JPH06552U - Electric heating type immersion nozzle for continuous casting - Google Patents
Electric heating type immersion nozzle for continuous castingInfo
- Publication number
- JPH06552U JPH06552U JP4336292U JP4336292U JPH06552U JP H06552 U JPH06552 U JP H06552U JP 4336292 U JP4336292 U JP 4336292U JP 4336292 U JP4336292 U JP 4336292U JP H06552 U JPH06552 U JP H06552U
- Authority
- JP
- Japan
- Prior art keywords
- nozzle
- continuous casting
- electric heating
- refractory body
- heating resistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Continuous Casting (AREA)
- Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
Abstract
(57)【要約】
【目的】 連続鋳造用浸漬ノズルのノズル詰りを防止す
る。
【構成】 ノズル耐火物本体1内に、該本体1内の上部
から溶鋼流出口4の下方に至る面状の通電発熱抵抗体2
を埋設する。発熱抵抗体2に直流を通電して発熱させ、
ノズル耐火物本体1の温度を上昇する。溶鋼の温度低下
による地金付着、非金属介在物の付着を防止し、ノズル
詰りを解消する。
(57) [Summary] [Purpose] Prevents nozzle clogging of continuous casting immersion nozzles. [Structure] In a nozzle refractory body 1, a sheet-like energization heating resistor 2 extending from an upper portion of the body 1 to a portion below a molten steel outlet 4 is provided.
To bury. Direct current is applied to the heating resistor 2 to generate heat,
The temperature of the nozzle refractory body 1 is increased. Prevents clogging of nozzles and non-metallic inclusions due to temperature drop of molten steel, eliminating nozzle clogging.
Description
【0001】[0001]
本考案は、ノズル詰りを防止することができる通電発熱式の連続鋳造用浸漬ノ ズルに関するものである。 The present invention relates to an electric heating type immersion nozzle for continuous casting capable of preventing nozzle clogging.
【0002】[0002]
連続鋳造技術の進歩と共に、更なる生産性向上を目指して取鍋交換による連々 鋳を行うようになってきた。このため注湯ノズル1本当りの注湯時間が長くなり 、溶湯中の不純物に起因するノズル詰りが問題となっている。さらに、鋳片の等 軸晶化を促進するには、溶湯温度をできる限り低くする必要があるが、この際に 浸漬ノズルが地金によって閉塞するために溶湯過熱度を大きくせざるを得なかっ た。 Along with the progress of continuous casting technology, we have started casting one after another by changing the ladle with the aim of further improving productivity. For this reason, the pouring time per pouring nozzle becomes long, and nozzle clogging due to impurities in the molten metal poses a problem. Furthermore, in order to promote the equiaxed crystallization of the slab, it is necessary to lower the temperature of the molten metal as much as possible, but at this time, the immersion nozzle is blocked by the metal, and the degree of superheat of the molten metal must be increased. It was
【0003】 そこでたとえば、特開昭59-202143 号公報に開示されるような誘導加熱による ノズル加熱によって上記の問題点の解決が図られてきた。しかしながら、誘導加 熱によってノズルを加熱するためには、水冷コイルと高周波電源を必要とし、設 備上大がかりとなるばかりでなく、溶湯のすぐ近くで水冷コイルが必要となり、 コイルのシールがやぶれると水蒸気爆発の危険があり、工業化の妨げとなってい る。Therefore, for example, nozzle heating by induction heating as disclosed in Japanese Patent Laid-Open No. 59-202143 has been used to solve the above problems. However, in order to heat the nozzle by induction heating, a water-cooling coil and a high-frequency power source are required, which is not only a large-scale installation, but also a water-cooling coil is required in the immediate vicinity of the molten metal, and if the coil seal breaks. There is a danger of steam explosion, which hinders industrialization.
