JPH0659236B2 - Method for measuring biological substrate concentration and oxygen sensor used therefor - Google Patents
Method for measuring biological substrate concentration and oxygen sensor used thereforInfo
- Publication number
- JPH0659236B2 JPH0659236B2 JP31410887A JP31410887A JPH0659236B2 JP H0659236 B2 JPH0659236 B2 JP H0659236B2 JP 31410887 A JP31410887 A JP 31410887A JP 31410887 A JP31410887 A JP 31410887A JP H0659236 B2 JPH0659236 B2 JP H0659236B2
- Authority
- JP
- Japan
- Prior art keywords
- concentration
- enzyme
- luminescent material
- biological substrate
- measuring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、生体の基質濃度や酵素反応速度を測定する方
法及びそれに使用する酵素センサーに関し、特に酵素の
系に発光体(金属錯体)を共存させ、該発光体の発光が
酵素反応により変化する酵素により消光されることを利
用して発光強度測定を行なうことにより生体の基質濃度
を測定する方法及びそれに使用する酵素センサーに関す
る。TECHNICAL FIELD The present invention relates to a method for measuring a substrate concentration or an enzyme reaction rate in a living body and an enzyme sensor used for the method, and in particular, an illuminant (metal complex) is added to an enzyme system. The present invention relates to a method for measuring the substrate concentration of a living body by coexisting and measuring the luminescence intensity by utilizing the fact that the luminescence of the luminescent material is quenched by an enzyme that changes by an enzymatic reaction, and an enzyme sensor used therefor.
(従来の技術) 従来、基質濃度や酵素反応速度を測定する場合、例えば
次の反応による。(Prior Art) Conventionally, when measuring a substrate concentration or an enzyme reaction rate, for example, the following reaction is performed.
したがって、H2O2やグルコノラクトンの発生量や酵素消
費量によりグルコース濃度を測定でき、これらの測定に
はH2O2電極、pH電極、酵素電極などの電極で行ってい
る。 Therefore, the glucose concentration can be measured by the generation amount of H 2 O 2 and gluconolactone and the amount of enzyme consumption, and these measurements are performed with electrodes such as H 2 O 2 electrode, pH electrode, and enzyme electrode.
しかしながら、これらの方法には (1)グルコノラクトンによるpH変化は小さい。However, in these methods, (1) the pH change by gluconolactone is small.
(2)酸素消費量は酸素電極上に到達した酸素分子のみを
測定するのに限定され、又消費量を測定するので面倒で
ある。また、電極を用いて微小ながら電流を流さないと
いけないので、生体系の測定には好ましくない。(2) Oxygen consumption is limited to measuring only oxygen molecules reaching the oxygen electrode, and it is troublesome to measure the consumption. In addition, since it is necessary to pass a small amount of current through the electrodes, it is not preferable for biological system measurement.
(3)過酸化水素(H2O2)量は膜電極を使用し、膜透過するH
2O2のみを測定するので界面上のH2O2濃度が律速とな
る、という欠点があった。(3) The amount of hydrogen peroxide (H 2 O 2 ) is H
Since only 2 O 2 is measured, there is a drawback that the H 2 O 2 concentration on the interface is rate-determining.
(発明が解決しようとする問題点) 本発明は上記従来技術の問題点を解決すべく種々検討し
た結果、本発明を完成したもので、本発明の目的は、酵
素反応時の酸素消費量を周りの妨害物質に邪魔されず
に、酵素系の共存発光体の励起状態からの発光が酸素に
より消光することを利用し、その時の発光強度測定によ
り基質濃度又は酵素反応速度を測定する生体基質濃度の
測定方法及びそれに使用する酵素センサーを提供する。(Problems to be Solved by the Invention) The present invention has completed the present invention as a result of various studies to solve the above-mentioned problems of the prior art, and an object of the present invention is to reduce oxygen consumption during enzyme reaction. Utilizing the fact that the luminescence from the excited state of the enzyme-based coexisting luminescent material is quenched by oxygen without being disturbed by the surrounding interfering substances, and the substrate concentration or the biological substrate concentration is measured by measuring the luminescence intensity at that time. And an enzyme sensor used therefor.
