi
信愛 小泉
Yukihisa Fujima
幸久 藤間
Yoshiyuki Takeuchi
竹内  善幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4238113A priority Critical patent/JPH0688083A/en
Publication of JPH0688083A publication Critical patent/JPH0688083A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

PURPOSE:To facilitates the production of a pollution-free solid fuel in a short time from a combustible waste which is burned in a boiler and a combustion furnace. CONSTITUTION:A combustible waste is mixed by stirring with either an aqueous slurry of at least one calcium compound selected from among slaked lime, quick lime, and limestone having a particle diameter of 10mum to 1mm or the calcium compound and water. The obtained mixture is compression molded to produce a solid fuel.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はボイラ及び焼却炉にて燃
焼させる可燃廃棄物からの固形燃料の製造方法に関し、
特に塩素を含有する可燃物に有利に適用し得る固形燃料
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a solid fuel from combustible waste that is burned in a boiler and an incinerator,
In particular, it relates to a method for producing a solid fuel that can be advantageously applied to a combustible material containing chlorine.

【0002】[0002]

【従来の技術】都市ごみは現状では生ごみをそのまま焼
却するか、埋立てを処分する方法が行われている。地球
環境保護の観点から、ごみ焼却発電の高効率化による有
効利用及びごみの再資源化が求められており、同時に公
害対策の強化と立地問題の解決が望まれている。そこ
で、ごみ前処理燃料を作る技術が検討されはじめてい
る。すなわち、図4に示されるように、家庭ごみ1を粉
砕・選別工程3にてスクラップ・金属を除去した後の水
分を含んだ微粉砕ごみ4に、2で示すCaOを添加して
混合・反応工程5にて混合反応させて微粉砕ごみ4を生
物学的に安定させ、その後、押しつぶして工程6にて内
部の水分を押し出し、乾燥・中和固化工程7にて固形燃
料8を製造するものである。
2. Description of the Related Art At present, municipal waste is incinerated as it is or disposed of in landfill. From the viewpoint of protecting the global environment, efficient use of waste incineration power generation and recycling of waste are required, and at the same time, strengthening pollution control and solving location problems are desired. Therefore, technologies for producing waste pretreatment fuel have begun to be studied. That is, as shown in FIG. 4, household waste 1 is crushed / sorted in step 3 and finely crushed waste 4 containing water after removing scraps / metals is mixed with CaO 2 and mixed / reacted. A step of mixing and reacting in step 5 to biologically stabilize the finely ground waste 4, and then crushing to extrude internal water in step 6, and a solid fuel 8 is produced in drying / neutralizing step 7. Is.

【0003】[0003]

【発明が解決しようとする課題】微粉砕ごみには約20
〜45%の水分が含まれており、これにCaOを添加す
れば水熱反応により20〜70℃まで上昇する。 CaO+H2 O → Ca(OH)2 +15.1kcal/
mol 従って、生ごみ類は生物学的に安定し、脱硝効果や腐敗
しないという効果を有していたが、上式のようにごみと
CaOとの直接混合方式であるため反応時間が長く実用
的でないという問題があった。すなわち、可燃廃棄物に
は約20〜45%の水分が含まれているが、従来法にお
けるように、CaOを直接可燃廃棄物に混合すれば、C
aOは可燃廃棄物の表面の水が存在するところで部分的
にCaOが浸透し反応するだけで、なかなか可燃廃棄物
の細孔内まで浸透しない。そのため、CaOを可燃廃棄
物に均一に分散させることが困難で反応時間が長くな
り、しかも反応率が低いという問題があった。
[Problems to be Solved by the Invention] About 20 pieces of finely crushed waste
The water content is up to 45%, and when CaO is added to the water, the temperature rises to 20 to 70 ° C. due to the hydrothermal reaction. CaO + H 2 O → Ca (OH) 2 + 15.1kcal /
Therefore, food wastes were biologically stable and had the effects of denitrification and non-rotation, but the reaction time was long and practical because of the direct mixing method of waste and CaO as shown in the above formula. There was a problem not. That is, the combustible waste contains about 20 to 45% of water, but if CaO is directly mixed with the combustible waste as in the conventional method, C
CaO only partially penetrates and reacts with CaO in the presence of water on the surface of the combustible waste, and does not easily penetrate into the pores of the combustible waste. Therefore, there is a problem that it is difficult to uniformly disperse CaO in combustible waste, the reaction time becomes long, and the reaction rate is low.

【0004】本発明は上記技術水準に鑑み、CaOを含
めてCa化合物が可燃廃棄物に短時間に均一に浸透しC
a化合物の利用率が高く、その結果、公害物質の排出濃
度の少ない固形燃料を可燃廃棄物から製造し得る方法を
提供しようとするものである。
In view of the above-mentioned state of the art, the present invention allows Ca compounds, including CaO, to permeate into combustible waste materials uniformly in a short time.
An object of the present invention is to provide a method capable of producing a solid fuel from a combustible waste, which has a high utilization rate of the a compound and, as a result, has a low emission concentration of pollutants.

【0005】[0005]

【課題を解決するための手段】本発明は(1)可燃廃棄
物に消石灰、生石灰及び10μm〜1mm粒径の石灰石
よりなる群から選ばれた一種以上のCa化合物の水性ス
ラリを加えて攪拌混合し、得られた混合物を圧縮成型す
ることを特徴とする固形燃料の製造方法、(2)可燃廃
棄物に消石灰、生石灰及び10μm〜1mm粒径の石灰
石よりなる群から選ばれた一種以上のCa化合物と水を
加えて攪拌混合し、得られた混合物を圧縮成型すること
を特徴とする固形燃料の製造方法、(3)可燃廃棄物に
対し、Ca化合物が重量比1〜30重量%であることを
特徴とする上記(1)または上記(2)記載の固形燃料
の製造方法である。
According to the present invention, (1) an aqueous slurry of one or more Ca compounds selected from the group consisting of slaked lime, quick lime, and limestone having a particle size of 10 μm to 1 mm is added to combustible waste and stirred and mixed. And (2) a method for producing a solid fuel, characterized in that the obtained mixture is compression-molded, and (2) one or more Ca selected from the group consisting of slaked lime, quick lime, and limestone having a particle size of 10 μm to 1 mm. A method for producing a solid fuel, characterized in that the compound and water are added and mixed with stirring, and the resulting mixture is compression molded. (3) The Ca compound is 1 to 30% by weight relative to the combustible waste. The method for producing a solid fuel according to the above (1) or (2) is characterized in that