【0004】 さらに、特開昭63-56349号、特開昭63-56350号、特開昭63-56351号にわたる公 報で考案されているような、ノズルへの直接通電によるノズル加熱が開示されて いる。しかしながら、ノズルへ直接通電すると、ノズル内の金属溶湯の方が電気 伝導度が大きいために、ノズル内部の溶湯に電流パスが生じることになる。この 場合、ノズル内の溶湯はノズル内部の溶湯流動によって充填したりしなかったり するため、溶湯内の電流パスが水平方向にも生じ、複雑になるばかりか時間的に 不安定となり、加熱効率の上で問題があった。また、ノズル詰りの防止に最適な ノズルの温度分布を得ることができず、発熱量を大きくすると溶湯によるノズル 外壁の溶損量が増加し、ノズル寿命低下を招き、連々鋳の妨げとなる恐れがあっ た。Further, nozzle heating by direct energization to the nozzle as disclosed in the publications of JP-A-63-56349, JP-A-63-56350 and JP-A-63-56351 is disclosed. ing. However, when electricity is directly applied to the nozzle, a current path is generated in the molten metal inside the nozzle because the metal melt inside the nozzle has a higher electric conductivity. In this case, the molten metal in the nozzle may or may not be filled due to the molten metal flow inside the nozzle, so that the current path in the molten metal may also occur in the horizontal direction, which not only complicates but also becomes unstable in terms of time and heating efficiency. There was a problem above. In addition, it is not possible to obtain the optimum nozzle temperature distribution to prevent nozzle clogging, and increasing the amount of heat generation increases the amount of melt damage to the outer wall of the nozzle due to the molten metal, leading to a reduction in nozzle life and a continuous hindrance to casting. was there.
【0005】[0005]
本考案は、上述のような問題を解決し、比較的簡単な設備でノズル内壁への地 金付着や非金属介在物の付着抑制が可能であるばかりでなく、好ましくはノズル の温度分布をコントロールすることにより、溶湯によるノズル外壁の溶損がノズ ル加熱によっても助長されない、連続鋳造用浸漬ノズルを提供することを目的と するものである。 The present invention not only solves the above problems and can suppress the adhesion of metal and non-metallic inclusions to the inner wall of the nozzle with relatively simple equipment, but preferably controls the temperature distribution of the nozzle. By doing so, it is an object of the present invention to provide a submerged nozzle for continuous casting, in which melt damage of the outer wall of the nozzle due to the molten metal is not promoted even by nozzle heating.
【0006】[0006]
前記目的を達成するための本考案は、通電発熱式の連続鋳造用浸漬ノズルにお いて、ノズル耐火物本体内に、該ノズル耐火物本体の上部から溶鋼流出口の下方 に至る適宜幅を有する面状の通電発熱抵抗体を上下方向に対をなすと共に、下端 を接続させて埋設し、前記通電発熱抵抗体の各上部端寄りの互いに対位する箇所 に通電端子を取りつけたことを特徴とする通電加熱式の連続鋳造用浸漬ノズルで ある。 Means for Solving the Problems The present invention for achieving the above object provides an electric heating type immersion casting nozzle for continuous casting, which has an appropriate width in the nozzle refractory body from the upper portion of the nozzle refractory body to the lower portion of the molten steel outlet. The sheet-like energization heating resistors are paired in the vertical direction, the lower ends are connected and buried, and the energization terminals are attached to the portions of the energization heating resistors that are opposite to each other near the upper ends. It is an electric heating type immersion nozzle for continuous casting.
【0007】 本考案では前記ノズル耐火物本体の高さ方向で発熱量分布が異なる通電発熱抵 抗体を埋設するようにするのが好適である。In the present invention, it is preferable to embed an energization heat-generating antibody having a different heat generation distribution in the height direction of the nozzle refractory body.
【0008】[0008]
本考案の連続鋳造用浸漬ノズルは、ノズル耐火物本体の内部に面状の発熱抵抗 体をもち、これに直流電圧を印加することで、ノズル耐火物本体の内部から加熱 される。この発熱量Qは、後述のように電流値Iと発熱体の電気抵抗Rによって 決まるから、ノズル全体の発熱量は電流値Iを調整する。 The continuous casting dipping nozzle of the present invention has a sheet-like heating resistor inside the nozzle refractory body, and is heated from the inside of the nozzle refractory body by applying a DC voltage thereto. Since the heat generation amount Q is determined by the current value I and the electric resistance R of the heating element as described later, the heat generation amount of the entire nozzle adjusts the current value I.