(問題点を解決するための手段) すなわち、本発明は生体基質を含む溶液中において、生
体基質と溶存酸素を酵素の下で反応させ、紫外領域また
は可視光領域の光を該溶液中に浸漬した発光体に照射
し、前記反応により消費されて低減した溶存酸素濃度に
応じて該発光体から発生する光の強度により生体基質濃
度を測定することを特徴とする生体基質濃度の測定方法
であり、また、基板上に、生体基質を含む溶液中の溶存
酸素を消費させる酵素と、紫外領域または可視光領域の
励起光により発光し且つその発光が酸素により消光され
る発光体とを固定化したことを特徴とする酵素センサー
である。(Means for Solving Problems) That is, according to the present invention, in a solution containing a biological substrate, the biological substrate and dissolved oxygen are reacted under an enzyme, and light in the ultraviolet region or visible light region is immersed in the solution. The method for measuring a biological substrate concentration, which comprises irradiating the luminescent substance, and measuring the biological substrate concentration by the intensity of light emitted from the luminescent substance according to the dissolved oxygen concentration consumed and reduced by the reaction. Further, on the substrate, an enzyme that consumes dissolved oxygen in a solution containing a biological substrate, and a luminescent material that emits light by excitation light in the ultraviolet region or visible light region and that emission is quenched by oxygen are immobilized. It is an enzyme sensor characterized by the following.
すなわち、換言すれば、本発明は、酵素の系に発光体
(金属錯体)を共存させ、酵素反応に伴う酸素消費量を
該発光体励起状態と酸素との反応による発光強度変化に
より酸素濃度を求め、基質濃度又は酵素反応速度を測定
する生体基質濃度の測定方法であり、また、その際、使
用する酵素センサーである。この場合、酵素反応系とし
ての酵素は酸素と直接または間接的に反応して酸素を消
費する酵素反応物質である。このような反応系の基質の
例としては、グルコース、尿酸、コレステロール、資化
糖、その他の糖(スクロース、マルトース、ガラクトー
ス)、ホスファチジルコリン、乳酸、ニコチンアミドア
デニンジヌクレオチド(NADP)、蓚酸、アミノ酸、アル
コール類、モノアミン、アルコルビン酸、ピルビン酸な
どが挙げられる。That is, in other words, in the present invention, a luminescent material (metal complex) is allowed to coexist in the enzyme system, and the oxygen consumption due to the enzymatic reaction is determined by the change in luminescence intensity due to the reaction between the excited state of the luminescent material and oxygen. It is a method for measuring the concentration of a biological substrate, which is obtained by measuring the substrate concentration or the enzyme reaction rate, and the enzyme sensor used at that time. In this case, the enzyme as the enzyme reaction system is an enzyme reaction substance that consumes oxygen by directly or indirectly reacting with oxygen. Examples of such a reaction system substrate include glucose, uric acid, cholesterol, assimilating sugar, other sugars (sucrose, maltose, galactose), phosphatidylcholine, lactic acid, nicotinamide adenine dinucleotide (NADP), oxalic acid, amino acids, Examples thereof include alcohols, monoamines, ascorbic acid and pyruvic acid.
従来の方法は前述したように、(1)式に示す例のような
酵素反応を生成H2O2やグルコノラクトンの発生量、酸素
消費量などよりグルコース濃度を各々電極法で(H2O2電
極、pH電極、酸素電極など)測定するの対し、本発明で
は酵素の系に発光体(金属錯体)を共存させ、酵素反応
に伴う酸素消費量を該発光体励起状態と酸素との反応に
よる発光強度変化により酸素濃度を求めるものであっ
て、酵素の化学反応(酵素反応に直接又は間接的に伴う
酸素消費量)を周りの妨害物質に邪魔されずに、共存発
光体(金属錯体)励起状態と該酸素の化学反応を利用
し、酸素濃度を発光強度により測定してその時の酸素濃
度、すなわち基質濃度又は酵素反応速度を測定を算出す
ることができるのである。As conventional methods described above, (1) the generation amount of generated H 2 O 2 and gluconolactone enzymatic reactions such as the example shown in the expression, in each electrode method and the glucose concentration than such oxygen consumption (H 2 O 2 electrode, pH electrode, oxygen electrode, etc.), in the present invention, a luminescent material (metal complex) is allowed to coexist in the enzyme system, and the oxygen consumption amount due to the enzymatic reaction is compared between the excited state of the luminescent material and oxygen. The oxygen concentration is determined by the change in luminescence intensity due to the reaction, and the coexisting luminescent material (metal complex) is used without disturbing the surrounding chemical substances in the chemical reaction of the enzyme (oxygen consumption directly or indirectly involved in the enzymatic reaction). It is possible to calculate the oxygen concentration at that time, that is, the substrate concentration or the enzymatic reaction rate, by measuring the oxygen concentration by the emission intensity by utilizing the chemical reaction between the excited state and the oxygen.