【0006】本発明の対象となる可燃廃棄物とは、紙
類、厨芥、木、竹類やプラスチック、ゴム等の可燃一般
廃棄物や石炭がら、廃油、廃プラスチック類等の可燃産
業廃棄物をさす。
[0006] The combustible wastes to which the present invention is applied include combustible general wastes such as paper, kitchen waste, wood, bamboo, plastics and rubber, and combustible industrial wastes such as coal waste, waste oil and waste plastics. As expected.

【0007】[0007]

【作用】本発明になる固形燃料は図1に示されるよう
に、Ca化合物がイオン交換によって取り込まれた場合
には10nm程度のCa化合物超微粒子として、また、
含浸によって取り込まれた場合にはサブミクロン程度の
Ca化合物微粒子として、スラリ混合あるいは加熱溶融
混合の場合には数μm〜数10μmのCa化合物微粒子
として可燃廃棄物に均一に分散し、該微細に分布するC
a化合物を利用することにより高効率な脱塩が行える。
固形燃料となるCa化合物自体は極めて微細な超微粒子
であるが、Ca化合物は可燃廃棄物中に取り込まれてお
り、流動層内、流動床内あるいはコンバスタ内に、この
固形燃料を投入するとこれらの中で挙動し、高効率の脱
塩が行える。
As shown in FIG. 1, the solid fuel according to the present invention, when the Ca compound is taken in by ion exchange, becomes Ca compound ultrafine particles of about 10 nm, and
When it is taken in by impregnation, it is uniformly dispersed in combustible waste as Ca compound fine particles of submicron size, and in the case of slurry mixing or heat melting mixing, it is uniformly dispersed in combustible waste as fine particles of Ca compound of several μm to several tens of μm. To do C
Highly efficient desalting can be performed by using the compound a.
Although the Ca compound itself, which is the solid fuel, is extremely fine ultrafine particles, the Ca compound is incorporated in the combustible waste, and when the solid fuel is introduced into the fluidized bed, the fluidized bed or the combustor, these It behaves inside and can perform highly efficient desalination.

【0008】可燃廃棄物の製造は図2,図3に示すよう
な2種類の方法により行うことができる。 (1)スラリ調製混合法(図2参照) この方法はCa化合物のスラリを調製し、可燃廃棄物に
混合、場合により養生された後圧縮・成型する方法であ
る。図2において、Ca化合物9は水10とともに調整
槽11に投入され、スラリが調製される。一方、可燃廃
棄物17はクラッシャ12で破砕され、前記スラリとと
もにミキサ13に投入されて混合されたのち、場合によ
り養生槽14で養生され、圧縮・成型機15で成型され
乾燥室16で加熱乾燥されて固形燃料Nを得るものであ
る。可燃廃棄物とスラリ状Ca化合物を混合する場合、
特にプラスチック類やゴム等の撥水性を有する可燃物の
場合にはCa化合物の含浸に養生時間を要する。養生時
間はクラッシャで破砕後の可燃廃棄物の粒径にも影響を
受ける。
The production of combustible waste can be carried out by two kinds of methods as shown in FIGS. (1) Slurry preparation and mixing method (see FIG. 2) This method is a method of preparing a slurry of a Ca compound, mixing it with a combustible waste, and optionally curing and then compressing and molding. In FIG. 2, the Ca compound 9 is put into the adjusting tank 11 together with water 10 to prepare a slurry. On the other hand, the combustible waste 17 is crushed by the crusher 12, introduced into the mixer 13 together with the slurry and mixed, and then optionally cured in the curing tank 14, molded by the compression / molding machine 15 and heated and dried in the drying chamber 16. To obtain the solid fuel N. When mixing flammable waste and slurry Ca compounds,
Particularly, in the case of a water-repellent combustible material such as plastics and rubber, it takes a curing time to impregnate the Ca compound. The curing time is also affected by the particle size of combustible waste after crushing with a crusher.

【0009】このスラリ調製混合法は石灰石、生石灰、
消石灰など全てのCa化合物が利用できるが、特に生石
灰、消石灰を使用する場合に好ましい。現象的には、イ
オン交換および含浸(ただし、石灰石の場合は除く。)
ならびにスラリ混合が生ずる。また、加熱時に溶融する
成分が可燃廃棄物中に含まれている場合には、物理的に
破砕された溶融する可燃廃棄物により、コンバスタに投
入した段階でCa化合物が微細な粒子として可燃廃棄物
中に取り込まれる加熱溶融混合が生ずる。
This slurry preparation and mixing method is applied to limestone, quick lime,
Although all Ca compounds such as slaked lime can be used, it is particularly preferable when quick lime or slaked lime is used. Phenomenonally, ion exchange and impregnation (except for limestone)
And slurry mixing occurs. Further, when the combustible waste contains a component that melts when heated, the combustible waste that is physically crushed causes the Ca compound to become fine particles when the Ca compound is introduced into the combustor. Heat-melt mixing takes place therein.