【0009】 さらに、好ましくは、発熱抵抗体の電気抵抗Rを発熱量が多く必要な位置では 大きくし、発熱量を小さくしたい位置では電気抵抗Rを小さくすることで発熱量 の分布をコントロールすることができる。 前述のように本考案の連続鋳造用浸漬ノズル中の導電性面状発熱体に直流電流 を通すことにより、ノズル耐火物本体は内部から加熱される。このときの発熱量 Qは、流す電流値Iと導電性発熱体の電気抵抗Rから、 Q=IR2 と見積られる。Further, preferably, the distribution of the heat generation amount is controlled by increasing the electric resistance R of the heating resistor at a position where a large amount of heat generation is required and decreasing the electric resistance R at a position where a small amount of heat generation is desired. You can As described above, the nozzle refractory body is internally heated by passing a direct current through the conductive sheet heating element in the continuous casting immersion nozzle of the present invention. The heat generation amount Q at this time is estimated as Q = IR 2 from the flowing current value I and the electric resistance R of the conductive heating element.
【0010】 ノズル耐火物本体内の付着物を低減するためには、ノズル内壁の温度が均一で あることが望ましいが、ノズル耐火物本体が溶湯に浸漬されている場合には、ノ ズル中の熱の流れはおおよそ図2で模式的に示されるように、タンディッシュ8 の下部に取付けられた連続鋳造用浸漬ノズルのノズル耐火物本体1下端部からモ ールド9内の溶湯7の保有する熱移動が起こり、大気中に熱放散される。このた めノズル耐火物本体1内を通過する溶湯7は温度が低下し、ノズル耐火物本体1 の下部で回りの溶湯7より温度が低下し、地金付着、非金属介在物付着を助長す ることになる。なお、5は熱移動方向、6はモールドパウダを示す。In order to reduce the deposits in the nozzle refractory body, it is desirable that the temperature of the inner wall of the nozzle be uniform, but if the nozzle refractory body is immersed in the molten metal, As shown schematically in FIG. 2, the heat flow is such that the heat held by the molten metal 7 in the mold 9 from the lower end of the nozzle refractory body 1 of the continuous casting immersion nozzle attached to the lower part of the tundish 8. Movement occurs and heat is dissipated into the atmosphere. Therefore, the temperature of the molten metal 7 passing through the nozzle refractory body 1 is lowered, and the temperature is lower than that of the surrounding molten metal 7 in the lower portion of the nozzle refractory body 1, which promotes adhesion of metal and non-metallic inclusions. Will be. In addition, 5 shows a heat transfer direction, 6 shows a mold powder.
【0011】 そこで、図1のような厚みの変化により発熱量分布を持つ面状の発熱抵抗体2 をノズル耐火物本体1内に埋設することにより、ノズル耐火物1の下端から上方 への熱移動を低くしてノズル耐火物1の下端での温度低下を抑制し、地金付着や 非金属介在物の付着を防止するものである。なお、発熱量の分布は、発熱体の電 気抵抗値によって調整可能で、例えば熱放散が大きいため発熱量が多く必要なノ ズル中央部では面状発熱体2の断面積を小さくして電気抵抗を大きくし、発熱量 を多くすればよい。また、発熱抵抗体2としては、グラファイト等をノズル製造 の際(プレス)前に埋め込むことでノズル耐火物本体1内に内挿することができ る。Therefore, by embedding the sheet-like heat generating resistor 2 having a heat generation amount distribution due to the change in thickness as shown in FIG. 1 in the nozzle refractory body 1, heat from the lower end of the nozzle refractory 1 to the upper side can be increased. By lowering the movement, the temperature drop at the lower end of the nozzle refractory 1 is suppressed, and the adhesion of metal or non-metallic inclusions is prevented. The distribution of the heat generation amount can be adjusted by the electric resistance value of the heat generating element. For example, in the central part of the nozzle where a large amount of heat is required due to large heat dissipation, the cross-sectional area of the sheet heating element 2 is reduced to reduce the electric The resistance should be increased and the amount of heat generated should be increased. The heating resistor 2 can be inserted into the nozzle refractory body 1 by embedding graphite or the like before manufacturing (pressing) the nozzle.
【0012】[0012]
本考案の連続鋳造用浸漬ノズルを用いて、Ti入りステンレス鋼(Fe−17%Cr− 0.2%Ti)の溶鋼で、3連々(80ton取鍋×3ch)の連続鋳造実験を行った。使用 したノズル本体内部の発熱体形状および寸法を図1(a)、(b)に模式的に示 す。 Using the immersion nozzle for continuous casting of the present invention, a continuous casting experiment was performed on molten steel containing Ti-containing stainless steel (Fe-17% Cr-0.2% Ti) for three consecutive times (80 ton ladle x 3 ch). The shape and dimensions of the heating element inside the used nozzle body are schematically shown in FIGS. 1 (a) and 1 (b).
【0013】 すなわち、図1(a)、(b)に示すようにノズル耐火物本体1の上部から一 対の溶鋼流出口4の下方に至る面状の通電発熱抵抗体2を上下方向に対をなすと ともに、下端を接続させて埋設してある。そして通電発熱抵抗体2の各上部端寄 りの互いに対位する箇所に通電端子10を設けてあり、一方が+側に、他方が−側 の直流電源に接続されている。なお、面状の通電発熱抵抗体2の厚みは、発熱量 が多く必要な上部では厚みを2mmと薄くし、発熱量を少なくしてよい下部が2mm から4mmへと末広がりに厚みを徐々に大きくしてあり、溶鋼流出口4の下方は4 mmとなっている。That is, as shown in FIGS. 1 (a) and 1 (b), the sheet-like energization heating resistors 2 extending from the upper part of the nozzle refractory body 1 to below the pair of molten steel outlets 4 are arranged vertically. It is also embedded with the lower end connected. Further, current-carrying terminals 10 are provided near the upper ends of the current-carrying heating resistors 2 at positions facing each other, one of which is connected to the + side and the other of which is connected to the-side DC power supply. As for the thickness of the sheet-like energization heating resistor 2, the thickness is reduced to 2 mm in the upper part where a large amount of heat is required and the thickness of the lower part where the amount of heat may be reduced gradually increases from 2 mm to 4 mm. The bottom of the molten steel outlet 4 is 4 mm.
【0014】 この場合、面状の通電発熱抵抗体2としてアルミナグラファイト製のものを使 用し、タンディッシュの予熱中から一対の通電端子10のA−B間に30Vの直流電 圧を印加して矢印3で示す方向に電流を流した。また、比較例として同一寸法、 形状で発熱体をもたない従来の連続鋳造用浸漬ノズルを用いて実験を行った。本 設備ではモールドの湯面レベルが一定となるように、タンディッシュのストッパ ー開度を制御しているために、ノズル内壁の付着物量が増加すると、ストッパー 開度が大きくなるため、ノズル付着物量をストッパー開度の変化により評価でき る。In this case, as the sheet-like energization heating resistor 2, one made of alumina graphite is used, and a DC voltage of 30 V is applied between A and B of the pair of energization terminals 10 during preheating of the tundish. A current was passed in the direction indicated by arrow 3. As a comparative example, an experiment was conducted using a conventional continuous casting immersion nozzle having the same size and shape and having no heating element. In this equipment, the stopper opening of the tundish is controlled so that the level of the mold surface is constant.Therefore, if the amount of deposits on the inner wall of the nozzle increases, the opening of the stopper increases, so the amount of deposits on the nozzle increases. Can be evaluated by changing the stopper opening.
【0015】 図3に本考案ノズル使用時と比較のため従来のノズル使用時のストッパー開度 変化を鋳造長で整理した。図3から明らかなように、本発明ノズル使用により、 ノズル付着物量が減少し、ストッパー開度変化が小さくなることがわかる。さら に、3連の鋳造後に使用したノズルを回収し、中心軸を含む垂直面で切断し、ノ ズルに付着していた地金、非金属介在物の厚みを測定したところ、ノズルの付着 物量は比較ノズルの場合に比べて1/2以下であり、図3に示したストッパー開 度変化と傾向が一致した。 また、ノズル耐火物本体に付着物が増し、ノズル詰りが悪化すると、モールド 内の流動が不安定となり、モールドフラックスの巻き込みを助長したり、また、 鋳造中にノズル耐火物本体付着物の一部がはく離し、これが鋳片表層部にトラッ プされて、製品欠陥となることが知られている。FIG. 3 shows the change in the stopper opening when the conventional nozzle is used for comparison with the case of using the nozzle of the present invention by casting length. As is apparent from FIG. 3, the use of the nozzle of the present invention reduces the amount of deposits on the nozzle and reduces the change in the stopper opening. Furthermore, when the nozzles used after the triple casting were collected, cut at a vertical plane including the center axis, and the thickness of the metal and non-metallic inclusions adhering to the nozzle was measured, the amount of adhering substances on the nozzle Is less than 1/2 of that of the comparative nozzle, which is in agreement with the change in stopper opening shown in FIG. Also, when the deposits increase on the nozzle refractory body and the nozzle clogging worsens, the flow inside the mold becomes unstable, which promotes the entrainment of mold flux, and part of the deposits on the nozzle refractory body during casting. It is known that peeling occurs and this is trapped on the surface layer of the slab, resulting in product defects.
【0016】 そこで、本考案のノズル使用時と、比較のための従来のノズル使用時の鋳片表 層部欠陥に起因する熱延板の表面欠陥指数をまとめて図4に示した。図4から、 本考案ノズル使用により製品欠陥も低減し、生産性向上ばかりでなく、製品品質 の向上も達成された。Therefore, the surface defect index of the hot-rolled sheet due to defects in the surface layer of the slab when the nozzle of the present invention is used and when the conventional nozzle is used for comparison is shown in FIG. From FIG. 4, by using the nozzle of the present invention, product defects were reduced, and not only productivity was improved but also product quality was improved.
【0017】[0017]
本考案の連続鋳造用浸漬ノズルの使用によればノズル外壁の溶損量を抑えつつ 、ノズル詰りが低減され、連続鋳造時の連々数を増すことができるようになり、 生産性の向上が達成される。また、ノズル詰りに起因するモールド内の溶湯流動 の変動も小さくなるので、製品品質の向上も可能となる。 By using the immersion nozzle for continuous casting according to the present invention, it is possible to suppress clogging of the nozzle while suppressing the amount of melt damage on the outer wall of the nozzle, and to increase the number of continuous casting continuously, thus improving productivity. To be done. Further, the fluctuation of the molten metal flow in the mold due to the nozzle clogging becomes small, so that the product quality can be improved.
【図1】本考案の構造を示す断面図であり、(a)は縦
断面図、(b)は(a)のC−C’断面図である。1 is a sectional view showing a structure of the present invention, (a) is a vertical sectional view, and (b) is a sectional view taken along line CC 'of FIG.
【図2】通常の浸漬ノズル回りの熱の流れを示す概略図
である。FIG. 2 is a schematic view showing a heat flow around a normal immersion nozzle.
【図3】本考案と従来例のストッパー開度変化の推移を
示す線グラフである。FIG. 3 is a line graph showing changes in stopper opening change according to the present invention and a conventional example.
【図4】本考案と従来の熱延板の欠陥発生比率を示すグ
ラフである。FIG. 4 is a graph showing a defect occurrence ratio of the present invention and a conventional hot-rolled sheet.
1 ノズル耐火物本体 2 通電発熱抵抗体 3 電流の向き 4 溶湯の吐出口 5 熱移動方向 6 モールドパウダー 7 溶湯 8 タンディッシュ 9 モールド 10 通電端子 1 Nozzle refractory body 2 Electric heating resistor 3 Direction of current 4 Molten metal discharge port 5 Heat transfer direction 6 Mold powder 7 Molten metal 8 Tundish 9 Mold 10 Conductive terminal
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成4年7月30日[Submission date] July 30, 1992
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】図2[Name of item to be corrected] Figure 2
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図2】 [Fig. 2]
Claims (2)
いて、ノズル耐火物本体内に該ノズル耐火物本体の上部
から溶鋼流出口の下方に至る適宜幅を有する面状の通電
発熱抵抗体を上下方向に対をなすと共に、下端を接続さ
せて埋設し、前記通電発熱抵抗体の各上部端寄りの互い
に対位する箇所に通電端子を取りつけたことを特徴とす
る通電加熱式の連続鋳造用浸漬ノズル。1. An electric heating exothermic dipping nozzle for continuous casting, wherein a sheet-like electric heating resistor having an appropriate width extending from an upper portion of the nozzle refractory body to a lower portion of the molten steel outlet is provided in the nozzle refractory body. Immersion for continuous casting of electric heating type, characterized in that they are buried in a pair in the same direction with the lower ends connected, and the electric terminals are attached to the electric heating resistors at positions facing each other near the upper ends of the electric heating resistors. nozzle.
布が異なる通電発熱抵抗体を埋設したことを特徴とする
請求項1記載の通電発熱式の連続鋳造用浸漬ノズル。2. The immersion nozzle for continuous casting according to claim 1, wherein an energization heating resistor having a different calorific value distribution in the height direction of the nozzle refractory body is embedded.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4336292U JPH06552U (en) | 1992-05-29 | 1992-05-29 | Electric heating type immersion nozzle for continuous casting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4336292U JPH06552U (en) | 1992-05-29 | 1992-05-29 | Electric heating type immersion nozzle for continuous casting |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06552U true JPH06552U (en) | 1994-01-11 |
Family
ID=12661752
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4336292U Pending JPH06552U (en) | 1992-05-29 | 1992-05-29 | Electric heating type immersion nozzle for continuous casting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06552U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8360136B2 (en) | 2008-12-26 | 2013-01-29 | Nippon Steel Corporation | Continuous casting method and nozzle heating device |
-
1992
- 1992-05-29 JP JP4336292U patent/JPH06552U/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8360136B2 (en) | 2008-12-26 | 2013-01-29 | Nippon Steel Corporation | Continuous casting method and nozzle heating device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3985179A (en) | Electromagnetic casting apparatus | |
TWI572839B (en) | Open bottom electric induction cold crucible for an electromagnetic casting and method of electromagnetic casting an ingot in an open bottom electric induction cold crucible | |
WO2010073736A1 (en) | Continuous casting method and nozzle heating device | |
US5799720A (en) | Nozzle assembly for continuous caster | |
JP5015053B2 (en) | Method of preheating immersion nozzle for continuous casting and continuous casting method | |
KR101608035B1 (en) | Electromagnetic device for coating flat metal products by means of continuous hot dipping, and coating process thereof | |
JP2002336942A (en) | Immersion nozzle for continuous casting and continuous casting method | |
JP6772677B2 (en) | Tandish internal molten steel heating method and tundish plasma heating device | |
JPH06552U (en) | Electric heating type immersion nozzle for continuous casting | |
CA1198157A (en) | Casting technique for lead storage battery grids | |
JPH10502579A (en) | Method for induction heating of refractory molded part and suitable molded part therefor | |
JP4456284B2 (en) | Molten steel heating device using plasma torch | |
JPS5813449A (en) | Immersion nozzle for electrical heating | |
JPH0683146U (en) | Tundish nozzle | |
JP2010264485A (en) | Tundish for continuous casting, and method for continuous casting | |
JPS6195755A (en) | Heating method of molten metal in tundish | |
KR100738857B1 (en) | Method for purposefully moderating of pouring spout and pouring spout for performing the same | |
JPH06246409A (en) | Heating type immersion nozzle device for discharging half-soldified metal | |
JPS59202142A (en) | Heating method of nozzle to be immersed into tundish | |
JPH0237943A (en) | Heating mold for continuous casting and method for continuous casting | |
JP2000271706A (en) | Twin roll type continuous casting method and device thereof | |
JPH0515949A (en) | Apparatus and method for continuously casting metal | |
JPH03207563A (en) | Method for induction-heating conductive molten body | |
JPH05171251A (en) | Vacuum degassing apparatus | |
JP3343387B2 (en) | Roll continuous casting equipment |