次に、本発明における発光体および酵素センサーについ
て説明する。Next, the illuminant and the enzyme sensor in the present invention will be described.
発光体: 発光体とは、光励起状態かケイ光又はリン光を発して元
の基底状態に戻る化合物をいう。本発明においては、そ
の光励起状態で酸素と反応することにより発光強度が減
少することを利用し、発光強度を測定して酸素濃度を求
めることが原理となっているので、その光励起状態から
発光し且つその発光強度が酸素の共存により減少するよ
うな発光体なら何でも用いることができる。本発明で使
用できる発光体としては例えば2.2′−ビピリジンやそ
の誘導体を配位子とする金属錯体、例えばトリス(2.
2′−ビピリジン)ルテニウム錯体やその他イリジウム
などの錯体、トリス(o−フェナントロリン)ルテニウ
ム錯体のピレン及びその誘導体(ピレンスルホン酸やピ
レン酪酸など)のような有機化合物などが挙げられる。Luminescent substance: A luminescent substance refers to a compound that emits a photoexcited state or fluorescence or phosphorescence to return to the original ground state. In the present invention, utilizing the fact that the emission intensity decreases by reacting with oxygen in the photoexcited state, the principle is to determine the oxygen concentration by measuring the emission intensity, so that light emission from the photoexcited state In addition, any luminescent material can be used as long as its luminous intensity is reduced by the coexistence of oxygen. Examples of the luminescent material that can be used in the present invention include a metal complex having a ligand of 2.2'-bipyridine or a derivative thereof, such as tris (2.
Examples thereof include 2'-bipyridine) ruthenium complex and other complexes such as iridium, and organic compounds such as tris (o-phenanthroline) ruthenium complex pyrene and its derivatives (pyrenesulfonic acid, pyrene butyric acid, etc.).
酵素センサー系: 酵素又は酵素群と基質および発光体を均一溶液中で共存
させて用いてもよい。あるいはこれらを合成または天然
の高分子膜中に固定化した膜を用いることができる。使
用できる合成高分子膜としては、アクリル酸、メタクリ
ル酸、ヒドロキシエチルメタクリレート、スチレン、N-
ビニルピロリドン、などの単独又は共重合体が挙げられ
る。また天然高分子膜としては絹、セルロース、ゼラチ
ンなどの膜が挙げられる。本発明で用いられる酵素セン
サー膜とするためには、これらの高分子膜中に酵素およ
び発光体を物理的にあるいは化学的に固定する。固定手
段として物理的に固定する方法は、単に膜に吸着させる
か、被吸着物質(酵素、発光体など)を含む膜成分の溶
液中からキャスト法などにより成膜するか、あるいは被
吸着物質と単量体の混合物を光線などにより重合するこ
とにより膜化する。化学的に固定する方法は、高分子化
合物に予め酵素や発光体などを共有結合で導入して、後
に成膜するか、あるいは成膜した後に酵素や発光体など
を化学反応により導入、結合する。高分子化合物に発光
体を化学的に共有結合で固定する例としては、トリス
(2.2′−ビピリジン)ルテニウム錯体(Ru(bpy)3 2+と
略す)構造をペンダント基として有する次の重合体が挙
げられる。Enzyme sensor system: An enzyme or a group of enzymes, a substrate and a luminescent material may coexist in a homogeneous solution. Alternatively, a membrane obtained by immobilizing these in a synthetic or natural polymer membrane can be used. Synthetic polymer membranes that can be used include acrylic acid, methacrylic acid, hydroxyethyl methacrylate, styrene, N-
Examples include homo- or copolymers such as vinylpyrrolidone. The natural polymer film may be a film of silk, cellulose, gelatin or the like. In order to obtain the enzyme sensor membrane used in the present invention, the enzyme and the luminescent material are physically or chemically fixed in these polymer membranes. As a method of physically fixing as a fixing means, it is simply adsorbed on a membrane, or a film is formed from a solution of a membrane component containing a substance to be adsorbed (enzyme, luminescent material, etc.) by a casting method or the like. A film is formed by polymerizing a mixture of monomers with light rays or the like. As a method of chemically fixing, an enzyme or a luminescent substance is introduced into a polymer compound by a covalent bond in advance and then a film is formed, or after the film is formed, an enzyme or a luminescent substance is introduced and bonded by a chemical reaction. . An example of chemically fixing a light-emitting substance to a polymer compound by a covalent bond is the following polymer having a tris (2.2'-bipyridine) ruthenium complex (abbreviated as Ru (bpy) 3 2+ ) structure as a pendant group. Can be mentioned.