【0010】(2)直接混合法(図3参照) この方法はCa化合物、可燃廃棄物、水分を直接に混合
させ、場合により養生させて製造する方法である。図3
において、Ca化合物9は水10、クラッシャ12で破
砕された可燃廃棄物7とともに直接ミキサ13に投入さ
れて、混合された後、養生槽15で養生され、圧縮成型
機15で成型され、乾燥室16で乾燥されて固形燃料N
を得るものである。
(2) Direct mixing method (see FIG. 3) This method is a method of directly mixing the Ca compound, combustible waste, and water, and optionally curing the mixture for production. Figure 3
In, the Ca compound 9 is directly put into the mixer 13 together with the water 10 and the combustible waste 7 crushed by the crusher 12, mixed, and then cured in the curing tank 15, molded by the compression molding machine 15, and dried in the drying chamber. Solid fuel N dried at 16
Is what you get.

【0011】この直接混合法は石灰石、生石灰、消石灰
など全てのCa化合物が利用できるが、特に石灰石の場
合にはこの方法が好ましい。現象的には、(1)と同じ
イオン交換および含浸(ただし、石灰石の場合は除
く。)ならびにスラリ混合が生ずる。加熱時に溶融する
成分が可燃廃棄物中に含まれている場合には、(1)と
同様、前処理段階で物理的に破砕された溶融する可燃廃
棄物により、コンバスタに投入した段階でCa化合物が
微細な粒子として可燃物に取り込まれる加熱溶融混合が
生ずる。
In this direct mixing method, all Ca compounds such as limestone, quick lime and slaked lime can be used, but this method is preferable especially in the case of limestone. Phenomenologically, the same ion exchange and impregnation (except in the case of limestone) and slurry mixing as in (1) occur. When the combustible waste contains a component that melts during heating, as in (1), the combustible waste that is physically crushed in the pretreatment stage causes the Ca compound to be added to the combustor. Heat-melt mixing occurs in which the fine particles are incorporated into the combustible material as fine particles.

【0012】以上の手段は石炭がらや、紙類、厨芥、繊
維、木、竹類、プラスチック類、ゴム類等の廃棄物等
の、ほとんどの塩素を含む可燃物に広く適用することが
できる。
The above means can be widely applied to almost all chlorine-containing combustible substances such as coal scraps, papers, kitchen wastes, fibers, woods, bamboos, plastics, rubbers and other wastes.

【0013】固形燃料を製造する方法の作用としては、
前述の2種の何れによるか、又、可燃廃棄物が何である
かにより異なる。
The operation of the method for producing solid fuel is as follows.
It depends on which of the above two types and what the combustible waste is.

【0014】(1)イオン交換作用 スラリ調製混合法あるいは直接混合法の何れの混合法に
よっても、カルボキシル基、酸性水酸基、スルホン酸基
などのイオン交換能を有する可燃物(例えば、石炭がら
や、紙類、厨芥、繊維、木、竹類、プラスチック類、ゴ
ム類などの可燃廃棄物等)にCa化合物を水分の存在下
で添加した場合、Caイオンはイオン交換して可燃物中
に取り込まれ、加熱後も10μm程度のCa化合物超微
粒子として存在する。このような超微粒子の活性は著し
く大きく、Ca利用率は100%となり反応速度も極め
て大きい。
(1) Ion-exchange action By any mixing method such as slurry preparation mixing method or direct mixing method, a combustible material having an ion-exchange ability such as a carboxyl group, an acidic hydroxyl group, a sulfonic acid group (for example, coal dust, Flammable waste such as papers, kitchen waste, fibers, wood, bamboos, plastics, and rubbers) in the presence of water, Ca ions are ion-exchanged and taken into the combustibles. Even after heating, it exists as Ca compound ultrafine particles of about 10 μm. The activity of such ultrafine particles is remarkably high, the utilization rate of Ca is 100%, and the reaction rate is extremely high.

【0015】(2)含浸作用 Ca化合物スラリ調製混合法あるいは直接混合法の何れ
の混合法によっても、多孔質の可燃廃棄物に水分の存在
下でCa化合物を添加した場合、Ca化合物は含浸し可
燃廃棄物内部にまで取り込まれる。加熱後はサブミクロ
ン程度の多結晶体として存在し、反応活性はイオン交換
作用についで大きい。
(2) Impregnation action [0015] When the Ca compound is added to the porous combustible waste in the presence of water by any mixing method of the Ca compound slurry preparation mixing method or the direct mixing method, the Ca compound is impregnated. It is taken up even inside the combustible waste. After heating, it exists as a submicron polycrystal, and the reaction activity is second only to the ion exchange action.

【0016】(3)スラリ混合作用 スラリ調製混合法あるいは直接混合法によって可燃廃棄
物にCa化合物スラリを添加した場合、加熱後、Ca化
合物は数μm〜数10μmの微粒子となり、可燃廃棄物
中に分散するので反応活性は大きくなる。
(3) Slurry mixing action When the Ca compound slurry is added to the combustible waste by the slurry preparation mixing method or the direct mixing method, the Ca compound becomes fine particles of several μm to several tens of μm after heating, and is contained in the combustible waste. Since it is dispersed, the reaction activity becomes large.

【0017】(4)加熱溶融混合作用 可燃廃棄物中に加熱時に溶融する成分が含まれている場
合には、スラリ調製混合法あるいは直接混合法のいずれ
の混合法によっても、コンバスタに投入した段階で、物
理的に破砕された加熱時に溶融する可燃廃棄物により、
Ca化合物が加熱溶融混合し微細な粒子として可燃廃棄
物に取り込まれることとなり、反応活性は大きくなる。
(4) Heat-melting and mixing action When combustible waste contains components that melt when heated, it is added to the combustor by either the slurry preparation mixing method or the direct mixing method. The combustible waste, which is physically crushed and melts when heated,
The Ca compound is heated, melted, mixed, and taken into the combustible waste as fine particles, so that the reaction activity is increased.

