JPH0649238B2 - Solder for joining Cu-based materials and soldering method - Google Patents
Solder for joining Cu-based materials and soldering methodInfo
- Publication number
- JPH0649238B2 JPH0649238B2 JP63092386A JP9238688A JPH0649238B2 JP H0649238 B2 JPH0649238 B2 JP H0649238B2 JP 63092386 A JP63092386 A JP 63092386A JP 9238688 A JP9238688 A JP 9238688A JP H0649238 B2 JPH0649238 B2 JP H0649238B2
- Authority
- JP
- Japan
- Prior art keywords
- solder
- soldered
- phase
- soldering
- lead wire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Electric Connection Of Electric Components To Printed Circuits (AREA)
- Ceramic Products (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、少なくとも一方がCu系合金からなる被接合
部材をはんだ付けした時、そのはんだ付部に熱疲労が生
じることを防止して、はんだ付部の耐久寿命を向上させ
ることができるCu系材料接合用はんだ及びはんだ付方
法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention prevents the occurrence of thermal fatigue in the soldered part when at least one member to be joined made of a Cu-based alloy is soldered, The present invention relates to a Cu-based material joining solder and a soldering method capable of improving the durable life of a soldered portion.
電気・電子部品には導電性およびはんだ付性等の面か
ら、被接合部材として主にCuまたはCu合金が用いられて
いる。そして、これらの被接合部材はSn系またはPb−Sn
系のはんだによって接合されるのが一般的である。この
ような接合においては、被接合部材のCuとはんだ中のSn
とが反応し、被接合部材と反応の界面にCu3SnおよびCu6
Sn5(以下Cu3Sn等という)の化合物が形成される。Cu or Cu alloy is mainly used as a member to be joined in electric and electronic parts from the viewpoint of conductivity and solderability. And, these joined members are Sn-based or Pb-Sn
It is generally joined by a system solder. In such joining, Cu of the joined members and Sn in the solder
Reacts with Cu 3 Sn and Cu 6 at the interface between the joined members and the reaction.
A compound of Sn 5 (hereinafter referred to as Cu 3 Sn etc.) is formed.
これらの化合物の層は、はんだ付け(例えば230℃×
10秒間保持)されたその時には非常に薄くて問題とは
ならないが、はんだ付部に電流を流したり、あるいはは
んだ付け部を高温雰囲気の下にさらしたりすると、はん
だ付部では被接合部材のCuとはんだのSnとの反応が徐々
に進みCu3Sn等の化合物が形成されていく。この反応は
はんだ中にSn元素が存在する限り進行して、上記化合物
の層は徐々に厚くなっていく。それに伴ってはんだ付部
の機械的強度が弱くなり、特にはんだ付部に熱応力や外
力等が加わった時に、この層から割れを生じるという不
具合が発生する。また割れまで至らなくともCu3Sn等の
化合物の層が増大すれば、電気的抵抗が大きくなり好ま
しいことではない。Layers of these compounds are soldered (eg 230 ° C x
After being held for 10 seconds), it is very thin and does not pose a problem, but if a current is applied to the soldering part or if the soldering part is exposed to a high temperature atmosphere, the Cu And the Sn of the solder gradually proceed to form compounds such as Cu 3 Sn. This reaction proceeds as long as the Sn element is present in the solder, and the layer of the above compound gradually thickens. Along with that, the mechanical strength of the soldered portion is weakened, and when thermal stress, external force, or the like is applied to the soldered portion, a crack occurs from this layer. If the layer of a compound such as Cu 3 Sn increases even if cracking does not occur, the electrical resistance increases, which is not preferable.
そこで、Cu3Sn等の化合物の生成を抑制することができ
るはんだとして、Sn−Sb系合金のはんだが提案されてい
る(特開昭61−86091号公報)。このはんだはSb
が重量で5〜10%、Niが1%以下で、残りがSnからな
っており、主にSbの作用によてCu3Sn等の化合物の生成
を抑制することができるということである。Therefore, as a solder capable of suppressing the formation of compounds such as Cu 3 Sn, a Sn—Sb alloy solder has been proposed (Japanese Patent Laid-Open No. 61-86091). This solder is Sb
Is 5 to 10% by weight, Ni is 1% or less, and the balance is Sn. It is possible to suppress the formation of compounds such as Cu 3 Sn mainly by the action of Sb.
