Nothing Special   »   [go: up one dir, main page]

JPH0656839B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JPH0656839B2
JPH0656839B2 JP5824684A JP5824684A JPH0656839B2 JP H0656839 B2 JPH0656839 B2 JP H0656839B2 JP 5824684 A JP5824684 A JP 5824684A JP 5824684 A JP5824684 A JP 5824684A JP H0656839 B2 JPH0656839 B2 JP H0656839B2
Authority
JP
Japan
Prior art keywords
film
laser
substrate
amorphous
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5824684A
Other languages
Japanese (ja)
Other versions
JPS60202931A (en
Inventor
忠 斉藤
晴夫 伊藤
昭 新谷
昭男 斉藤
光雄 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5824684A priority Critical patent/JPH0656839B2/en
Publication of JPS60202931A publication Critical patent/JPS60202931A/en
Publication of JPH0656839B2 publication Critical patent/JPH0656839B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、半導体装置の製造方法に関し、詳しくは低抵
抗のアモルファス相を含有するn又はp形半導体部を有
する薄膜半導体装置の製造方法に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a thin film semiconductor device having an n-type or p-type semiconductor portion containing a low resistance amorphous phase.

〔発明の背景〕[Background of the Invention]

従来のアモルファスSi相を含有する半導体薄膜は、ガ
ラス、金属又は高分子薄板上にプラズマCVD法などの
方法で形成され、導電型の制御はPHやA5H3ガスを流
してのn型ドーピングもしくはB2H6ガスを流してのp形
ドーピンクによって行っていた。かかるドープドSi膜
の抵抗率はp形で約10Ω・cm、n形で10Ω・
cmと高く、高い直列抵抗のため素子性能が劣ってい
た。又、n形ドーピングの場合、プラズマパワーを増加
するなどの方法でアモルファス相を微結晶化することも
可能であるが、得られた抵抗率は約1Ω・cmとあまり
低くはない。
A conventional semiconductor thin film containing an amorphous Si phase is formed on a glass, metal or polymer thin plate by a method such as a plasma CVD method, and the conductivity type is controlled by n type by flowing a PH 3 or A 5 H 3 gas. Doping or p-type doping with B 2 H 6 gas flow was used. The resistivity of such a doped Si film is about 10 3 Ω · cm for p-type and 10 2 Ω · for n-type.
cm, and the device performance was poor due to the high series resistance. Further, in the case of n-type doping, it is possible to microcrystallize the amorphous phase by increasing the plasma power, but the obtained resistivity is not so low as about 1 Ω · cm.

〔発明の目的〕[Object of the Invention]

本発明の目的は、かかる従来の問題点を解決し、低抵抗
の導電型層を形成できる半導体装置の製造方法を提供す
ることにある。
An object of the present invention is to provide a method for manufacturing a semiconductor device that solves the above-mentioned conventional problems and can form a conductive layer having a low resistance.

〔発明の概要〕[Outline of Invention]

従来、半導体膜の低抵抗化を実現する方法として熱処理
法がある。しかし、アモルファス膜の場合、通常の電気
炉を用いる長時間熱処理法では、活性層であるノヴドー
プ層が変質し、デバイスが劣化してしまう。この点を解
決するため、本発明では、熱処理時間が1秒以下のレー
ザを用いた短時間熱処理法を用いる。レーザとして、パ
ルスレーザとCWレーザがあり、CWの場合走査速度を
早くすれば実質的に短時間の熱処理が可能である。
Conventionally, there is a heat treatment method as a method for realizing a low resistance of a semiconductor film. However, in the case of an amorphous film, the long-time heat treatment method using an ordinary electric furnace deteriorates the nove-doped layer that is the active layer and deteriorates the device. In order to solve this point, in the present invention, a short-time heat treatment method using a laser having a heat treatment time of 1 second or less is used. There are pulse lasers and CW lasers as lasers, and in the case of CW, heat treatment can be performed in a substantially short time by increasing the scanning speed.