【0018】以上、いずれの作用によっても、Ca化合
物は微粒子として可燃廃棄物に取り込まれるため、反応
活性は大きくなる。また、Ca添加可燃廃棄物粒子自体
は通常の可燃廃棄物粒子と同様に取り扱うことができる
ため、流動層、流動床、あるいはコンバスタに投入した
場合は炉内での滞留時間を十分にとることができ、また
Ca微粒子のハンドリングに伴う問題は生じない。な
お、可燃廃棄物に対する消石灰、生石灰、石灰石または
これらの混合物の添加量は一般に1〜30重量%が好ま
しい。これ以上添加量を増加しても利用効率が低下す
る。
As described above, the Ca compound is incorporated into the combustible waste as fine particles by any of the above actions, so that the reaction activity is increased. In addition, since Ca-containing combustible waste particles themselves can be handled in the same manner as ordinary combustible waste particles, when they are put into a fluidized bed, a fluidized bed, or a combustor, sufficient residence time in the furnace can be secured. In addition, the problem associated with handling of Ca fine particles does not occur. The amount of slaked lime, quick lime, limestone or a mixture thereof added to combustible waste is generally preferably 1 to 30% by weight. Even if the amount of addition is increased more than this, the utilization efficiency decreases.

【0019】[0019]

【実施例】以下実施例について述べる。 (実施例1)(スラリ調製混合法) 可燃廃棄物として塩素を2.7重量%、硫黄を1.4重
量%含有する産業廃棄物(石炭燃え殻、廃プラスチッ
ク、ゴム等含有)を使用した。325メッシュのふるい
通過後の消石灰を90℃の温水を保持している調製槽に
供給して消石灰スラリとして、このスラリをクラッシャ
で粉砕した塩素含有可燃物とミキサで混合した後、圧縮
成形装置にて所定形状に成形加工後、加熱乾燥し、固形
燃料とした。90℃の温水を使用したのは反応率を高め
るためである。この固形燃料を循環流動槽ボイラコンバ
スタに供給して燃焼した。
EXAMPLES Examples will be described below. (Example 1) (Slurry preparation and mixing method) As combustible waste, industrial waste containing 2.7% by weight of chlorine and 1.4% by weight of sulfur (including coal cinder, waste plastic, rubber, etc.) was used. The slaked lime after passing through a 325-mesh sieve is supplied to a preparation tank holding hot water at 90 ° C to obtain slaked lime slurry. After forming into a predetermined shape, it was heated and dried to obtain a solid fuel. 90 ° C. warm water was used to increase the reaction rate. This solid fuel was supplied to a circulating fluidized tank boiler combustor and burned.

【0020】○(スラリ混合条件) 塩素含有可燃廃棄物 : 80kg 消石灰 : 5kg(平均粒径:
40μm) 水 : 10kg 消石灰スラリ/可燃廃棄物 : 19% ○(圧縮成形条件) 圧 力 : 3.1kg/cm2 加熱温度 : 87℃ 固形燃料の平均径 : 3mm ○(循環流動槽ボイラ) 燃焼温度 : 850℃ 燃焼炉の排ガス及び残留物の分析の結果、脱塩率は37
%であった。
○ (Slurry mixing condition) Chlorine-containing combustible waste: 80 kg Slaked lime: 5 kg (Average particle size:
40 μm) Water: 10 kg Slaked lime slurry / combustible waste: 19% ○ (compression molding conditions) Pressure: 3.1 kg / cm 2 Heating temperature: 87 ° C. Solid fuel average diameter: 3 mm ○ (circulating fluidized tank boiler) Combustion temperature As a result of analysis of exhaust gas and residues of a combustion furnace at 850 ° C., the desalination rate was 37.
%Met.

【0021】(実施例2)(スラリ調製混合法) 実施例1と同じ条件で、消石灰スラリと可燃廃棄物をミ
キサで混合した後、さらに、養生槽内に30分保持した
後、圧縮成形装置にて所定形状に成形加工後、加熱乾燥
し、固形燃料とした。この固形燃料を循環流動槽ボイラ
コンバスタに供給して燃焼した。
Example 2 (Slurry Preparation and Mixing Method) Under the same conditions as in Example 1, slaked lime slurry and combustible waste were mixed in a mixer, and then held in a curing tank for 30 minutes, and then a compression molding apparatus. After being formed into a predetermined shape by heating, it was heated and dried to obtain a solid fuel. This solid fuel was supplied to a circulating fluidized tank boiler combustor and burned.

【0022】○(スラリ混合条件) 塩素含有可燃廃棄物 : 80kg 消石灰 : 5kg(平均粒径:
40μm) 水 : 10kg 消石灰スラリ/可燃廃棄物 : 19% ○(養生条件) 養生時間 : 30分 養生温度 : 43℃ ○(圧縮成形条件) 圧 力 : 3.1kg/cm2 加熱温度 : 87℃ 固形燃料の平均径 : 2mm ○(循環流動槽ボイラ) 燃焼温度 : 850℃ 燃焼炉の排ガス及び残留物の分析の結果、脱塩率は40
%であった。
○ (Slurry mixing condition) Chlorine-containing combustible waste: 80 kg Slaked lime: 5 kg (average particle size:
40 μm) Water: 10 kg Slaked lime slurry / combustible waste: 19% ○ (curing condition) Curing time: 30 minutes Curing temperature: 43 ° C ○ (compression molding condition) Pressure: 3.1 kg / cm 2 Heating temperature: 87 ° C Solid Average diameter of fuel: 2 mm ○ (circulating fluidized-bed boiler) Combustion temperature: 850 ° C. Analysis of exhaust gas and residues in the combustion furnace showed a desalination rate of 40
%Met.

【0023】(実施例3)(直接混合法) 実施例1と同様に調製した消石灰を少量の水を添加しな
がら、クラッシャで破砕した加熱溶融性をもつ廃プラス
チック(ポリ塩化ビニル、ポリエチレン等含有)を含む
産業廃棄物(塩素3.0重量%、硫黄1.2重量%含
有)とをミキサで混合した後、圧縮成形装置にて所定形
状に成形加工後、加熱乾燥し、固形燃料とした。この、
固形燃料を循環流動槽ボイラコンバスタに供給して燃焼
した。
(Example 3) (Direct mixing method) A slaked lime prepared in the same manner as in Example 1 was crushed with a crusher while adding a small amount of water, and a waste plastic (polyvinyl chloride, polyethylene, etc.) having heat melting property was contained. ) Containing industrial waste (containing 3.0% by weight of chlorine and 1.2% by weight of sulfur) in a mixer, molded into a predetermined shape by a compression molding device, and dried by heating to obtain a solid fuel. . this,
The solid fuel was supplied to a circulating fluidized tank boiler combustor and burned.