なお、プリント基板にスルホールを穿設し、このスルホ
ール内に電子部品等のリード線を挿入してはんだ付けす
る方法が従来より行われている。この方法によればリー
ド線が拘束される為、仮りにCu3Sn等の化合物が成長し
ていても、はんだ付部に割れが発生し、リード線がぬけ
ることはない。しかし、近年、電子部品の搭載密度が高
くなり、FPP(Flat Plastic Package)およびPLC
C(Plastic Leaded Chip Carrier)等の面付けはんだ
付が多く使用されるようになってきたため、面付はんだ
付におけるCu3Sn等の化合物の生成を抑制する技術開発
が要望されていた。Heretofore, a method of forming a through hole in a printed circuit board, inserting a lead wire of an electronic component or the like into the through hole and soldering it has been conventionally performed. According to this method, the lead wire is restrained, so that even if a compound such as Cu 3 Sn grows, the solder wire does not crack and the lead wire is not pulled out. However, in recent years, the mounting density of electronic parts has increased, and FPP (Flat Plastic Package) and PLC
Since surface mounting soldering such as C (Plastic Leaded Chip Carrier) has been widely used, there has been a demand for a technical development for suppressing the generation of compounds such as Cu 3 Sn in the surface mounting soldering.
上記したSn−Sb系合金はんだには、Snが約90%含有さ
れているが、Cu3Sn等の反応性が非常に高いため、Cu3Sn
等の反応を抑制することは実質的には困難であると考え
られる。また、このSn−Sb系合金はんだにはNiやPも添
加されているため、はんだとして必要なぬれ性、及びは
んだの加工性においても問題がある。The Sn-Sb alloy solder described above contains about 90% Sn, but since Cu 3 Sn and the like have extremely high reactivity, Cu 3 Sn
It is considered that it is practically difficult to suppress such reactions. In addition, since Ni and P are added to this Sn-Sb alloy solder, there are problems in the wettability necessary for the solder and the workability of the solder.
本発明の目的は、Cu系合金からなる被接合部材をはんだ
付けした際に、そのはんだ付部にCu3Sn等の脆い化合物
が生成することを抑制することができるCu系材料接合用
はんだを提供することである。An object of the present invention is, when soldering a joined member made of a Cu-based alloy, a Cu-based material bonding solder capable of suppressing the formation of a brittle compound such as Cu 3 Sn in the soldered portion. Is to provide.
また、他の目的は、従来のSn系合金はんだを用いた場合
でも、Cu3Sn等の化合物が生成することを抑制できるは
んだ付方法を提供することである。Another object of the present invention is to provide a soldering method capable of suppressing the production of compounds such as Cu 3 Sn even when a conventional Sn-based alloy solder is used.
上記目的を達成するために、本発明のCu系材料接合用は
んだは、Znが0.3〜3wt%未満及び残部がSnか
らなるものである。In order to achieve the above object, the Cu-based material bonding solder of the present invention contains Zn of 0.3 to less than 3 wt% and the balance of Sn.
また、本発明のCu系材料接合用はんだは、Znが0.3
〜3wt%未満、Sb,In,Ag,Au,Cuのうち
1種類以上が3wt%以下及び残部がSnからなるもの
である。In addition, the Cu-based material bonding solder of the present invention has a Zn content of 0.3.
Less than 3 wt%, one or more of Sb, In, Ag, Au, and Cu are 3 wt% or less, and the balance is Sn.
さらに、本発明のはんだ付方法は、Cu系合金からなる
被接合部材の表面に、Zn入りSn系合金ペーストはん
だを塗布しておき、該ペーストはんだで接合することで
ある。Furthermore, the soldering method of the present invention is that Zn-containing Sn-based alloy paste solder is applied to the surface of the members to be joined made of a Cu-based alloy, and the joining is performed with the paste solder.