かかるレーザとして次のものがある。パルスレーザとし
て、エキシマレーザ(波長157〜351nm)、ルビ
ーレーザ(694nm)、ネオジウムYAG(266,
532,1064nm)、ガラスレーザ(531nm)
やアレキサンドライトレーザ(700〜818nm)な
どがある。CWレーザとして、Arイオンレーザ(25
7nm)はHeNeレーザ(633nm)などがある。今
迄、アモルファスSiのレーザアニールとして、Qスイ
ッチのNd:YAGレーザ(1064nm)が用いられ
た例は知られているが、アモルファスSi膜の吸収係数
からして適切な波長では無く、従って良好なデバイス特
性は得られていない。
The following are such lasers. As a pulse laser, an excimer laser (wavelength 157 to 351 nm), a ruby laser (694 nm), a neodymium YAG (266,
532, 1064 nm), glass laser (531 nm)
And alexandrite laser (700 to 818 nm). As a CW laser, an Ar ion laser (25
7 nm) includes HeNe laser (633 nm). Up to now, an example in which a Q-switched Nd: YAG laser (1064 nm) is used for laser annealing of amorphous Si has been known, but it is not an appropriate wavelength because of the absorption coefficient of the amorphous Si film, and therefore it is preferable. Device characteristics have not been obtained.

アモルファスSi半導体装置で用いられる半導体膜の厚
さは通常1μm以下であるので吸収係数として10
−1以上の値を持つレーザ波長を選択する必要があ
る。このためには、アモルファスSi膜の場合、750
nmより短かい波長のレーザ光を用いる必要がある。特
に、上記各種レーザ光の中で、波長300nm以下のレ
ーザ光を用いれば吸収係数は10cm−1となり光の
吸収深さは約10nmで縦方向の上部半導体層のみ熱処
理できるなどの利点を有する。これに適したレーザとし
て、エキシマレーザ、アルゴンイオンレーザとNd:Y
AGレーザ(波長=重型で266nm)がある。特に、
エキシマレーザは励起ガスの種類を変えて、発振波長を
変えることが可能である。例えば、F(157n
m)、ArF(193nm)、KrCl(222n
m)、KrF(248nm)、XeBr(282n
m)、XeCl(308nm)とXeF(351nm)
で出力も数十W迄の大出力で大口径のレーザが得られて
いる。
Since the thickness of the semiconductor film used in the amorphous Si semiconductor device is usually 1 μm or less, the absorption coefficient is 10 4 c.
It is necessary to select a laser wavelength having a value of m −1 or more. To this end, in the case of an amorphous Si film, 750
It is necessary to use laser light having a wavelength shorter than nm. In particular, among the various laser lights described above, if a laser light having a wavelength of 300 nm or less is used, the absorption coefficient becomes 10 6 cm −1 , the light absorption depth is about 10 nm, and only the upper semiconductor layer in the vertical direction can be heat-treated. Have. Suitable lasers for this are excimer laser, argon ion laser and Nd: Y
There is an AG laser (wavelength = heavy type 266 nm). In particular,
The excimer laser can change the oscillation wavelength by changing the kind of excitation gas. For example, F 2 (157n
m), ArF (193 nm), KrCl (222n)
m), KrF (248 nm), XeBr (282n)
m), XeCl (308 nm) and XeF (351 nm)
Therefore, a large output laser with a large output up to several tens of watts has been obtained.

本発明は、かかる短波長のレーザを用い、アモルファス
Si相を含有する半導体膜の熱処理を行う。半導体膜と
して、B又はAlなどのp形不純物、P又はAsなどの
n形不純物を含有するアモルファスSi:H膜、微結晶
化Si:H膜、SiGe:H膜、SiN:H膜やSiC:H
膜などがある。不純物を該Si膜中に含有させる工程と
して、プラズマCVDなどの膜形成中にガスから導入す
る方法とノンドープ又は低濃度ドープ層中にイオン打込
み法で導入する方法の2種類がある。
In the present invention, the semiconductor film containing the amorphous Si phase is heat-treated by using such a short wavelength laser. As the semiconductor film, an amorphous Si: H film containing a p-type impurity such as B or Al and an n-type impurity such as P or As, a microcrystallized Si: H film, a SiGe: H film, a SiN: H film or a SiC: H
There are membranes. There are two types of steps of incorporating impurities into the Si film, a method of introducing from a gas during film formation such as plasma CVD and a method of introducing into a non-doped or low-concentration doped layer by an ion implantation method.

〔発明の実施例〕Example of Invention

以下、本発明の実施例を説明する。 Examples of the present invention will be described below.

実施例1 グロー放電を用いるプラズマCVD法により、SiH
−B(又は、PH)系ガスを用い、B又はPド
ープのアモルファスSi膜を形成した。その膜の抵抗率
を第1表に示す。
Example 1 SiH 4 was formed by a plasma CVD method using glow discharge.
-B 2 H 6 (or, PH 3) with system gas to form an amorphous Si film of B or P-doped. The resistivity of the film is shown in Table 1.

レーザとして、KrF系エキシマレーザ(波長248n
m、パルス幅15ns)を用い、該アモルファスSi膜
を照射した。第1図は、レーザ照射強度を変えて照射し
た後の抵抗率変化を示す。レーザパワー密度0.2J/
cm迄はスーパーリニアに抵抗率が減少し、その後直
線的に減少している。得られた抵抗率は第1表の値に比
べて極めて小さく、通常の多結晶膜と同程度の値となっ
ている。特に、レーザパワー密度0.2J/cm以上
でのアニール膜はX線回折によると結晶化していること
が明らかになった。レーザパワー密度0.2J/cm
以下でアニールした膜は、微結晶相を含む非晶質膜で、
膜表面の形状は平滑であり、デバイス作製用として適し
ている。
As a laser, a KrF excimer laser (wavelength 248n
m, pulse width 15 ns) was used to irradiate the amorphous Si film. FIG. 1 shows the change in resistivity after irradiation with varying laser irradiation intensity. Laser power density 0.2J /
The resistivity decreases super linearly up to cm 2 , and then decreases linearly. The obtained resistivity is extremely smaller than the values shown in Table 1, and is about the same value as that of an ordinary polycrystalline film. Particularly, it was revealed by X-ray diffraction that the annealed film at a laser power density of 0.2 J / cm 2 or more was crystallized. Laser power density 0.2 J / cm 2
The film annealed below is an amorphous film containing a microcrystalline phase,
The shape of the film surface is smooth and suitable for device fabrication.

実施例2 CW(連続発振)のアルゴンイオンレーザを用い、実施
例1と同様な非晶質膜にレーザアニールを行った。
Example 2 The same amorphous film as in Example 1 was laser-annealed using a CW (continuous oscillation) argon ion laser.

波長はADP光学結晶を用い第2高調波である257n
mとし、走査速度1mm/秒で該ドープ非晶質シリコン
膜をアニールした。照射後の抵抗変化は第1図と同様で
あった。この方法では、ビーム走査により、均質に熱処
理を行える特長がある。
The wavelength is 257n which is the second harmonic using ADP optical crystal.
m, and the doped amorphous silicon film was annealed at a scanning speed of 1 mm / sec. The change in resistance after irradiation was the same as in FIG. This method has a feature that the heat treatment can be performed uniformly by beam scanning.

実施例3 グロー放電を用いるプラズマCVD法により、第2図に
示したように、ガラス基板1上に、n形層2、i形層3
およびp形層4を形成した。その後、波長193nmの
ArFエキシマレーザ7を照射した結果、照射前の抵抗
率2.4×10Ω・cmが照射後3.1×10Ω・c
mと抵抗率が低下した。
Example 3 As shown in FIG. 2, an n-type layer 2 and an i-type layer 3 were formed on a glass substrate 1 by a plasma CVD method using glow discharge.
And p-type layer 4 was formed. Then, as a result of irradiation with ArF excimer laser 7 having a wavelength of 193 nm, the resistivity before irradiation was 2.4 × 10 5 Ω · cm and the resistivity after irradiation was 3.1 × 10 Ω · c.
m and the resistivity decreased.

これにより、pin型ダイオードの直列抵抗が低下し、
整流比が改善された。
This reduces the series resistance of the pin diode,
The rectification ratio was improved.

実施例4 実施例3においてp形層4として、炭素入りの非晶質シ
リコンカーバイド膜を用いた。レーザ照射前の抵抗率3
×10Ω・cmが照射後3.0×10Ω・cmと抵
抗率を低減することができた。
Example 4 In Example 3, as the p-type layer 4, an amorphous silicon carbide film containing carbon was used. Resistivity before laser irradiation 3
The resistivity of × 10 7 Ω · cm was 3.0 × 10 6 Ω · cm after irradiation, and the resistivity could be reduced.

実施例5 シリコン薄膜を用いたMOSFETの製造方法を第3図
に示す。
Example 5 A method of manufacturing a MOSFET using a silicon thin film is shown in FIG.

ガラス基板1上にゲート電極(Mo,Crなど)11を
形成後、プラズマCVD法によりSiO膜12および
n形非晶質シリコン膜13を形成した。ソースおよびド
レイン電極14および15を蒸着し、ガラス基板1の下
部からレーザ7の照射を行った。レーザ照射条件は実施
例1〜3と同様で良い。このレーザ照射により、ゲート
電極11上の非晶質シリコン膜は変化しないがソースお
よびドレイン電極14と15の下部の非晶質シリコン膜
は結晶質を含むシリコン膜16に変質した。
After forming the gate electrode (Mo, Cr, etc.) 11 on the glass substrate 1, the SiO 2 film 12 and the n-type amorphous silicon film 13 were formed by the plasma CVD method. The source and drain electrodes 14 and 15 were vapor-deposited, and the laser 7 was irradiated from below the glass substrate 1. The laser irradiation conditions may be the same as in Examples 1 to 3. By this laser irradiation, the amorphous silicon film on the gate electrode 11 was not changed, but the amorphous silicon film below the source and drain electrodes 14 and 15 was changed to a silicon film 16 containing a crystalline substance.

実施例6 シリコン薄膜MOSFETの他の製造方法を第4図に示
す。
Example 6 Another method of manufacturing a silicon thin film MOSFET is shown in FIG.

ガラス基板1上にソースおよびドレイン電極21および
22を形成後、プラズマCVD法によりSiO23お
よびn形非晶質シリコン膜24を連続形成した。ゲー
ト電極25を形成後、該ゲート電極をマスクとしてp+
オン8の打込みを行い、実施例1〜3と同様なレーザア
ニールを行った。このレーザアニールにより、低抵抗シ
リコン膜26を形成した。この方法で、MOSFETの
セルファラインによる形成が可能となり、得られたFE
TのON/OFF比も向上した。
After forming the source and drain electrodes 21 and 22 on the glass substrate 1, a SiO 2 23 and an n -type amorphous silicon film 24 were continuously formed by a plasma CVD method. After forming the gate electrode 25, p + ions 8 were implanted using the gate electrode as a mask, and the same laser annealing as in Examples 1 to 3 was performed. By this laser annealing, the low resistance silicon film 26 was formed. By this method, the MOSFET can be formed by self-alignment, and the obtained FE
The ON / OFF ratio of T has also improved.

〔発明の効果〕〔The invention's effect〕

本発明によれば下記のことが実現できる。 According to the present invention, the following can be realized.

(1) 極めて低抵抗のn形およびp形層を作製できる。(1) Extremely low resistance n-type and p-type layers can be produced.

(2) セルアラインが可能である。(2) Self-alignment is possible.

(3) 極く表面層のみアニールできる。(3) Only the surface layer can be annealed.

(4) 低温プロセスである。(4) It is a low temperature process.

従って、本発明により、安価な大面積基板上に、秀れた
性能を有する半導体薄膜装置を作製することができる。
Therefore, according to the present invention, a semiconductor thin film device having excellent performance can be manufactured on an inexpensive large-area substrate.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の効果を説明するための図、第2図乃至
第4図は、それぞれ本発明の異なる実施例を示す工程図
である。 1……ガラス基板、2……n形層、3……i形層、4…
…p形層、7……レーザ光、8……イオン、11……ゲ
ート電極、12……SiO膜、13……n形非晶質シ
リコン膜。
FIG. 1 is a diagram for explaining the effect of the present invention, and FIGS. 2 to 4 are process diagrams showing different embodiments of the present invention. 1 ... Glass substrate, 2 ... n-type layer, 3 ... i-type layer, 4 ...
... p-type layer, 7 ... laser light, 8 ... ion, 11 ... gate electrode, 12 ... SiO 2 film, 13 ... n type amorphous silicon film.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 29/784 (72)発明者 斉藤 昭男 神奈川県横浜市戸塚区吉田町292番地 株 式会社日立製作所生産技術研究所内 (72)発明者 中谷 光雄 神奈川県横浜市戸塚区吉田町292番地 株 式会社日立製作所生産技術研究所内 (56)参考文献 特開 昭57−155726(JP,A) 特開 昭55−75225(JP,A)─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical indication location H01L 29/784 (72) Inventor Akio Saito 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Stock company Hitachi Manufacturing Engineering Laboratory (72) Inventor Mitsuo Nakatani 292 Yoshida-cho, Totsuka-ku, Yokohama, Kanagawa Prefecture Manufacturing Engineering Laboratory, Hitachi Ltd. (56) Reference JP-A-57-155726 (JP, A) JP-A 55-75225 (JP, A)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】基板上に所望の形状を有するゲート電極を
形成する工程と、該ゲート電極を有する基板上に絶縁膜
を形成する工程と、該絶縁膜上に不純物が添加された非
晶質相シリコン膜を形成する工程と、該非晶質相シリコ
ン膜上に該ゲート電極を挾んでソース及びドレイン電極
を形成する工程と、その後、波長が300nm以下で照
射強度0.2J/cm以下の紫外レーザを該基板に照
射する工程とを有することを特徴とする半導体装置の製
造方法。
1. A step of forming a gate electrode having a desired shape on a substrate, a step of forming an insulating film on a substrate having the gate electrode, and an amorphous material doped with impurities on the insulating film. Of a phase-phase silicon film, a step of sandwiching the gate electrode on the amorphous phase-silicon film to form source and drain electrodes, and then a wavelength of 300 nm or less and an irradiation intensity of 0.2 J / cm 2 or less. And a step of irradiating the substrate with an ultraviolet laser.
【請求項2】基板上に互いに近接してソース及びドレイ
ン電極を形成する工程と、該ソース及びドレイン電極を
有する該基板上に不純物が添加された非晶質相シリコン
膜を形成する工程と、該非晶質相シリコン膜上に絶縁膜
を形成する工程と、該絶縁膜上で、かつ、該ソース及び
ドレイン電極の間に形成されたゲート電極を形成する工
程と、その後、波長が300nm以下で照射強度0.2
J/cm以下の紫外レーザを該基板に照射する工程と
を有することを特徴とする半導体装置の製造方法。
2. A step of forming source and drain electrodes on a substrate in close proximity to each other, and a step of forming an impurity-doped amorphous phase silicon film on the substrate having the source and drain electrodes. A step of forming an insulating film on the amorphous phase silicon film, a step of forming a gate electrode formed on the insulating film and between the source and drain electrodes, and then at a wavelength of 300 nm or less. Irradiation intensity 0.2
And a step of irradiating the substrate with an ultraviolet laser of J / cm 2 or less.
【請求項3】上記基板は、ガラス基板であることを特徴
とする特許請求の範囲第1項または第2項に記載の半導
体装置の製造方法。
3. The method of manufacturing a semiconductor device according to claim 1, wherein the substrate is a glass substrate.
JP5824684A 1984-03-28 1984-03-28 Method for manufacturing semiconductor device Expired - Lifetime JPH0656839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5824684A JPH0656839B2 (en) 1984-03-28 1984-03-28 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5824684A JPH0656839B2 (en) 1984-03-28 1984-03-28 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS60202931A JPS60202931A (en) 1985-10-14
JPH0656839B2 true JPH0656839B2 (en) 1994-07-27

Family

ID=13078761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5824684A Expired - Lifetime JPH0656839B2 (en) 1984-03-28 1984-03-28 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0656839B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8679973B2 (en) 2006-10-11 2014-03-25 Fujitsu Semiconductor Limited Method of manufacturing semiconductor device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07107894B2 (en) * 1986-06-18 1995-11-15 松下電器産業株式会社 Annealing method for polycrystalline thin film substrate
TW232751B (en) 1992-10-09 1994-10-21 Semiconductor Energy Res Co Ltd Semiconductor device and method for forming the same
US5643801A (en) 1992-11-06 1997-07-01 Semiconductor Energy Laboratory Co., Ltd. Laser processing method and alignment
US6544825B1 (en) 1992-12-26 2003-04-08 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a MIS transistor
US5719065A (en) 1993-10-01 1998-02-17 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device with removable spacers
JP2546538B2 (en) * 1994-07-11 1996-10-23 ソニー株式会社 Thin film transistor manufacturing method
JP3778456B2 (en) 1995-02-21 2006-05-24 株式会社半導体エネルギー研究所 Method for manufacturing insulated gate thin film semiconductor device
JP3989761B2 (en) 2002-04-09 2007-10-10 株式会社半導体エネルギー研究所 Semiconductor display device
US7038239B2 (en) 2002-04-09 2006-05-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and display device using the same
US7256421B2 (en) 2002-05-17 2007-08-14 Semiconductor Energy Laboratory, Co., Ltd. Display device having a structure for preventing the deterioration of a light emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8679973B2 (en) 2006-10-11 2014-03-25 Fujitsu Semiconductor Limited Method of manufacturing semiconductor device

Also Published As

Publication number Publication date
JPS60202931A (en) 1985-10-14

Similar Documents

Publication Publication Date Title
US5498904A (en) Polycrystalline semiconductive film, semiconductor device using the same and method of manufacturing the same
US6133583A (en) Semiconductor device and method for producing the same
JP4295922B2 (en) Gas immersion laser annealing method suitable for application in the fabrication of small integrated circuits
US5221365A (en) Photovoltaic cell and method of manufacturing polycrystalline semiconductive film
EP1113486B1 (en) Method of doping a semiconductor
KR20040029423A (en) Method for semiconductor gate doping
KR19980086477A (en) Semiconductor device manufacturing method and semiconductor device
JPH0656839B2 (en) Method for manufacturing semiconductor device
US6544825B1 (en) Method of fabricating a MIS transistor
KR100615502B1 (en) Semiconductor device manufacturing method
KR980012600A (en) Method of manufacturing semiconductor device and thin film transistor
US4364778A (en) Formation of multilayer dopant distributions in a semiconductor
JPH07112063B2 (en) Field effect transistor fabrication method
US6410374B1 (en) Method of crystallizing a semiconductor layer in a MIS transistor
JP3140303B2 (en) Semiconductor device and manufacturing method thereof
JP2764425B2 (en) Method for manufacturing thin film transistor
JP3182226B2 (en) Method for manufacturing conductive polycrystalline silicon film
JPH073824B2 (en) Method for manufacturing semiconductor device
JP3031398B2 (en) Method for manufacturing MIS transistor
JP2830718B2 (en) Method for manufacturing thin film transistor
WO1997027620A1 (en) A self-aligned lightly-doped-drain structure for mos transistors
JPH0562899A (en) Formation of semiconductor thin film
JPH0773094B2 (en) Method for manufacturing crystalline semiconductor thin film
JPS60187030A (en) Manufacture of semiconductor device
JP2764426B2 (en) Method for manufacturing thin film transistor