【0024】○(混合条件) 塩素含有可燃廃棄物 : 80kg 消石灰 : 5kg(平均粒径:
40μm) 水 : 3kg 消石灰スラリ/可燃廃棄物 : 10% ○(圧縮成形条件) 圧 力 : 3.2kg/cm2 加熱温度 : 85℃ 固形燃料の平均径 : 3mm ○(循環流動槽ボイラ) 燃焼温度 : 850℃ 燃焼炉の排ガス及び残留物の分析の結果、脱塩率は35
%であった。
○ (Mixing condition) Combustible waste containing chlorine: 80 kg Slaked lime: 5 kg (Average particle size:
40 μm) Water: 3 kg Slaked lime slurry / combustible waste: 10% ○ (compression molding conditions) Pressure: 3.2 kg / cm 2 Heating temperature: 85 ° C Average diameter of solid fuel: 3 mm ○ (circulating fluidized tank boiler) Combustion temperature : As a result of analysis of exhaust gas and residue of 850 ° C. combustion furnace, desalination rate is 35
%Met.

【0025】(実施例4)(スラリ調製混合法) 実施例1の消石灰の代わりに生石灰を用い、生石灰スラ
リと可燃廃棄物をミキサで混合した後、さらに、養生槽
内に30分間保持した後、圧縮成形装置にて所定形状に
成形加工後、加熱乾燥し、固形燃料とした。この固形燃
料を循環流動槽ボイラコンバスタに供給して燃焼した。
(Example 4) (Slurry preparation and mixing method) Quick lime was used instead of slaked lime in Example 1, and after mixing quick lime slurry and combustible waste with a mixer, further holding in a curing tank for 30 minutes After being molded into a predetermined shape by a compression molding device, it was heated and dried to obtain a solid fuel. This solid fuel was supplied to a circulating fluidized tank boiler combustor and burned.

【0026】○(スラリ混合条件) 塩素含有可燃物 : 80kg 生石灰 : 5kg(平均粒径:
40μm) 水 : 10kg 生石灰スラリ/可燃廃棄物 : 20% ○(養生条件) 養生時間 : 30分 養生温度 : 45℃ ○(圧縮成形条件) 圧 力 : 3.01kg/cm2 加熱温度 : 88℃ 固形燃料の平均径 : 2mm ○(循環流動槽ボイラ) 燃焼温度 : 850℃ 燃焼炉の排ガス及び残留物の分析の結果、脱塩率は37
%であった。
○ (Slurry mixing conditions) Chlorine-containing combustibles: 80 kg Quick lime: 5 kg (Average particle size:
40 μm) Water: 10 kg Quick lime slurry / combustible waste: 20% ○ (curing condition) Curing time: 30 minutes Curing temperature: 45 ° C ○ (compression molding condition) Pressure: 3.01 kg / cm 2 Heating temperature: 88 ° C Solid Average diameter of fuel: 2 mm ○ (circulating fluidized-bed boiler) Combustion temperature: 850 ° C. Analysis of exhaust gas and residues in the combustion furnace revealed a desalination rate of 37
%Met.

【0027】(実施例5)(スラリ調製混合法) 実施例1の消石灰の代わりに石灰石を用い、石灰石スラ
リと可燃廃棄物をミキサで混合した後、更に、養生槽内
に30分保持した後、圧縮成形装置にて所定形状に成形
加工後、加熱乾燥し、固形燃料とした。この固形燃料を
循環流動槽ボイラコンバスタに供給して燃焼した。
(Example 5) (Slurry preparation and mixing method) Limestone was used in place of slaked lime in Example 1, limestone slurry and combustible waste were mixed with a mixer, and further held in a curing tank for 30 minutes. After being molded into a predetermined shape by a compression molding device, it was heated and dried to obtain a solid fuel. This solid fuel was supplied to a circulating fluidized tank boiler combustor and burned.

【0028】○(スラリ混合条件) 塩素含有可燃廃棄物 : 80kg 石灰石 : 5kg(平均粒径:
40μm) 水 : 10kg 石灰石スラリ/可燃廃棄物 : 20% ○(養生条件) 養生時間 : 30分 養生温度 : 45℃ ○(圧縮成形条件) 圧 力 : 3.01kg/cm2 加熱温度 : 88℃ 固形燃料の平均径 : 2mm ○(循環流動槽ボイラ) 燃焼温度 : 850℃ 燃焼炉の排ガス及び残留物の分析の結果、脱塩率は35
%であった。
○ (Slurry mixing condition) Chlorine-containing combustible waste: 80 kg Limestone: 5 kg (average particle size:
40 μm) Water: 10 kg Limestone slurry / combustible waste: 20% ○ (curing conditions) Curing time: 30 minutes Curing temperature: 45 ° C ○ (compression molding conditions) Pressure: 3.01 kg / cm 2 Heating temperature: 88 ° C Solid Average diameter of fuel: 2 mm ○ (circulating fluidized-bed boiler) Combustion temperature: 850 ° C As a result of analysis of combustion furnace exhaust gas and residues, desalination rate is 35
%Met.