Cu系合金からなる被接合部材をSn系合金はんだではんだ
付けすると、被接合部材のCuとはんだ中のSnとは親和力
が強いため、Snが選択的に拡散し、被接合部材とはんだ
の界面にCu3Sn等の反応相を形成し、この反応相は高温
雰囲気の下で成長する。Cu系合金をSn系合金はんだでは
んだ付けする限りはこの現象から逃れることはできな
い。When soldering a bonded member made of Cu-based alloy with Sn-based alloy solder, Sn has a strong affinity for Cu in the bonded member and Sn in the solder, so Sn diffuses selectively and the interface between the bonded member and solder A reaction phase of Cu 3 Sn or the like is formed in the, and this reaction phase grows in a high temperature atmosphere. This phenomenon cannot be escaped as long as the Cu-based alloy is soldered with Sn-based alloy solder.
そこで、Cuとの親和力がSnよりも強くかつ化合物を形成
し難い元素について種々と実験した結果、Znが最適であ
るということが判明した。ZnはCuに対する合金生成エン
タルピがSnよりも小さい。つまり反応相を形成し易いこ
とになる。Then, as a result of various experiments with respect to an element that has a stronger affinity for Cu than Sn and is difficult to form a compound, it was found that Zn is the most suitable. Zn has a smaller alloy formation enthalpy for Cu than Sn. That is, the reaction phase is easily formed.
また、Znをどのはんだに含有させるかによってもその効
果は異なってくる。検討した結果、Snはんだ、Sn3
%以下で残りPbはんだ、Sb3%以下で残りSnはんだ、
等が良好であり、Sn30〜60%で残りPbはんだは不
良であった。すなわち、良く使われている上記のはん
だにはCu3Sn相を抑制する効果は見られない。Znの含有
量ははんだの種類によっても若干異なるが、全体的には
0.3〜3%未満の範囲で効果的である。更に好ましく
は0.5〜1.5%の範囲が顕著である。また、0.3
%未満ではCu3Sn相を抑制する能力がやや不足し、3%
以上ではCu3Sn相を抑制する効果があるが、はんだ材と
しての流動性等が低下するので好ましくない。The effect also differs depending on which solder contains Zn. As a result of examination, Sn solder, Sn3
%, Remaining Pb solder, Sb 3% or less remaining Sn solder,
Etc. were good, and the remaining Pb solder was unsatisfactory when Sn was 30 to 60%. That is, the above-mentioned solder that is often used has no effect of suppressing the Cu 3 Sn phase. The Zn content is slightly different depending on the type of solder, but is generally effective in the range of 0.3 to less than 3%. The range of 0.5 to 1.5% is more preferable. Also, 0.3
If it is less than%, the ability to suppress the Cu 3 Sn phase is slightly insufficient, and it is 3%.
Although the above has the effect of suppressing the Cu 3 Sn phase, it is not preferable because the fluidity as a solder material is reduced.
また、0.3〜3%未満のZnを含有したはんだの中に、
Sb,In,Ag,Au,Cuのうち1種類以上が添加されても、
はんだ付性を損なわない程度であれば良い。これらの元
素はZnと被接合部材との反応を妨げるものでないことを
必要とする。添加量としては約3%以下が妥当である。Moreover, in the solder containing 0.3 to less than 3% Zn,
Even if one or more of Sb, In, Ag, Au, Cu is added,
It is sufficient if the solderability is not impaired. It is necessary that these elements do not interfere with the reaction between Zn and the members to be joined. About 3% or less is appropriate as the amount of addition.
また、被接合部材の材質がCu系合金のときにCu3Sn相が
形成され易く、他の材質(例えばFe系,Ni系等)では長
期間かけて化合物が形成される。すなわち、Cu系合金以
外のものでは反応速度が遅く問題とならない。Further, when the material of the members to be joined is a Cu-based alloy, a Cu 3 Sn phase is easily formed, and with other materials (for example, Fe-based, Ni-based, etc.), compounds are formed over a long period of time. That is, the reaction rate is slow with other than Cu-based alloys, and there is no problem.