但し、X-はCl-、ClO4 -などのアニオン、Mは4-メチル-
4′-ビニル-2.2′−ビピリジンまたはアクリル酸、メタ
クリル酸、ヒドロキシエチルメタクリレート、スチレ
ン、N-ビニルピロリドンなどの単量体単位、X,Y,Zは各
繰返し単位のモル分率でX,Yは0〜0.99,Zは0.01〜1の範
囲から選ばれる。この高分子ペンダント型発光体は単独
で又は他の高分子化合物と一緒に膜化し、その膜中には
酵素または酵素群を共存させて酵素センサーとして用い
ることができる。この高分子型発光体は膜から溶出し難
いので、安定な酵素センサーとして用いることができ
る。 However, X − is an anion such as Cl − , ClO 4 − , M is 4-methyl-
Monomer units such as 4'-vinyl-2.2'-bipyridine or acrylic acid, methacrylic acid, hydroxyethyl methacrylate, styrene, N-vinylpyrrolidone, X, Y, Z are the molar fractions of each repeating unit X, Y Is selected from the range of 0 to 0.99, and Z is selected from the range of 0.01 to 1. This polymer pendant type luminescent material can be used alone or together with other polymer compounds to form a film, and an enzyme or a group of enzymes can coexist in the film to be used as an enzyme sensor. Since this polymeric light-emitting body is difficult to elute from the membrane, it can be used as a stable enzyme sensor.
これらの膜材料のうち、絹膜は生体成分になじむので、
生体系に直接挿入して用いられる酵素センサー用膜とし
て用いるのに極めて適している。Of these membrane materials, silk membrane is compatible with biological components, so
It is extremely suitable for use as a membrane for an enzyme sensor that is directly inserted into a biological system.
次に実施例をもって本発明を詳細に説明する。Next, the present invention will be described in detail with reference to examples.
実施例1 共栓付全面透明石英セル(光路長1cm)中に0.1Mグルコ
ース、50μM(マイクロモル),トリス(2.2′−ビピ
リジン)ルテニウム(II)錯体の塩化物のリン酸緩衡水
溶液(pH7.0)3ccを加えた。Example 1 0.1 M glucose, 50 μM (micromol), tris (2.2'-bipyridine) ruthenium (II) complex chloride in phosphate buffered aqueous solution (pH 7) in a fully transparent quartz cell with a stopper (optical path length 1 cm). .0) Added 3cc.
該セルを分光蛍光光度計(日本分光(製)製FP55OA)に
セットし、励起光波長460nm、発光側分光器波長605nmに
て発光強度Ioを測定した。The cell was set in a spectrofluorometer (FP55OA manufactured by JASCO Corporation), and the emission intensity Io was measured at an excitation light wavelength of 460 nm and an emission side spectroscope wavelength of 605 nm.
このように、発光側分光器波長605nmを一定にしてお
き、上記セルのなかにグルコースオキシダーゼ1mg/ml
濃度の水溶液を1〜5μM添加する。この時の酵素反応
(グルコースの酵素酸化反応)により酸素分子が消費さ
れ、発光強度が増加するので、発光強度の時間変化を測
定する。Thus, the emission side spectroscope wavelength 605 nm is kept constant, and glucose oxidase 1 mg / ml is placed in the cell.
An aqueous solution having a concentration of 1 to 5 μM is added. Oxygen molecules are consumed by the enzymatic reaction (enzymatic oxidation reaction of glucose) at this time, and the luminescence intensity increases. Therefore, the change over time of the luminescence intensity is measured.
グルコースとグルコースオキシダーゼを共存させた系で
はグルコースの酸化により酸素が消費され発光強度が増
加する。酸素濃度と発光強度との関係を第1図に示す。
この第1図より任意の時間における酸素濃度を知ること
ができ、したがって、酵素反応速度を知ることも可能で
ある。因に本条件下ではグルコースオキシダーゼ1μg
当り1分間当りの発光強度増加は反応前の1.04倍で、こ
れは酸素濃度変化にして1.04mM/min/μgグルコースオ
キシダーゼに相当することになる。In a system in which glucose and glucose oxidase coexist, oxygen is consumed by the oxidation of glucose and the emission intensity increases. The relationship between oxygen concentration and emission intensity is shown in FIG.
From FIG. 1, the oxygen concentration at any time can be known, and therefore the enzyme reaction rate can also be known. Under these conditions, glucose oxidase 1 μg
The increase in the luminescence intensity per minute per minute is 1.04 times that before the reaction, which corresponds to a change in oxygen concentration of 1.04 mM / min / μg glucose oxidase.
このように基質(ここではグルコース)濃度が酸素濃度
より過剰に共存する系を用いれば酵素(ここではグルコ
ースオキシダーゼ)の活性や反応速度を求めることがで
き、また逆に基質濃度が酸素濃度より充分小さい条件下
では、発光強度の測定により基質濃度を測定することが
可能である。By using a system in which the substrate (here glucose) concentration is present in excess of the oxygen concentration, the activity and reaction rate of the enzyme (here glucose oxidase) can be determined, and conversely, the substrate concentration is sufficiently higher than the oxygen concentration. Under small conditions, it is possible to measure the substrate concentration by measuring the emission intensity.
以上述べたように、まず、Ru(bpy)3 2+水溶液において、
Ru錯体励起状態からの発光(605nm)相対強度を溶液中の
酸素濃度に対してプロットすると第1図のような直線と
なり、これからの発光の相対強度から酸素濃度を求める
ことが可能である。As described above, first, in a Ru (bpy) 3 2+ aqueous solution,
When the relative intensity of light emission (605 nm) from the excited state of the Ru complex is plotted against the oxygen concentration in the solution, a straight line as shown in FIG. 1 is obtained, and the oxygen concentration can be obtained from the relative intensity of the light emission from now on.
実施例2 絹フィブロインの4%水溶液にグルコースオキシダーゼ
を絹に対して0.2%,Ru(bpy)3 2+を0.1mM濃度になるよう
に添加し、アクリル板上にキャストして風乾し、厚さ約
1μmの絹膜を得た。まず検量線を作成するため、この
絹膜を既知濃度の酸素を含む水溶液に浸漬して、酸素濃
度と相対発光強度の関係を求めると第2図のような関係
を得た。Example 2 Glucose oxidase was added to a 4% aqueous solution of silk fibroin in an amount of 0.2% relative to silk, and Ru (bpy) 3 2+ was added at a concentration of 0.1 mM, cast on an acrylic plate and air-dried to a thickness. A silk film of about 1 μm was obtained. First, in order to create a calibration curve, this silk film was immersed in an aqueous solution containing a known concentration of oxygen, and the relationship between oxygen concentration and relative luminescence intensity was determined to obtain the relationship shown in FIG.
このような特性を持つ酵素センサーをグルコースを0.1m
M含み且つ空気を飽和させた水溶液中に浸漬し、450nm光
で励起して605nmの発光を測定した。その発光強度の減
少量から酸素濃度変化量を求め、従って系中のグルコー
ス濃度を定量することができた。An enzyme sensor with such characteristics can
It was immersed in an aqueous solution containing M and saturated with air, excited by 450 nm light, and the emission at 605 nm was measured. The amount of change in oxygen concentration was determined from the amount of decrease in the emission intensity, and therefore the glucose concentration in the system could be quantified.
実施例3 実施例2においてグルコースオキシダーゼの他にインベ
ルターゼを絹に対して0.2%用い、他は実施例2と同様に
してグルコース濃度を測定できるバイオセンサーを作っ
た。グルコースを0.05〜1mM含みかつ空気を飽和させた
水溶液にこの酵素センサーを浸漬し、発光強度の減少量
と第2図の関係からグルコース濃度を定量することがで
きた。Example 3 A biosensor capable of measuring glucose concentration was prepared in the same manner as in Example 2 except that 0.2% of invertase was used for silk in addition to glucose oxidase in Example 2. By dipping this enzyme sensor in an aqueous solution containing glucose in an amount of 0.05 to 1 mM and saturated with air, the glucose concentration could be determined from the relationship between the decrease in luminescence intensity and FIG.
実施例4 実施例2においてRu(bpy)3 2+の代わりに構造式1におい
てMがアクリル酸、XがCl-、X=0.924、Y=0.054、Z
=0.022の高分子ペンダント型Ru(bpy)3 2+をRu錯体単体
濃度が0.1mMになるように絹膜水溶液に添加し、他は実
施例2と同様にしてグルコースセンサーを作り、その検
量線として第2図と同様な結果を得た。このグルコース
センサーにより水溶液中のグルコース濃度を発光法によ
り測定できた。Example 4 In Example 2, instead of Ru (bpy) 3 2+ , in Structural Formula 1, M is acrylic acid, X is Cl − , X = 0.924, Y = 0.054, Z.
= 0.022 polymer pendant type Ru (bpy) 3 2+ was added to the silk membrane aqueous solution so that the Ru complex simple substance concentration would be 0.1 mM. Otherwise, a glucose sensor was prepared in the same manner as in Example 2, and its calibration curve was obtained. The same result as in FIG. 2 was obtained. With this glucose sensor, the glucose concentration in the aqueous solution could be measured by the luminescence method.
実施例5 実施例2においてRu(bpy)3 2+の代わりにピレン酪酸を用
いた他は実施例2と同様にしてグルコースセンサーを作
った。このセンサーを既知濃度の酵素を含む水中に浸漬
し、338nm光で励起し、380nmの発光の相対強度を測定し
たところ、第3図の関係を得た。Example 5 A glucose sensor was produced in the same manner as in Example 2 except that pyrenebutyric acid was used instead of Ru (bpy) 3 2+ in Example 2. The sensor was dipped in water containing a known concentration of enzyme, excited with 338 nm light, and the relative intensity of 380 nm emission was measured. The relationship shown in FIG. 3 was obtained.
この関係を用い、未知のグルコースを含む水溶液中のグ
ルコース濃度を定量することができた。また、PMMA、石
英などの光ファイバーの先端を基板とし、酵素及び発光
体を固定化させることにより、直径数μmの微小酵素セ
ンサーが得られる。本実施例では、生体基質としてグル
コースを例にあげたが、これに限られるものではなく前
述の他の生体基質についても同様である。また、絹膜
は、実施例に限られるものではなく家蚕再生絹フィブロ
イン膜、野蚕再生絹フィブロン膜を用いることもでき
る。Using this relationship, the glucose concentration in an aqueous solution containing unknown glucose could be quantified. In addition, a microenzyme sensor having a diameter of several μm can be obtained by immobilizing an enzyme and a luminescent material using the tip of an optical fiber such as PMMA or quartz as a substrate. In this example, glucose was used as an example of the biological substrate, but the present invention is not limited to this, and the same applies to the other biological substrates described above. Further, the silk film is not limited to the examples, but a silkworm regenerated silk fibroin film and a silkworm regenerated silk fibron film can be used.
(効果) 以上、述べたように本発明は酵素反応系において酸素と
共に発光体を存在させ、共存発光体の励起状態からの発
光可視光が酸素により消光することを利用し、その時の
発光強度測定により基質濃度又は酵素反応速度で測定す
る酵素センサー及びそれを用いた生体基質濃度の測定方
法である。したがって電流を流す必要がなく、生体系の
測定に対しても極めて安全であり、又、溶液中の他の生
体基質、或は他の妨害イオンの影響をうけることなく高
精度の測定ができる等の効果を奏するのである。(Effect) As described above, the present invention utilizes the fact that the visible light from the excited state of the coexisting luminescent material is quenched by oxygen by allowing the luminescent material to be present together with oxygen in the enzyme reaction system, and measuring the luminescence intensity at that time. An enzyme sensor for measuring the substrate concentration or the enzyme reaction rate by the method and a method for measuring a biological substrate concentration using the enzyme sensor. Therefore, there is no need to pass an electric current, it is extremely safe for measurement of biological systems, and highly accurate measurement can be performed without being affected by other biological substrates in solution or other interfering ions. It has the effect of.
第1図は本発明の実施例1の酸素濃度に対する相対発光
強度の関係図、第2図は本発明の実施例2の酸素濃度に
対する相対発光強度の関係図及び第3図は実施例5の場
合の酸素濃度に対する相対発光強度の関係図である。FIG. 1 is a relationship diagram of relative emission intensity with respect to oxygen concentration in Example 1 of the present invention, FIG. 2 is a relationship diagram of relative emission intensity with respect to oxygen concentration of Example 2 of the present invention, and FIG. It is a related figure of relative luminescence intensity to oxygen concentration in a case.
Claims (10)
と溶存基質を酵素の下で反応させ、紫外領域または可視
光領域の光を該溶液中に浸漬した発光体に照射し、前記
反応により消費されて低減した溶存酸素濃度に応じて該
発光体から発生する光の強度により生体基質濃度を測定
することを特徴とする生体基質濃度の測定方法。1. In a solution containing a biological substrate, the biological substrate and the dissolved substrate are reacted under an enzyme, and light in the ultraviolet region or visible light region is irradiated to the luminescent material immersed in the solution, and the reaction is carried out. A method for measuring a biological substrate concentration, which comprises measuring the biological substrate concentration by the intensity of light emitted from the luminescent material according to the dissolved oxygen concentration which is consumed and reduced.
より発光し且つその発光が酸素により消光されることを
特徴とする特許請求の範囲第1項記載の生体基質濃度の
測定方法。2. The method for measuring the concentration of a biological substrate according to claim 1, wherein the luminescent material emits light by excitation light in the ultraviolet region and the visible light region and the emitted light is quenched by oxygen.
ることを特徴とする特許請求の範囲第1項ないし第2項
記載の生体基質濃度の測定方法。3. The method for measuring the concentration of a biological substrate according to claim 1 or 2, wherein the luminescent material is an organometallic complex compound of a transition metal.
配位子が2.2′−ビピリジン、o−フェナントロリン
またはそれらの誘導体であることを特徴とする特許請求
の範囲第3項記載の生体基質濃度の測定方法。4. The organometallic complex compound, wherein the metal is ruthenium,
The method for measuring the concentration of a biological substrate according to claim 3, wherein the ligand is 2.2'-bipyridine, o-phenanthroline or a derivative thereof.
成分とする高分子化合物である特許請求の範囲第2項な
いし第4項のいずれかに記載の生体基質濃度の測定方
法。5. The method for measuring the concentration of a biological substrate according to any one of claims 2 to 4, wherein the luminescent material is a polymer compound containing an organometallic complex compound of a transition metal as one component.
素を消費させる酵素と、紫外領域または可視光領域の励
起光により発光し且つその発光が酸素により消光される
発光体とを固定化したことを特徴とする酵素センサー。6. An enzyme which consumes dissolved oxygen in a solution containing a biological substrate and a luminescent material which emits light by excitation light in the ultraviolet region or visible light region and whose emission is quenched by oxygen are immobilized on a substrate. An enzyme sensor characterized by the fact that
ることを特徴とする特許請求の範囲第6項記載の酵素セ
ンサー。7. The enzyme sensor according to claim 6, wherein the luminescent material is a transition metal organometallic complex compound.
配位子が2.2′−ビピリジン、o−フェナントロリン
またはそれらの誘導体であることを特徴とする特許請求
の範囲第7項記載の酵素センサー。8. The metal of the organometallic complex compound is ruthenium,
The enzyme sensor according to claim 7, wherein the ligand is 2.2'-bipyridine, o-phenanthroline or a derivative thereof.
成分とする高分子化合物であることを特徴とする特許請
求の範囲第6項ないし第8項のいずれかに記載の酵素セ
ンサー。9. The enzyme sensor according to any one of claims 6 to 8, wherein the light-emitting body is a polymer compound containing an organometallic complex compound of a transition metal as one component.
ることを特徴とする特許請求の範囲第6項ないし第9項
のいずれかに記載の酵素センサー。10. The enzyme sensor according to any one of claims 6 to 9, wherein the substance for immobilizing the enzyme and the luminescent material is a silk film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31410887A JPH0659236B2 (en) | 1987-12-14 | 1987-12-14 | Method for measuring biological substrate concentration and oxygen sensor used therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31410887A JPH0659236B2 (en) | 1987-12-14 | 1987-12-14 | Method for measuring biological substrate concentration and oxygen sensor used therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01155244A JPH01155244A (en) | 1989-06-19 |
JPH0659236B2 true JPH0659236B2 (en) | 1994-08-10 |
Family
ID=18049338
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31410887A Expired - Lifetime JPH0659236B2 (en) | 1987-12-14 | 1987-12-14 | Method for measuring biological substrate concentration and oxygen sensor used therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0659236B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5580527A (en) * | 1992-05-18 | 1996-12-03 | Moltech Corporation | Polymeric luminophores for sensing of oxygen |
FR2699170B1 (en) * | 1992-12-15 | 1995-07-28 | Asulab Sa | Complexes of a transition metal with 2,2'-bipyridine ligands substituted by at least one alkyl ammonium radical, their manufacturing process and their use as redox mediator. |
JP4045323B2 (en) | 2001-12-28 | 2008-02-13 | アークレイ株式会社 | Colorimetric analysis method and reagent used therefor |
US20050014213A1 (en) * | 2001-12-28 | 2005-01-20 | Kenji Nagakawa | Method of colorimetry and reagent for use therein |
-
1987
- 1987-12-14 JP JP31410887A patent/JPH0659236B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH01155244A (en) | 1989-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20060121547A1 (en) | Diffusion layer for an enzyme-based sensor application | |
D'Orazio | Biosensors in clinical chemistry | |
Clark et al. | Optical nanosensors for chemical analysis inside single living cells. 1. Fabrication, characterization, and methods for intracellular delivery of PEBBLE sensors | |
Doong et al. | Array-based titanium dioxide biosensors for ratiometric determination of glucose, glutamate and urea | |
Scheller et al. | Biosensors | |
US6107083A (en) | Optical oxidative enzyme-based sensors | |
US4340448A (en) | Potentiometric detection of hydrogen peroxide and apparatus therefor | |
Trettnak et al. | Fibre-optic glucose sensor with a pH optrode as the transducer | |
US20060030028A1 (en) | Biosensor | |
Lowry et al. | Partial characterization in vitro of glucose oxidase‐modified poly (phenylenediamine)‐coated electrodes for neurochemical analysis in vivo | |
US4892640A (en) | Sensor for the determination of electrolyte concentrations | |
US20050214891A1 (en) | Method and reagent system having a non-regenerative enzyme-coenzyme complex | |
US7267837B2 (en) | Enzyme electrode and process for preparation thereof | |
JP2001194298A (en) | Surface plasmon resonance enzyme sensor and method for measuring surface plasmon resonance | |
Sugimoto et al. | The mechanism of end product inhibition of serine biosynthesis: II. Optical studies of phosphoglycerate dehydrogenase | |
Wilson et al. | In vivo biosensors | |
JPH01160499A (en) | Determination of number and vitality of live cell | |
JPH0659236B2 (en) | Method for measuring biological substrate concentration and oxygen sensor used therefor | |
AT390803B (en) | METHOD FOR DETERMINING THE CONCENTRATION OF AN ENZYME SUBSTRATE AND SENSOR FOR IMPLEMENTING THE METHOD | |
Luka et al. | Advances in enzyme-based electrochemical sensors: current trends, benefits, and constraints | |
Shi et al. | The study of Nafion/xanthine oxidase/Au colloid chemically modified biosensor and its application in the determination of hypoxanthine in myocardial cells in vivo | |
CA2512282C (en) | Process for preparation of enzyme electrode | |
JP4756284B2 (en) | Apparatus for measuring glucose and ascorbic acid | |
JPS6257942B2 (en) | ||
Evtugyn et al. | Biosensor Signal Transducers |