【0029】(実施例6)(直接混合法) 生石灰を少量の水を添加しながら、クラッシャで破砕し
た加熱溶融性をもつ廃プラスチック(ポリ塩化ビニル、
ポリエチレン等含有)を含む産業廃棄物(塩素3.0重
量%、硫黄1.2重量%含有)とをミキサで混合した
後、圧縮成形装置にて所定形状に成形加工後、加熱乾燥
し、固形燃料とした。この固形燃料を循環流動槽ボイラ
コンバスタに供給して燃焼した。
(Example 6) (Direct mixing method) Quick lime was crushed with a crusher while adding a small amount of water, and waste plastic (polyvinyl chloride;
After mixing industrial waste (containing polyethylene etc.) (containing 3.0% by weight of chlorine and 1.2% by weight of sulfur) with a mixer, it is molded into a predetermined shape by a compression molding device, dried by heating, and solidified. Used as fuel. This solid fuel was supplied to a circulating fluidized tank boiler combustor and burned.

【0030】○(混合条件) 塩素含有可燃廃棄物 : 80kg 生石灰 : 5kg(平均粒径:
40μm) 水 : 10kg 生石灰スラリ/可燃廃棄物 : 10% ○(圧縮成形条件) 圧 力 : 3.3kg/cm2 加熱温度 : 86℃ 固形燃料の平均径 : 3mm ○(循環流動槽ボイラ) 燃焼温度 : 850℃ 燃焼炉の排ガス及び残留物の分析の結果、脱塩率は33
%であった。
○ (Mixing conditions) Chlorine-containing combustible waste: 80 kg Quick lime: 5 kg (Average particle size:
40 μm) Water: 10 kg quicklime slurry / combustible waste: 10% ○ (compression molding conditions) Pressure: 3.3 kg / cm 2 Heating temperature: 86 ° C. Average diameter of solid fuel: 3 mm ○ (circulating fluidized tank boiler) Combustion temperature : Desalination rate is 33 at 850 ° C as a result of analysis of exhaust gas and residue of combustion furnace
%Met.

【0031】(実施例7)(直接混合法) 石灰石を少量の水を添加しながら、クラッシャで破砕し
た加熱溶融性をもつ廃プラスチック(ポリ塩化ビニル、
ポリエチレン等含有)を含む産業廃棄物(塩素3.0重
量%、硫黄1.2重量%含有)とをミキサで混合した
後、圧縮成形装置にて所定形状に成形加工後、加熱乾燥
し、固形燃料とした。この固形燃料を循環流動槽ボイラ
コンバスタに供給して燃焼した。
(Example 7) (Direct mixing method) Limestone was crushed with a crusher while adding a small amount of water, and waste plastic (polyvinyl chloride;
After mixing industrial waste (containing polyethylene etc.) (containing 3.0% by weight of chlorine and 1.2% by weight of sulfur) with a mixer, it is molded into a predetermined shape by a compression molding device, dried by heating, and solidified. Used as fuel. This solid fuel was supplied to a circulating fluidized tank boiler combustor and burned.

【0032】○(混合条件) 塩素含有可燃廃棄物 : 80kg 石灰石 : 6kg(平均粒径:
40μm) 水 : 3kg 石灰石スラリ/可燃廃棄物 : 11% ○(圧縮成形条件) 圧 力 : 3.5kg/cm2 加熱温度 : 86℃ 固形燃料の平均径 : 3mm ○(循環流動槽ボイラ) 燃焼温度 : 850℃ 燃焼炉の排ガス及び残留物の分析の結果、脱塩率は31
%であった。
○ (Mixing condition) Chlorine-containing combustible waste: 80 kg Limestone: 6 kg (Average particle size:
40 μm) Water: 3 kg Limestone slurry / combustible waste: 11% ○ (compression molding conditions) Pressure: 3.5 kg / cm 2 Heating temperature: 86 ° C Average diameter of solid fuel: 3 mm ○ (circulating fluidized tank boiler) Combustion temperature : As a result of analysis of exhaust gas and residue of 850 ° C combustion furnace, desalination rate is 31
%Met.

【0033】(比較例1)実施例1と同じ可燃廃棄物
と、325メッシュのふるい通過後の石灰石をミキサで
混合した後、圧縮成形装置にて所定形状に成形加工後、
加熱乾燥し、固形燃料とした。この固形燃料を循環流動
槽ボイラコンバスタに供給して燃焼した。
(Comparative Example 1) The same combustible waste as in Example 1 and limestone after passing through a 325-mesh sieve were mixed in a mixer, and then molded into a predetermined shape by a compression molding device.
It was heated and dried to obtain a solid fuel. This solid fuel was supplied to a circulating fluidized tank boiler combustor and burned.

【0034】○(混合条件) 塩素含有可燃物 : 80kg 石灰石 : 7kg(平均粒径:
28μm) 石灰石/可燃廃棄物 : 21% ○(圧縮成形条件) 圧 力 : 128kg/cm2 加熱温度 : 87℃ 固形燃料の平均径 : 3mm ○(循環流動槽ボイラ) 燃焼温度 : 850℃ 燃焼炉の排ガス及び残留物の分析の結果、脱塩率は25
%であった。
○ (Mixing conditions) Chlorine-containing combustibles: 80 kg Limestone: 7 kg (Average particle size:
28 μm) Limestone / combustible waste: 21% ○ (compression molding conditions) Pressure: 128 kg / cm 2 Heating temperature: 87 ° C Average diameter of solid fuel: 3 mm ○ (circulating fluidized tank boiler) Combustion temperature: 850 ° C of combustion furnace As a result of analysis of exhaust gas and residues, the desalination rate was 25.
%Met.

【0035】[0035]

【発明の効果】本発明によれば、可燃廃棄物にCa化合
物が均一かつ速かに分散するので、本発明方法で製造さ
れた固形燃料を最終的にボイラ又は焼却炉で燃焼させる
場合、塩素、硫黄等有害物質がCaO、Ca(OH)2
又はCaCO3 が高効率で反応するため、Ca分の利用
効率が高く、HCl、SOxなどの有害物質の排出濃度
の少ない優れた無公害の固形燃料とすることができる。
また、圧縮成型時においても数kg/cm2 以下の圧力
で成型可能であり製造のための装置を小型化することが
可能となる。
According to the present invention, since the Ca compound is uniformly and rapidly dispersed in the combustible waste, when the solid fuel produced by the method of the present invention is finally burned in a boiler or an incinerator, chlorine is not used. , Harmful substances such as sulfur are CaO, Ca (OH) 2
Alternatively, since CaCO 3 reacts with high efficiency, it is possible to obtain an excellent non-polluting solid fuel with high utilization efficiency of Ca and low emission concentration of harmful substances such as HCl and SOx.
Further, even during compression molding, it is possible to mold at a pressure of several kg / cm 2 or less, which makes it possible to downsize the manufacturing apparatus.