以上のように、本発明のはんだを用いて、Cu系合金から
なる被接合部材をはんだ付けすれば、被接合部材とはん
だとの界面にCu−Zn−Snの合金相が形成され、Cu3Sn相
の形成を抑制する作用がある。そして、Cu−Zn−Snの合
金相が形成されると、脆いCu3Sn相が成長できないた
め、熱応力や外力等が作用しても、はんだ付部に割れが
発生しにくくなる。As described above, using the solder of the present invention, by soldering a joined member made of a Cu-based alloy, an alloy phase of Cu-Zn-Sn is formed at the interface between the joined member and the solder, Cu 3 It has the effect of suppressing the formation of the Sn phase. When the alloy phase of Cu-Zn-Sn is formed, the brittle Cu 3 Sn phase can not be grown, thermal stress or external force is also applied, cracks soldering portion is less likely to occur.
以下に本発明の一実施例を図面に従って説明する。 An embodiment of the present invention will be described below with reference to the drawings.
第1図は基本的なはんだ付継手を示している。電子部品
1はリード線2を介してプリント基板3上の導体膜4に
接続され、リード線2と導体膜4とははんだ5によって
固定されている。はんだ付部をミクロ的に観察すると、
リード線2側には反応相6が、導体膜4側には反応相7
がそれぞれ形成されている。前記両反応相6,7がCu3S
n等の化合物からなる相である。なお、図中8ははんだ
相である。FIG. 1 shows a basic solder joint. The electronic component 1 is connected to the conductor film 4 on the printed circuit board 3 via the lead wire 2, and the lead wire 2 and the conductor film 4 are fixed by the solder 5. Microscopically observing the soldered part,
Reaction phase 6 is on the lead wire 2 side, and reaction phase 7 is on the conductor film 4 side.
Are formed respectively. Both reaction phases 6 and 7 are Cu 3 S
It is a phase composed of compounds such as n. In the figure, 8 is a solder phase.
次に第1図のような構成ではんだの種類を種々と変えて
はんだ付けしたのち、熱サイクル試験を行った。Next, with the structure as shown in FIG. 1, various kinds of solder were changed and soldering was performed, and then a thermal cycle test was conducted.
(試料1) リード線2と導体膜4をともにCuで形成し、Sn−1.5
%Sb−0.5%Zn(Sbが1.5%、Znが0.5%、残り
がSnを意味する。以下同じ。)のはんだを使用して26
0℃×10秒間保持ではんだ付けしたもの。(Sample 1) Both the lead wire 2 and the conductor film 4 were made of Cu, and Sn-1.5
% Sb-0.5% Zn (Sb is 1.5%, Zn is 0.5%, the rest is Sn. The same applies hereinafter) 26
Soldered by holding at 0 ° C for 10 seconds.
(試料2) リード線2と導体膜4をともにCuで形成し、Sn−1%Zn
のはんだを使用して260℃×10秒間保持ではんだ付
けしたもの。(Sample 2) Both the lead wire 2 and the conductor film 4 were made of Cu, and Sn-1% Zn
Solder by holding the solder at 260 ℃ for 10 seconds.
(試料3) リード線2と導体膜をともにCuで形成し、Bi−43.5
%Pb−1.5%Ag−0.6%Znのはんだを使用して20
0℃×10秒間保持ではんだ付けしたもの。(Sample 3) Both the lead wire 2 and the conductor film were formed of Cu, and Bi-43.5 was used.
20% using% Pb-1.5% Ag-0.6% Zn solder
Soldered by holding at 0 ° C for 10 seconds.
(試料4) リード線2をFe−42%Ni材で、導体膜4をCuで形成
し、Pb−1%Sn−1.5%Ag−0.5%Znのはんだを使
用して350℃×10秒間保持ではんだ付けしたもの。(Sample 4) The lead wire 2 is made of Fe-42% Ni material, the conductor film 4 is made of Cu, and solder of Pb-1% Sn-1.5% Ag-0.5% Zn is used at 350 ° C. × Soldered by holding for 10 seconds.