【0036】更に本発明方法にて製造した固形燃料は次
の利点を有する。 (1)乾燥した可燃廃棄物にCa化合物のみを添加する
従来の方法では、可燃物粒子間にCa化合物が物理的に
混在しているのみで、ボイラあるいは焼却炉にて燃焼さ
せる燃焼条件によっては未反応Ca化合物がボイラある
いは焼却炉燃焼器外部に排出されてしまいCa化合物の
利用効率が低下する欠点がある。これに対して本発明の
方法ではCa化合物が一部可燃廃棄物中のカルボキシル
基、酸性水酸基、スルホン酸基などのイオン交換基とイ
オン交換して可燃物粒子と強く結合しているため、燃焼
中に未反応のまま排出されにくく、反応率が高く反応速
度も極めて大きい。
Further, the solid fuel produced by the method of the present invention has the following advantages. (1) In the conventional method of adding only the Ca compound to the dry combustible waste, the Ca compound is only physically mixed between the combustible particles, and depending on the combustion conditions for combustion in the boiler or the incinerator. The unreacted Ca compound is discharged to the outside of the boiler or the incinerator combustor, and the utilization efficiency of the Ca compound is reduced. On the other hand, in the method of the present invention, the Ca compound is partially ion-exchanged with the ion-exchange groups such as carboxyl group, acidic hydroxyl group, and sulfonic acid group in the combustible waste to strongly bond with the combustible particles. It is difficult to be discharged unreacted inside, the reaction rate is high and the reaction rate is extremely high.

【0037】(2)含水可燃廃棄物にCa化合物の粒子
を添加する従来の方法では、活性状態になっていないC
a化合物と可燃廃棄物の固体/固体反応であり反応速度
が遅い。この欠点に対して本発明ではCa化合物と水と
を混合することにより、Ca化合物が一部可燃廃棄物中
のカルボキシル基、酸性水酸基、スルホン酸基などのイ
オン交換基とイオン交換して可燃物中に取り込まれ、反
応しやすい活性化状態になるために、反応速度も極めて
大きい。
(2) In the conventional method of adding particles of a Ca compound to a water-containing combustible waste, C which is not in an activated state is used.
Reaction is slow because it is a solid / solid reaction between a compound and combustible waste. On the other hand, in the present invention, by mixing a Ca compound with water, the Ca compound is partially ion-exchanged with an ion-exchange group such as a carboxyl group, an acidic hydroxyl group or a sulfonic acid group in the combustible waste to form a combustible substance. The reaction rate is extremely high because it is taken into the inside and becomes an activated state in which it easily reacts.

【0038】(3)乾燥した可燃廃棄物にCa化合物を
添加する従来の方法では、可燃廃棄物粒子中に含浸され
ている水分が可燃物表面に流出した後、表面のCa化合
物と反応して再度可燃物内に拡散するという過程を経る
ので、含浸時間が非常に長い。これに対して本発明では
Ca化合物が可燃廃棄物表面上の水分と容易に水溶液を
作った後、速やかに可燃廃棄物内部に含浸されるため
に、含浸に必要な時間が短く、養生時間を短縮できる。
(3) In the conventional method of adding the Ca compound to the dry combustible waste, the water impregnated in the combustible waste particles flows out to the surface of the combustible material and then reacts with the Ca compound on the surface. Since the process of diffusing into the flammable material again occurs, the impregnation time is very long. On the other hand, in the present invention, since the Ca compound easily forms an aqueous solution with the water on the surface of the combustible waste and is quickly impregnated inside the combustible waste, the time required for impregnation is short and the curing time is long. Can be shortened.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る固形燃料の燃焼時の現象と反応を
示す説明図。
FIG. 1 is an explanatory diagram showing a phenomenon and a reaction during burning of a solid fuel according to the present invention.

【図2】本発明の第1の実施態様である固形燃料の製造
工程を表す説明図。
FIG. 2 is an explanatory view showing a manufacturing process of the solid fuel according to the first embodiment of the present invention.

【図3】本発明の第2の実施態様である固形燃料の製造
工程を表す説明図。
FIG. 3 is an explanatory diagram showing a manufacturing process of a solid fuel according to a second embodiment of the present invention.

【図4】従来の固形燃料の製造工程を表す説明図。FIG. 4 is an explanatory view showing a conventional solid fuel manufacturing process.