(試料5) 試料1と比較のために、リード線2と導体膜4をともに
Cuで形成し、Zn無添加のPb-50%Snのはんだを用いて
230℃×10秒間保持ではんだ付けしたもの。(Sample 5) For comparison with Sample 1, both the lead wire 2 and the conductor film 4 are
Formed from Cu and soldered by holding Pb-50% Sn solder without Zn at 230 ° C for 10 seconds.
(試料6) 試料2と比較のために、リード線2と導体膜4をともに
Cuで形成し、Zn無添加の100%Snのはんだを用いて2
60℃×10秒間保持ではんだ付けしたもの。(Sample 6) For comparison with Sample 2, both the lead wire 2 and the conductor film 4 are
Formed with Cu and using Zn-free 100% Sn solder 2
Soldered by holding at 60 ° C for 10 seconds.
(試料7) 試料1と比較のために、リード線2と導体膜4をともに
Cuで形成し、Zn無添加のSn−5%Sbのはんだを用いて2
80℃×10秒間保持ではんだ付けしたもの。(Sample 7) For comparison with Sample 1, both the lead wire 2 and the conductor film 4 are
Formed with Cu, using Zn-5% Sb solder without Zn addition 2
Soldered by holding at 80 ° C for 10 seconds.
なお、上記試料のうち、試料1〜4が本発明に該当す
る。Among the above samples, Samples 1 to 4 correspond to the present invention.
以上の試料1〜7ではんだ付けした面付はんだ付継手部
品を−55℃〜+150℃、1サイクルで1時間の熱サ
イクルを500時間及び1000時間に亘って試験し
た。500時間、1000時間経過したものを取り出
し、切断して断面顕微鏡によりミクロ割れを調査した。
その結果をまとめて表1に示す。The surface-attached soldered joint parts soldered with the above Samples 1 to 7 were tested at -55 ° C to + 150 ° C for 1 hour of a thermal cycle for 500 hours and 1000 hours. After 500 hours and 1000 hours had passed, the pieces were taken out, cut and examined for micro-cracks by a sectional microscope.
The results are summarized in Table 1.
表1に示すように試料1〜4は、熱サイクル500時間
及び1000時間の長時間においてもはんだ付部には割
れは認められなかった。当然ながらリード線2側の反応
相6と導体膜4側の反応相7は形成されていた。しかし
これらの反応相6,7及びはんだ相8のどこにも割れは
発生していなかった。反応相6,7にはEPMA(Elec
tron Probe Miro Analysis)分析結果から試料4ではC
u,Zn,Snと、わずかにSbが含有され、試料2ではCu,Z
n,Snからなり、試料3ではCu,Zn,Agからなり、試料
4では、Fe,Ni,Zn,Snからなっていた。つまり、従来
割れの問題となっていた被接合部材とSnという2元反応
相は見られず、Zn添加のはんだを用いた効果が表れてい
るものと考える。この現象はSnよりもZnの反応が著しい
ことを意味している。 As shown in Table 1, in Samples 1 to 4, no crack was observed in the soldered portion even after a long time of heat cycle of 500 hours and 1000 hours. As a matter of course, the reaction phase 6 on the lead wire 2 side and the reaction phase 7 on the conductor film 4 side were formed. However, cracks did not occur anywhere in these reaction phases 6 and 7 and solder phase 8. EPMA (Elec
tron Probe Miro Analysis) From the analysis result, it is C in sample 4.
u, Zn, Sn, and a small amount of Sb are contained, and in sample 2, Cu, Z
The sample 3 was composed of Cu, Zn and Ag, and the sample 4 was composed of Fe, Ni, Zn and Sn. That is, the binary reaction phase of Sn and Sn, which had been a problem of cracking in the past, was not seen, and it is considered that the effect of using Zn-added solder is exhibited. This phenomenon means that the reaction of Zn is more remarkable than that of Sn.
これに対し、試料5,6は熱サイクル500時間で既に
割れが発生していた。その箇所も当然の如くCuとSnの成
分からなる反応相6,7が、割れの起点になっていた。
反応相を更に詳しく観察するとリード線2側の反応相と
はんだ5側の反応相の2相から成っていた。そして割れ
はリード線2側の反応相が起点となりはんだ5側反応相
に連がっているようである。割れは可成多く発生してい
た。また試料3の継手については500時間経過時点で
は割れは認められなかったが、1000時間後には割れ
が明らかに認められた。Sbの効果は少し見られるが10
00時間の条件には不十分であった。On the other hand, in Samples 5 and 6, cracks had already occurred at the heat cycle of 500 hours. As a matter of course, the reaction phases 6 and 7 composed of Cu and Sn components were also the starting points of the cracks at that portion.
When the reaction phase was observed in more detail, it consisted of two phases, a reaction phase on the lead wire 2 side and a reaction phase on the solder 5 side. It seems that the crack starts from the reaction phase on the lead wire 2 side and continues to the reaction phase on the solder 5 side. There were many cracks. Regarding the joint of sample 3, no cracks were observed after 500 hours, but cracks were clearly observed after 1000 hours. The effect of Sb can be seen a little, but 10
It was insufficient for the 00 hour condition.
上記実験結果はプリント基板でのFPP面付はんだ付継
手について割れの有無を調査したものであるが、この他
の面付はんだ付、例えば第2図のPLCC等の継手につ
いても同様に熱サイクル試験を実施した。そして、本実
施例によるZnを用いたはんだ付継手には割れが生じなか
った。さらに本実施例では、プリント基板以外にアルミ
ナ、ムライト等の基板の面付はんだ付継手にも適用でき
る。The above experimental results are for the presence or absence of cracks in the soldered joint with FPP on the printed circuit board. However, for other soldered solder with surface, for example, the joint of PLCC in FIG. Was carried out. No cracks were found in the soldered joint using Zn according to this example. Further, the present embodiment can be applied not only to the printed circuit board but also to a surface-mounted solder joint of a substrate such as alumina or mullite.
次に、本発明の他の実施例として、Znめっきを施したリ
ード線2と導体膜4を、Sn−3.5%Agはんだを用いて
250℃×10秒間保持ではんだ付したのち、熱サイク
ル試験を行った。熱サイクル試験の結果は、500時
間、1000時間経過しても割れは発生しなかった。Next, as another embodiment of the present invention, the Zn-plated lead wire 2 and the conductor film 4 are soldered by using Sn-3.5% Ag solder while holding at 250 ° C. for 10 seconds, and then heat treatment is performed. A cycle test was conducted. As a result of the heat cycle test, no crack was generated even after 500 hours and 1000 hours.
また、本発明の更に他の実施例として、Sn−0.7%Zn
ペーストはんだを用い、260℃×10秒間保持しては
んだ付を行った。この場合も、熱サイクル試験の結果
は、前述の実施例と同様に、500時間、1000時間
経過しても割れは発生しなかった。In another embodiment of the present invention, Sn-0.7% Zn
Using paste solder, soldering was performed by holding at 260 ° C. for 10 seconds. Also in this case, the result of the heat cycle test was that no cracking occurred even after 500 hours or 1000 hours, as in the above-mentioned example.
次に、はんだの中のZn量の効果を明らかにするために、
SnとZnの2元素はんだを溶製し、幅4mm、長さ40mm、
厚さ1.0mmのCu板にはんだをぬらして150℃、500
時間の高温放置試験を行った。その後続いて曲げ試験を
行い、割れの有無を断面の顕微鏡写真により評価した。
曲げは30度と、90度の2種で行った。結果を第3図
に示す。図において、○がはんだ付部に割れは見られな
かった場合、×がはんだ付部に割れが見られた場合を表
している。Next, in order to clarify the effect of the amount of Zn in the solder,
2 element solder of Sn and Zn is melted, width 4mm, length 40mm,
Wet the solder to a 1.0 mm thick Cu plate at 150 ° C, 500
A high temperature storage test was performed for a period of time. Then, a bending test was subsequently performed, and the presence or absence of cracks was evaluated by a micrograph of the cross section.