フロントページの続き (72)発明者 宝田 恭之 群馬県桐生市菱町二丁目3535の4 (72)発明者 羽田 壽夫 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社本社内 (72)発明者 小田 直芳 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社本社内 (72)発明者 小泉 信愛 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社本社内 (72)発明者 藤間 幸久 長崎県長崎市深堀町5丁目717番1号 三 菱重工業株式会社長崎研究所内 (72)発明者 竹内 善幸 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内Front page continuation (72) Inventor Yasuyuki Takarada 3535-3, Hishimachi, Kiryu-shi, Gunma Prefecture (72) Inventor Toshio Haneda 2-5-1, Marunouchi, Chiyoda-ku, Tokyo Sanryo Heavy Industries Co., Ltd. (72) Inventor Naoyoshi Oda 2-5-1, Marunouchi, Chiyoda-ku, Tokyo Sanryo Heavy Industries Co., Ltd. (72) Inventor Shinai Koizumi 2-5-1 Marunouchi, Chiyoda-ku, Tokyo Sanryo Heavy Industries Co., Ltd. (72 ) Inventor Yukihisa Fujima 5-717-1, Fukahori-cho, Nagasaki-shi, Nagasaki Sanryo Heavy Industries Co., Ltd.Nagasaki Research Institute (72) Inventor Yoshiyuki Takeuchi 4-6-22 Kannon-shinmachi, Nishi-ku, Hiroshima-shi Mitsubishi Heavy Industries Hiroshima In the laboratory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 可燃廃棄物に消石灰、生石灰及び10μ
m〜1mm粒径の石灰石よりなる群から選ばれた一種以
上のCa化合物の水性スラリを加えて攪拌混合し、得ら
れた混合物を圧縮成型することを特徴とする固形燃料の
製造方法。
1. Burnable waste includes slaked lime, quick lime and 10 μm.
A method for producing a solid fuel, comprising adding an aqueous slurry of one or more Ca compounds selected from the group consisting of limestone having a particle diameter of m to 1 mm, stirring and mixing, and compression-molding the obtained mixture.
【請求項2】 可燃廃棄物に消石灰、生石灰及び10μ
m〜1mm粒径の石灰石よりなる群から選ばれた一種以
上のCa化合物と水を加えて攪拌混合し、得られた混合
物を圧縮成型することを特徴とする固形燃料の製造方
法。
2. Burnable waste includes slaked lime, quick lime and 10 μm.
A method for producing a solid fuel, comprising adding one or more Ca compounds selected from the group consisting of limestone having a particle diameter of m to 1 mm and water, stirring and mixing the mixture, and compression-molding the obtained mixture.
【請求項3】 可燃廃棄物に対し、Ca化合物が重量比
1〜30重量%であることを特徴とする請求項1または
請求項2記載の固形燃料の製造方法。
3. The method for producing a solid fuel according to claim 1, wherein the weight ratio of the Ca compound to the combustible waste is 1 to 30% by weight.
JP4238113A 1992-09-07 1992-09-07 Production of solid fuel from combustible waste Withdrawn JPH0688083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4238113A JPH0688083A (en) 1992-09-07 1992-09-07 Production of solid fuel from combustible waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4238113A JPH0688083A (en) 1992-09-07 1992-09-07 Production of solid fuel from combustible waste

Publications (1)

Publication Number Publication Date
JPH0688083A true JPH0688083A (en) 1994-03-29

Family

ID=17025372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4238113A Withdrawn JPH0688083A (en) 1992-09-07 1992-09-07 Production of solid fuel from combustible waste

Country Status (1)

Country Link
JP (1) JPH0688083A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH101686A (en) * 1996-06-14 1998-01-06 Kawasaki Heavy Ind Ltd Production of compressed molding product of refuse
US6022242A (en) * 1997-05-09 2000-02-08 Thomas & Betts International, Inc. Connector used for flexible flat cable
KR100405169B1 (en) * 2001-01-15 2003-11-12 하종제 Sold fuel manufacturing method use waste synthesis resin
JP2007169398A (en) * 2005-12-20 2007-07-05 Shigenka System Kk Solidified fuel, system for manufacturing solidified fuel and method for manufacturing solidified fuel
JP2009226354A (en) * 2008-03-25 2009-10-08 Jfe Engineering Corp Method for treating organic sludge

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH101686A (en) * 1996-06-14 1998-01-06 Kawasaki Heavy Ind Ltd Production of compressed molding product of refuse
US6022242A (en) * 1997-05-09 2000-02-08 Thomas & Betts International, Inc. Connector used for flexible flat cable
KR100405169B1 (en) * 2001-01-15 2003-11-12 하종제 Sold fuel manufacturing method use waste synthesis resin
JP2007169398A (en) * 2005-12-20 2007-07-05 Shigenka System Kk Solidified fuel, system for manufacturing solidified fuel and method for manufacturing solidified fuel
JP2009226354A (en) * 2008-03-25 2009-10-08 Jfe Engineering Corp Method for treating organic sludge

Similar Documents

Publication Publication Date Title
US5669969A (en) Process for forming aggregate; and product
US6077494A (en) Method for removing ammonia from ammonia contaminated fly ash
CN110655339A (en) Process method for preparing ceramsite by sludge and inorganic solid waste
US4064212A (en) Method of making pellets usable as aggregate or filler
CN101914405B (en) Sludge briquette fuel as well as production method and production system thereof
SK163799A3 (en) Method and apparatus for thermolytic treatment of polymer- and cellulose containing materials, especially light shredder residues
JPH0688083A (en) Production of solid fuel from combustible waste
JP2002292359A (en) Method for reutilizing mineralized organic waste and artificial zeolite
JP2000017278A (en) Preparation of refuse solid fuel
Marruzzo et al. Characteristics and properties of a mixture containing fly ash, hydrated lime, and an organic additive
KR100584219B1 (en) Scrapped material used solidity manufacture method and treatment method of organic sludge
JPS63500237A (en) Method for converting organic and inorganic wastes into solid inert water-insoluble substances
WO2001032324A1 (en) Method for treating combustion ash of coal and method for desulfurization
JPH08176567A (en) Production of solid fuel from waste and utilization of the same solid fuel
JPH08269471A (en) Production of solid fuel from waste and application of the solid fuel
JPH06106533A (en) Method for manufacture of solid fuel from waste having plastic principally
JP2007225166A (en) Manufacturing method for construction and civil engineering material
JP2954990B2 (en) Method of manufacturing solid fuel from waste
JP4000466B2 (en) How to use waste oil treatment agent after absorbing waste oil
KR20000072160A (en) New Formed Fuels and preparation Method from Sewage Waste Sludge
RU2131912C1 (en) Method of fabricating fuel briquets
RU2144425C1 (en) Raw material for production of granules
JP3122487B2 (en) Manufacturing method of solidified body from municipal solid waste
JP3037688B1 (en) Dioxin adsorption removal method using porous fired body
JPH08176568A (en) Fuel and its production

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991130