Bending was performed at two types, 30 degrees and 90 degrees. Results are shown in FIG. In the figure, ○ indicates that no crack was found in the soldered portion, and × indicates that the soldered portion was cracked.
0.1%Znでは割れを防止するのには至っていない。
0.2%Zn添加で曲げの少ない30度で割れは見られな
いが曲げの大きい90度で割れている。0.3%では9
0度の曲げでも割れていない。つまり0.2%からZn添
加の効果は見られ、0.3%で十分な効果を発揮する。
すなわち、Znの添加は0.3%以上にすれば良いことが
わかる。0.1% Zn has not yet been able to prevent cracking.
When 0.2% Zn was added, no crack was observed at 30 ° with little bending, but cracked at 90 ° with large bending. 9 at 0.3%
It is not cracked even when bent at 0 degrees. That is, the effect of Zn addition is seen from 0.2%, and a sufficient effect is exhibited at 0.3%.
That is, it is understood that the addition of Zn should be 0.3% or more.
以上説明したように、本発明のはんだを使用すれば、ハ
イブリッドICを面付はんだ付で接合しても、長時間の
使用においてはんだ付部に割れが発生せず、はんだ付部
の信頼性を大幅に向上させることができる。As described above, when the solder of the present invention is used, even if the hybrid IC is joined by surface soldering, cracking does not occur in the soldered portion after long-term use, and the reliability of the soldered portion is improved. It can be greatly improved.
また、本発明のはんだ付方法によっても、上記と同様の
効果を得ることが可能となる。Also, the soldering method of the present invention can achieve the same effects as above.
第1図は面付はんだ付けで接合された電子部品の断面
図、第2図は他の種類の面付はんだ付けで接合された電
子部品の断面図、第3図はZnの添加量を変えた場合の曲
げ試験結果を示す図である。 1…電子部品、2…リード線、 3…プリント基板、4…導体膜、 5…はんだ、6,7…反応相、 8…はんだ相。Fig. 1 is a cross-sectional view of electronic components bonded by surface soldering, Fig. 2 is a cross-sectional view of electronic components bonded by other types of surface soldering, and Fig. 3 is different amount of Zn added. It is a figure which shows the bending test result in the case of being. DESCRIPTION OF SYMBOLS 1 ... Electronic component, 2 ... Lead wire, 3 ... Printed circuit board, 4 ... Conductor film, 5 ... Solder, 6, 7 ... Reaction phase, 8 ... Solder phase.
Claims (3)
nからなることを特徴とするCu系材料接合用はんだ。1. Zn is less than 0.3 to 3 wt% and the balance is S.
A solder for joining Cu-based materials, characterized by comprising n.
n,Ag,Au,Cuのうち1種類以上が3wt%以下
及び残部がSnからなることを特徴とするCu系材料接
合用はんだ。2. Zn is 0.3 to less than 3 wt%, Sb, I
A solder for joining Cu-based materials, characterized in that at least one of n, Ag, Au, and Cu is 3 wt% or less and the balance is Sn.
Zn入りSn系合金ペーストはんだを塗布しておき、該
ペーストはんだで接合するはんだ付方法。3. A surface of a member to be joined made of a Cu-based alloy,
A soldering method in which a Zn-containing Sn-based alloy paste solder is applied and then joined with the paste solder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63092386A JPH0649238B2 (en) | 1988-04-14 | 1988-04-14 | Solder for joining Cu-based materials and soldering method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63092386A JPH0649238B2 (en) | 1988-04-14 | 1988-04-14 | Solder for joining Cu-based materials and soldering method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01262092A JPH01262092A (en) | 1989-10-18 |
JPH0649238B2 true JPH0649238B2 (en) | 1994-06-29 |
Family
ID=14052983
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63092386A Expired - Fee Related JPH0649238B2 (en) | 1988-04-14 | 1988-04-14 | Solder for joining Cu-based materials and soldering method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0649238B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2648408B2 (en) * | 1991-08-26 | 1997-08-27 | 日立電線株式会社 | Printed circuit board for mounting semiconductor elements |
JP5115915B2 (en) * | 2005-03-17 | 2013-01-09 | 株式会社タムラ製作所 | Lead-free solder, processed solder, solder paste and electronic component soldering board |
US8157158B2 (en) * | 2007-01-30 | 2012-04-17 | International Business Machines Corporation | Modification of solder alloy compositions to suppress interfacial void formation in solder joints |
US20090197103A1 (en) * | 2007-01-30 | 2009-08-06 | Da-Yuan Shih | Modification of pb-free solder alloy compositions to improve interlayer dielectric delamination in silicon devices and electromigration resistance in solder joints |
US20090197114A1 (en) * | 2007-01-30 | 2009-08-06 | Da-Yuan Shih | Modification of pb-free solder alloy compositions to improve interlayer dielectric delamination in silicon devices and electromigration resistance in solder joints |
KR100793970B1 (en) * | 2007-03-12 | 2008-01-16 | 삼성전자주식회사 | Soldering structure using zn and soldering method thereof |
JP5322469B2 (en) * | 2007-09-07 | 2013-10-23 | トゥクサン ハイ‐メタル シーオー エルティディ | Solder alloy with excellent drop impact resistance, solder balls using the same, and solder joints |
JP7420363B2 (en) * | 2018-03-06 | 2024-01-23 | 株式会社日本スペリア社 | solder joints |
JP6439893B1 (en) | 2018-05-25 | 2018-12-19 | 千住金属工業株式会社 | Solder ball, solder joint and joining method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5050250A (en) * | 1973-09-04 | 1975-05-06 | ||
JPH07120844B2 (en) * | 1986-11-06 | 1995-12-20 | 古河電気工業株式会社 | Circuit board |
-
1988
- 1988-04-14 JP JP63092386A patent/JPH0649238B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH01262092A (en) | 1989-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2140963B1 (en) | Pb-free solder-connected electronic article | |
WO1999048639A1 (en) | Leadless solder | |
EP1106301A1 (en) | Lead-free solder | |
JPH10225790A (en) | Lead-free alloy for soldering | |
JP2000197988A (en) | Leadless solder alloy | |
JP4401671B2 (en) | High temperature lead-free solder alloys and electronic components | |
JPH11350188A (en) | Material for electric and electronic parts, its production, and electric and electronic parts lising the same | |
JPH0649238B2 (en) | Solder for joining Cu-based materials and soldering method | |
JP3878978B2 (en) | Lead-free solder and lead-free fittings | |
JP2000153388A (en) | Soldered article | |
JP5140644B2 (en) | Soldering composition and electronic component | |
KR100678803B1 (en) | Pb-FREE SOLDER ALLOY, AND SOLDER MATERIAL AND SOLDER JOINT USING SAME | |
JP2000054189A (en) | MATERIAL FOR ELECTRIC AND ELECTRONIC PARTS USED BY BONDING WITH Sn-Bi-BASED SOLDER, ELECTRIC AND ELECTRONIC PARTS USING IT, ELECTRIC AND ELECTRONIC PARTS-MOUNTED SUBSTRATE, AND SOLDER BONDING, OR MOUNTING METHOD USING IT | |
WO2002005609A1 (en) | Structure for interconnecting conductors and connecting method | |
JP2003112285A (en) | Solder paste | |
JPH1093004A (en) | Electronic component and manufacture thereof | |
JPH01237095A (en) | Soldering flux | |
JP2802530B2 (en) | Electronic equipment | |
JP4359983B2 (en) | Electronic component mounting structure and manufacturing method thereof | |
JP4745878B2 (en) | Solder film and soldering method using the same | |
JP3254901B2 (en) | Solder alloy | |
JP2668569B2 (en) | Brazing material | |
KR100445350B1 (en) | Lead-free solder alloy | |
JP4573167B2 (en) | Brazing material sheet | |
JP3551168B2 (en) | Pb-free solder connection structure and electronic equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |