JPH0649737U - Air-fuel ratio controller for internal combustion engine - Google Patents
Air-fuel ratio controller for internal combustion engineInfo
- Publication number
- JPH0649737U JPH0649737U JP8507192U JP8507192U JPH0649737U JP H0649737 U JPH0649737 U JP H0649737U JP 8507192 U JP8507192 U JP 8507192U JP 8507192 U JP8507192 U JP 8507192U JP H0649737 U JPH0649737 U JP H0649737U
- Authority
- JP
- Japan
- Prior art keywords
- fuel ratio
- air
- fuel
- switching
- fuel injection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
(57)【要約】
【目的】希薄空燃比運転領域と出力空燃比運転領域との
切り換えに応じて、スワールコントロールバルブの開閉
切り換え、あるいは燃料噴射タイミングの切り換えを行
なう際の壁流燃料差による空燃比の変動を抑制する。
【構成】機関運転状態に応じた目標空燃比マップの切り
換えに伴って、SCV13を開閉切り換え、或いは燃料
噴射タイミングを早期噴射と吸気同期噴射との間で切り
換える際に、該SCV13の開閉切り換えと同時に燃料
噴射量を増減補正するように、或いは燃料噴射タイミン
グを徐々に変更するようになしたので、壁流燃料の変化
に伴う一時的な空燃比の変動を抑制することができる。
したがって、筒内圧力の変動、機関出力の変動、さらに
は燃費、排気有害成分の悪化を抑制できる。
(57) [Abstract] [Purpose] According to the switching between the lean air-fuel ratio operating region and the output air-fuel ratio operating region, the swirl control valve is opened / closed, or the fuel injection timing is changed. Suppress fluctuations in fuel ratio. Constitution: When the SCV 13 is opened / closed or the fuel injection timing is switched between early injection and intake synchronous injection in accordance with the switching of the target air-fuel ratio map according to the engine operating state, at the same time as the opening / closing of the SCV 13 is switched. Since the fuel injection amount is increased / decreased or corrected, or the fuel injection timing is gradually changed, it is possible to suppress a temporary change in the air-fuel ratio due to a change in the wall-flow fuel.
Therefore, it is possible to suppress the fluctuation of the in-cylinder pressure, the fluctuation of the engine output, the fuel consumption, and the deterioration of the exhaust gas harmful components.
Description
【0001】[0001]
本考案は、内燃機関の空燃比制御装置に関する。詳しくは、機関運転条件に応 じて目標空燃比を理論空燃比よりも薄い希薄空燃比とそれより濃い出力空燃比と の間で切り換え、これに伴ってスワールコントロールバルブの開閉切り換え、或 いは燃料噴射タイミングの切り換えを行なう際の、吸気ポート内壁への燃料の付 着量の差により発生する実質的な空燃比の変動を抑制するようにした内燃機関の 空燃比制御装置に関する。 The present invention relates to an air-fuel ratio control device for an internal combustion engine. Specifically, the target air-fuel ratio is switched between a lean air-fuel ratio that is thinner than the stoichiometric air-fuel ratio and an output air-fuel ratio that is richer than the theoretical air-fuel ratio according to the engine operating conditions, and the swirl control valve is opened or closed accordingly. The present invention relates to an air-fuel ratio control device for an internal combustion engine, which suppresses a substantial fluctuation of the air-fuel ratio that occurs due to a difference in the amount of fuel deposited on the inner wall of the intake port when the fuel injection timing is switched.
【0002】[0002]
近年、燃費の向上を目的として、理論空燃比よりも極めて大きい空燃比(例え ば20〜25)で燃焼を行なわせるようにした希薄燃焼機関(リーンバーン機関 )が提案されている。かかるリーンバーン機関では、例えば、低回転・低負荷で 運転しているときに前記希薄空燃比で燃焼させることにより燃費の向上、排気有 害物質の低減を図り、加速時や高負荷時には出力性能を重視して理論空燃比より もやや小さい側(リッチ側)の空燃比(出力空燃比)に切り換え設定することで 、燃費の向上、排気有害物質の低減と出力性能の確保を図っている。 In recent years, a lean burn engine (lean burn engine) has been proposed in which combustion is performed at an air-fuel ratio (for example, 20 to 25) that is much larger than the theoretical air-fuel ratio for the purpose of improving fuel efficiency. In such a lean-burn engine, for example, when operating at low speed and low load, combustion is performed at the lean air-fuel ratio to improve fuel efficiency, reduce exhaust harmful substances, and improve output performance during acceleration and high load. By focusing on and switching to the air-fuel ratio (output air-fuel ratio) slightly smaller than the theoretical air-fuel ratio (rich side), we are aiming to improve fuel efficiency, reduce exhaust harmful substances and secure output performance.
【0003】 一方で、前記希薄空燃比の混合気に対する着火の安定性を確保し、さらに燃焼 の活性化を図るために、スワールコントロールバルブを吸気系に設け、希薄空燃 比で燃焼させるときには前記スワールコントロールを閉弁してシリンダ内に強い スワールを発生させて、着火に適した混合気を点火栓近傍に形成すると共に、混 合気の流動を促進して火炎伝播速度を速めて燃焼を活発化して、希薄燃焼の最適 化を図ったものがある。このものでは、出力空燃比で燃焼させる高回転、高負荷 時には吸入空気量が多く、前記スワールコントロールバルブを閉じると、それ自 体大きな吸気抵抗となり、かつ、スワール発生による抵抗も大きいため、前記ス ワールコントロールバルブを開弁して、吸入効率を高めて所望の機関出力が得ら れるようにしてある。On the other hand, a swirl control valve is provided in the intake system in order to secure the stability of ignition with respect to the air-fuel mixture of the lean air-fuel ratio and further activate the combustion. The swirl control is closed to generate a strong swirl in the cylinder to form an air-fuel mixture suitable for ignition near the spark plug, and to accelerate the flow of the air-fuel mixture to accelerate the flame propagation speed and activate combustion. In some cases, the lean burn was optimized. With this type, the intake air amount is large at high rotation speeds and high loads where combustion is performed at the output air-fuel ratio, and when the swirl control valve is closed, the intake resistance itself becomes large, and the resistance due to swirl also becomes large. The whirl control valve is opened to increase the suction efficiency and obtain the desired engine output.
【0004】[0004]
上記のように従来では、希薄空燃比領域ではスワールコントロールバルブを閉 弁し、出力空燃比領域ではスワールコントロールバルブを開弁するようにしてい るが、かかるスワールコントロールバルブの開閉切り換えの前後において吸気ポ ート等の吸気系内壁に付着する燃料(以下、壁流燃料と言う)の量に差があるた めに、前記スワールコントロールバルブの開閉切り換えに伴って、シリンダ内に 流入する混合気の実質的な空燃比に変動が生じていた。詳細に言えば、前記スワ ールコントロールバルブが閉弁状態では通路面積が絞られるために混合気の流速 が速められるので、燃料噴霧と空気の混合が活発化するので燃料噴霧の微粒化, 霧化が促進され、結果的に液体としての燃料が吸気系内壁に付着して形成される 壁流燃料は少ない状態である。その逆に、前記スワールコントロールバルブが開 弁状態では通路面積が大きくなって混合気の流速が小さくなるために、前記各効 果が期待できず、液体のままの燃料が吸気系内壁等に付着する割合が増えて壁流 燃料を増大する結果となっていた。 As described above, in the past, the swirl control valve was closed in the lean air-fuel ratio region and the swirl control valve was opened in the output air-fuel ratio region. Due to the difference in the amount of fuel (hereinafter referred to as wall-flow fuel) adhering to the inner wall of the intake system, such as air flow, the substance of the air-fuel mixture that flows into the cylinder when the swirl control valve is opened and closed is changed. The air-fuel ratio was fluctuating. In detail, when the swirl control valve is closed, the flow passage of the air-fuel mixture is increased because the passage area is narrowed, so that the mixture of fuel spray and air is activated, resulting in atomization of fuel spray and fog. As a result, the amount of wall-flow fuel formed as a result of the liquid fuel adhering to the inner wall of the intake system is small. On the contrary, when the swirl control valve is open, the passage area becomes large and the flow velocity of the air-fuel mixture becomes small.Therefore, each effect cannot be expected, and fuel in liquid form adheres to the inner wall of the intake system. As a result, the rate of fuel consumption increased and the amount of wall-flow fuel increased.
【0005】 したがって、図6において点線で示すように、前記スワールコントロールバル ブを閉弁状態から開弁状態へ切り換えるときには、噴射された燃料の一部が壁流 燃料となって燃焼室への流入に遅れをきたすために、一時的に、実質的な空燃比 がリーン側へ変動することとなる。その逆に、前記スワールコントロールバルブ を開弁状態から開弁状態へ切り換えるときには、前記壁流燃料が蒸発して噴射燃 料に付加されるので、一時的に、実質的な空燃比がリッチ側へ変動することとな っていた。Therefore, as shown by the dotted line in FIG. 6, when the swirl control valve is switched from the closed state to the open state, a part of the injected fuel becomes wall-flow fuel and flows into the combustion chamber. As a result, the actual air-fuel ratio temporarily fluctuates toward the lean side. On the contrary, when the swirl control valve is switched from the open state to the open state, the wall flow fuel evaporates and is added to the injected fuel, so that the substantial air-fuel ratio is temporarily increased to the rich side. It was supposed to fluctuate.
【0006】 さらに他の例として、希薄空燃比領域では吸気弁の開弁期間内で燃料噴射を開 始する吸気同期噴射(噴射終わりをATDC140deg 程度に設定する)を行い 、出力空燃比領域では吸気弁の開弁前から噴射を開始する通常の早期噴射(噴射 終わりをBTDC数deg 程度に設定する)するように燃料の噴射タイミングを大 きく切り換えて、希薄燃焼領域において着火限界を向上させようとしたものもあ る。すなわち、早期噴射の場合は、吸気弁の開弁前に噴射された燃料が吸気ポー ト内で熱を受けて霧化するため、吸入される空気との混合が促進されるので、シ リンダ内に濃度の均一化された混合気が形成され易くなる。この場合、希薄空燃 比領域では、着火性に重要な点火栓近傍における空燃比が希薄となり過ぎてしま うので、失火限界が低下してしまう。一方、出力空燃比領域では、比較的空燃比 が小さく着火性には問題がないので混合の促進による燃焼改善を効果的に図るこ とができる。そこで、希薄空燃比領域においては、燃料噴射タイミングを吸気同 期噴射に切り換えて、吸気ポート内での霧化を抑制して点火栓近傍に着火し易い 層状の混合気を供給しようとするものである。As another example, in the lean air-fuel ratio region, intake synchronous injection that starts fuel injection within the opening period of the intake valve (injection end is set to about ATDC140deg) is performed, and in the output air-fuel ratio region, intake air injection is performed. In order to improve the ignition limit in the lean burn region, the fuel injection timing is switched to a large value so that the normal early injection is started before the valve is opened (the end of injection is set to about BTDC number deg). Some have been done. That is, in the case of early injection, the fuel injected before opening the intake valve receives heat in the intake port and is atomized. A mixture having a uniform concentration is easily formed. In this case, in the lean air-fuel ratio region, the air-fuel ratio near the spark plug, which is important for ignitability, becomes too lean, and the misfire limit is lowered. On the other hand, in the output air-fuel ratio region, the air-fuel ratio is relatively small and there is no problem in ignitability, so it is possible to effectively improve combustion by promoting mixing. Therefore, in the lean air-fuel ratio region, the fuel injection timing is switched to the intake synchronous injection to suppress atomization in the intake port and to supply a stratified mixture near the ignition plug that is easy to ignite. is there.
【0007】 かかる場合においても、図7において点線で示すように、燃料噴射タイミング を切り換える際に、壁流燃料量の差によって、空燃比の変動が一時的に発生する 。すなわち、早期噴射では、吸気ポート内において霧化される時間が長いので霧 化が促進されて壁流燃料量は少なくなり、逆に吸気同期噴射では吸気ポート内に おいて燃料が霧化される時間が短いので壁流燃料量は多くなるのである。Even in such a case, as shown by the dotted line in FIG. 7, when the fuel injection timing is switched, the air-fuel ratio temporarily fluctuates due to the difference in the wall-flow fuel amount. That is, in the early injection, the atomization time is long in the intake port, so the atomization is promoted and the wall flow fuel amount is reduced. Conversely, in the intake synchronous injection, the fuel is atomized in the intake port. Since the time is short, the wall flow fuel amount is large.
【0008】 以上説明したような空燃比の変動は、筒内燃焼圧力の変動をきたし、機関出力 の変動、さらには燃費、排出有害成分の悪化を招くという問題がある。 本考案は、かかる上記の問題点に鑑みなされたもので、希薄空燃比運転領域と 出力空燃比運転領域との切り換えに応じて、スワールコントロールバルブの開閉 切り換え、あるいは燃料噴射タイミングの設定切り換えを行なう際に生じる壁流 燃料差による空燃比の変動を抑制して、機関出力の変動、さらには燃費、排出有 害成分の悪化を抑制することを目的とする。[0008] The fluctuation of the air-fuel ratio as described above causes the fluctuation of the in-cylinder combustion pressure, which causes the fluctuation of the engine output, and further the deterioration of the fuel consumption and the exhaust harmful components. The present invention has been made in view of the above-mentioned problems, and switches the swirl control valve between open and close or sets the fuel injection timing according to the switching between the lean air-fuel ratio operating region and the output air-fuel ratio operating region. The purpose is to suppress the fluctuation of the air-fuel ratio due to the wall-flow fuel difference that occurs at the time, and to suppress the fluctuation of the engine output and further the deterioration of fuel consumption and emission harmful components.
【0009】[0009]
このため、請求項1に記載の考案の空燃比制御装置は、図1に示すように、機 関運転条件に応じて目標空燃比を理論空燃比よりも薄い希薄空燃比域と、それよ り濃い空燃比域とに切り換え設定する目標空燃比設定手段Aと、機関吸気系に設 けられシリンダ内におけるスワール発生を制御するスワールコントロールバルブ と、前記空燃比の切り換えに応じて前記希薄空燃比域のときには前記スワールコ ントロールバルブを閉じてスワールを強化し、それより濃い空燃比域ではスワー ルコントロールバルブを開くように制御するスワールコントロールバルブ開閉制 御手段Bと、を備えた内燃機関の空燃比制御装置において、前記スワールコント ロールバルブの開閉切り換えの際に、吸気ポート内壁への燃料の付着量の差によ り発生する空燃比の変動を補正すべく燃料噴射量を増減補正する燃料噴射量増減 補正手段Cを含んで構成した。 Therefore, the air-fuel ratio control device according to the first aspect of the present invention, as shown in FIG. 1, has a lean air-fuel ratio range in which the target air-fuel ratio is thinner than the stoichiometric air-fuel ratio, depending on the engine operating conditions. A target air-fuel ratio setting means A for switching and setting to a rich air-fuel ratio range, a swirl control valve installed in the engine intake system for controlling swirl generation in the cylinder, and the lean air-fuel ratio range according to the switching of the air-fuel ratio. In the case of, the swirl control valve is closed to strengthen the swirl, and the swirl control valve opening / closing control means B for controlling to open the swirl control valve in a denser air-fuel ratio range, and the air-fuel ratio control of the internal combustion engine. In the system, air-fuel generated due to the difference in the amount of fuel adhering to the inner wall of the intake port when the swirl control valve is opened or closed. And configure variations include fuel injection amount increase and decrease correction unit C to increase or decrease correcting the fuel injection amount to correct.
【0010】 請求項2に記載の空燃比制御装置は、図2に示すように、機関運転条件に応じ て目標空燃比を理論空燃比よりも薄い希薄空燃比域と、それより濃い空燃比域と に切り換え設定する目標空燃比設定手段Aを備えた内燃機関の空燃比制御装置に おいて、前記空燃比の切り換えに応じて燃料噴射タイミングを切り換え設定する 燃料噴射タイミング設定手段Dと、前記燃料噴射タイミングの切り換えの際に、 吸気ポート内壁への燃料の付着量の差により発生する空燃比の変動を補正すべく 燃料噴射タイミングを徐々に切り換える燃料噴射タイミング切換制御手段Eと、 を含んで構成した。In the air-fuel ratio control device according to the second aspect of the present invention, as shown in FIG. 2, the target air-fuel ratio is set to a lean air-fuel ratio region thinner than the stoichiometric air-fuel ratio and an air-fuel ratio region richer than the theoretical air-fuel ratio according to the engine operating conditions. In an air-fuel ratio control device for an internal combustion engine, which includes a target air-fuel ratio setting means A for switching between and setting fuel injection timing setting means D for switching and setting fuel injection timing according to switching of the air-fuel ratio, and the fuel A fuel injection timing switching control unit E for gradually switching the fuel injection timing so as to correct the fluctuation of the air-fuel ratio caused by the difference in the amount of fuel adhering to the inner wall of the intake port when switching the injection timing. did.
【0011】[0011]
かかる請求項1に記載の考案の構成によれば、機関運転条件に応じて目標空燃 比を理論空燃比よりも薄い希薄空燃比域と、それより濃い空燃比域とに切り換え 設定する際に、該空燃比の切り換えに応じたスワールコントロールバルブの開閉 切り換えにより発生する吸気ポート内の壁流燃料差による空燃比の変動を抑制す ることができる。 According to the configuration of the invention described in claim 1, when the target air-fuel ratio is switched between the lean air-fuel ratio region thinner than the stoichiometric air-fuel ratio and the air-fuel ratio region richer than the theoretical air-fuel ratio according to the engine operating conditions, It is possible to suppress the fluctuation of the air-fuel ratio due to the wall flow fuel difference in the intake port, which is caused by the opening / closing switching of the swirl control valve according to the switching of the air-fuel ratio.
【0012】 そして、請求項2に記載の考案の構成によれば、機関運転条件に応じて目標空 燃比を理論空燃比よりも薄い希薄空燃比域と、それより濃い空燃比域とに切り換 え設定する際に、該空燃比の切り換えに応じた燃料噴射タイミングの設定切り換 えにより発生する吸気ポート内の壁流燃料差による空燃比の変動を抑制すること ができる。According to the configuration of the invention as set forth in claim 2, the target air-fuel ratio is switched between the lean air-fuel ratio region thinner than the stoichiometric air-fuel ratio and the air-fuel ratio region richer than the theoretical air-fuel ratio according to the engine operating conditions. In this case, it is possible to suppress the fluctuation of the air-fuel ratio due to the wall flow fuel difference in the intake port caused by the setting change of the fuel injection timing according to the change of the air-fuel ratio.
【0013】[0013]
以下に本考案の実施例を説明する。 第1の実施例を示す図3において、内燃機関1には、スロットル弁2、吸気マ ニホールド3、および吸気弁4を介して空気が吸入される。 前記吸気マニホールド3の各ブランチ部には、各気筒別に燃料噴射弁5が設け られている。この燃料噴射弁5は、内蔵されたソレノイドに通電されて開弁し、 通電停止されて閉弁する電磁式燃料噴射弁であって、後述するコントロールユニ ット30からの噴射パルス信号により通電されて開弁し、図示しない燃料ポンプ から圧送されプレッシャレギュレータにより所定の圧力に調整された燃料を、機 関1に間欠的に噴射供給する。 An embodiment of the present invention will be described below. In FIG. 3 showing the first embodiment, air is taken into the internal combustion engine 1 via a throttle valve 2, an intake manifold 3 and an intake valve 4. At each branch portion of the intake manifold 3, a fuel injection valve 5 is provided for each cylinder. The fuel injection valve 5 is an electromagnetic fuel injection valve which is energized by a built-in solenoid to open the valve and which is deenergized and closed, and energized by an injection pulse signal from a control unit 30 described later. The fuel is pumped from a fuel pump (not shown) and adjusted to a predetermined pressure by a pressure regulator. The fuel is intermittently injected and supplied to the engine 1.
【0014】 内燃機関1の各燃焼室には点火栓6が設けられていて、これにより火花点火し て混合気を燃焼させる。そして、機関1からは、排気弁7、排気マニホールド8 a、排気管8b、触媒9を介して排気が排出される。 また、本実施例の機関1には、吸気マニホールド3の途中部分に、スワールコ ントロールバルブ(以下、SCVと言う)13がそれぞれ介装されている。前記 SCV13は、切り欠き部を有したバタフライ式の絞り弁であって、このSCV 13を閉じて通路面積を減少させるようにすると、流速の速い流れが生じシリン ダ内に強いスワールを発生させ、以って、希薄燃焼時の着火性、火炎伝播速度を 向上させることができる。An ignition plug 6 is provided in each combustion chamber of the internal combustion engine 1 to ignite sparks to burn the air-fuel mixture. Then, the exhaust gas is discharged from the engine 1 through the exhaust valve 7, the exhaust manifold 8a, the exhaust pipe 8b, and the catalyst 9. Further, in the engine 1 of the present embodiment, a swirl control valve (hereinafter referred to as SCV) 13 is provided in the middle of the intake manifold 3. The SCV 13 is a butterfly-type throttle valve having a notch portion, and when the SCV 13 is closed to reduce the passage area, a high-velocity flow is generated to generate a strong swirl in the cylinder. As a result, it is possible to improve the ignitability and the flame propagation speed during lean combustion.
【0015】 前記SCV13を開閉駆動するアクチュエータとして、ダイアフラム14が設 けられており、該ダイアフラム14の圧力室に対する機関吸気負圧の導入を、電 磁式の3方向切り換え弁15によって制御することによってSCV13を開閉駆 動できる。かかる開閉制御が、後述する希薄空燃比領域と出力空燃比領域との切 り換えに応じて行なわれるように、コントロールユニット30から前記3方向切 り換え弁15に信号が送られる。なお、前記SCV13を開閉駆動するアクチュ エータとしてモータを用いる構成であってもよい。A diaphragm 14 is provided as an actuator that drives the SCV 13 to open and close. By controlling the introduction of the engine intake negative pressure into the pressure chamber of the diaphragm 14 by an electromagnetic three-way switching valve 15. Can open and close SCV13. A signal is sent from the control unit 30 to the three-way switching valve 15 so that the opening / closing control is performed according to switching between a lean air-fuel ratio region and an output air-fuel ratio region, which will be described later. Note that a motor may be used as an actuator that drives the SCV 13 to open and close.
【0016】 ところで、コントロールユニット30は、CPU、ROM、RAM、A/D変 換器及び入力インタフェイス等を含んで構成されるマイクロコンピュータを備え 、各種センサからの出力信号を受けて、後述の如く燃料噴射弁5による燃料噴射 量Tiを演算し、該燃料噴射量Tiに基づいて燃料噴射弁5の作動を制御する。 前記各種センサとしては、機関の吸入空気流量Qを検出するエアフローメータ 10、クランク軸等から回転信号を取り出すクランク角センサ11、さらに、排 気中の酸素センサ濃度を介して機関吸入混合気の空燃比を検出する酸素センサ1 2等が設けられている。By the way, the control unit 30 includes a microcomputer including a CPU, a ROM, a RAM, an A / D converter, an input interface, and the like, receives output signals from various sensors, and will be described later. Thus, the fuel injection amount Ti by the fuel injection valve 5 is calculated, and the operation of the fuel injection valve 5 is controlled based on the fuel injection amount Ti. As the various sensors, an air flow meter 10 for detecting the intake air flow rate Q of the engine, a crank angle sensor 11 for extracting a rotation signal from a crankshaft, etc., and an empty space of the engine intake air-fuel mixture via the oxygen sensor concentration in the exhaust gas are used. An oxygen sensor 12 and the like for detecting the fuel ratio are provided.
【0017】 なお、前記クランク角センサ11から所定クランク角毎に出力される検出信号 の周期、あるいは、所定時間内における検出信号の発生数を計測することにより 、機関回転速度Neが算出される。 ここにおいて、コントロールユニット30に内蔵されたマイクロコンピュータ のCPUは、予め基本燃料噴射量Tpで代表される機関負荷と機関回転速度Ne とに応じて目標空燃比を設定した空燃比マップを備えており、この空燃比マップ に記憶された目標空燃比の混合気を形成すべく、吸入空気流量Qと機関回転速度 Neとの検出値に基づいて基本燃料噴射量Tp(=K×Q/Ne;Kは定数)を 演算する一方、該基本燃料噴射量Tpに機関運転条件による種々の補正(酸素セ ンサ12を用いた空燃比フィードバック制御を含む)を施して最終的な燃料噴射 量Tiを演算する。そして、前記燃料噴射量Tiに相当するパルス幅の噴射パル ス信号を、各気筒の吸気行程にタイミングを合わせて各燃料噴射弁5にそれぞれ 出力する。The engine rotation speed Ne is calculated by measuring the period of the detection signal output from the crank angle sensor 11 for each predetermined crank angle or the number of detection signals generated within a predetermined time. Here, the CPU of the microcomputer incorporated in the control unit 30 has an air-fuel ratio map in which a target air-fuel ratio is set in advance according to the engine load represented by the basic fuel injection amount Tp and the engine rotation speed Ne. , The basic fuel injection amount Tp (= K × Q / Ne; K) based on the detected values of the intake air flow rate Q and the engine speed Ne in order to form the air-fuel mixture of the target air-fuel ratio stored in this air-fuel ratio map. Is calculated, and the final fuel injection amount Ti is calculated by applying various corrections (including air-fuel ratio feedback control using the oxygen sensor 12) to the basic fuel injection amount Tp according to engine operating conditions. . Then, an injection pulse signal having a pulse width corresponding to the fuel injection amount Ti is output to each fuel injection valve 5 in synchronization with the intake stroke of each cylinder.
【0018】 前記空燃比マップは、低回転、低負荷運転領域には理論空燃比(14.7)よ りも極めて大きい希薄空燃比(例えば20〜25)が目標空燃比として設定され 、また、前記希薄空燃比領域以外の高回転、高負荷運転領域では、理論空燃比あ るいは理論空燃比よりも僅かに小さい出力空燃比(例えば13程度)が目標空燃 比として設定されるようになっている。かかる構成が、目標空燃比設定手段に相 当する。In the air-fuel ratio map, a lean air-fuel ratio (for example, 20 to 25) which is much larger than the theoretical air-fuel ratio (14.7) is set as the target air-fuel ratio in the low rotation speed and low load operation region. In the high rotation and high load operation regions other than the lean air-fuel ratio region, the theoretical air-fuel ratio or an output air-fuel ratio slightly smaller than the theoretical air-fuel ratio (for example, about 13) is set as the target air-fuel ratio. ing. Such a configuration corresponds to the target air-fuel ratio setting means.
【0019】 ところで、コントロールユニット30に内蔵されたマイクロコンピュータのC PUには、予め基本燃料噴射量Tpで代表される機関負荷と機関回転速度Neと に応じてSCVの開閉切り換えを設定したSCV開閉制御マップが設定されてお り、該SCV開閉制御マップを参照して、前記3方向切り換え弁15に信号を送 り、前記SCV13を開閉するようになっている。即ち、希薄空燃比運転領域で は前記SCV13を閉弁し、出力空燃比運転領域では前記SCV13を開弁する ように制御するようになっている。かかる構成が、スワールコントロールバルブ 開閉制御手段に相当する。By the way, the CPU of the microcomputer incorporated in the control unit 30 has an SCV opening / closing function which is set in advance to open / close the SCV according to the engine load represented by the basic fuel injection amount Tp and the engine speed Ne. A control map is set, and by referring to the SCV opening / closing control map, a signal is sent to the three-way switching valve 15 to open / close the SCV 13. That is, the SCV 13 is closed in the lean air-fuel ratio operation region, and the SCV 13 is opened in the output air-fuel ratio operation region. Such a configuration corresponds to the swirl control valve opening / closing control means.
【0020】 そして、かかるSCV13の開閉切り換えに伴って、壁流燃料に変化が生じて 実質的な空燃比が一時的に変動するのを防止するために、前記燃料噴射量Tiを その変動分だけ増減補正するようにする。例えば、機関運転状態に応じて、かつ SCV13の開閉切り換え方向に応じて予め設定記憶してある各補正値に基づい てSCV開閉補正係数S(=基本補正値×Ne補正値×負荷補正値×水温補正値 )を求め、SCV13の開閉切り換え直後所定時間、前記燃料噴射量Tiを補正 燃料噴射量Ti’(=Ti×S)に増減補正するようになっている。前記所定時 間は、ある一定値でもよいが、運転状態等に応じて設定するようにしてもよい。Then, in order to prevent a change in the wall-flow fuel and a temporary change in the substantial air-fuel ratio due to the switching of the opening / closing of the SCV 13, the fuel injection amount Ti is changed by the change amount. Adjust to increase or decrease. For example, the SCV opening / closing correction coefficient S (= basic correction value × Ne correction value × load correction value × water temperature) is set based on each correction value that is preset and stored according to the engine operating state and the opening / closing switching direction of the SCV 13. (Correction value) is obtained, and the fuel injection amount Ti is increased / decreased to a corrected fuel injection amount Ti ′ (= Ti × S) for a predetermined time immediately after switching the opening / closing of the SCV 13. The predetermined time may be a certain fixed value, or may be set according to the driving condition or the like.
【0021】 ここで、コントロールユニット30が行なう燃料噴射量増減補正制御を図4に 示すフローチャートに基づいて説明する。かかる制御が、燃料噴射量増減補正手 段を構成する。 ステップ1(図では、S1と記してある。以下同様)では、各種センサからの 信号がコントロールユニット30に読み込まれ、基本燃料噴射量Tp、機関回転 速度Ne等が求められる。Here, the fuel injection amount increase / decrease correction control performed by the control unit 30 will be described based on the flowchart shown in FIG. Such control constitutes a fuel injection amount increase / decrease correction means. In step 1 (indicated as S1 in the figure; the same applies hereinafter), signals from various sensors are read by the control unit 30 to determine the basic fuel injection amount Tp, the engine speed Ne, and the like.
【0022】 ステップ2では、基本燃料噴射量Tp、機関回転速度Ne等に基づいて、予め コントロールユニット30に記憶されているSCV開閉制御マップを参照して、 SCV13の開閉切り換え条件が成立したか否かを判断する。SCV13の開閉 切り換え条件成立であればステップ3へ進み、SCV13を開閉切り換え条件不 成立であれば本フローを終了する。In step 2, based on the basic fuel injection amount Tp, the engine rotation speed Ne, etc., the SCV opening / closing control map stored in advance in the control unit 30 is referred to and whether or not the opening / closing switching condition of the SCV 13 is satisfied. To judge. If the opening / closing switching condition of the SCV 13 is satisfied, the process proceeds to step 3, and if the opening / closing switching condition of the SCV 13 is not satisfied, this flow ends.
【0023】 ステップ3では、SCV13の開閉切り換え条件成立であるので、SCV13 の開閉切り換えが実行されるので、これに伴う壁流燃料の変化による空燃比変動 を抑制するために、燃料噴射量Tiを補正する必要がある。ここで、前述したよ うにSCV13の開閉切り換え方向に応じてSCV開閉補正係数S(=基本補正 率×Ne補正×負荷補正×水温補正)を求め、補正燃料噴射量Ti’(=Ti× S)を求める。In step 3, since the opening / closing switching condition of the SCV 13 is satisfied, the opening / closing switching of the SCV 13 is executed. Therefore, in order to suppress the air-fuel ratio variation due to the change in the wall flow fuel accompanying this, the fuel injection amount Ti is set to It needs to be corrected. Here, as described above, the SCV opening / closing correction coefficient S (= basic correction rate × Ne correction × load correction × water temperature correction) is obtained according to the opening / closing switching direction of the SCV 13, and the corrected fuel injection amount Ti ′ (= Ti × S) Ask for.
【0024】 ステップ4では、燃料噴射弁5にステップ3で求めた補正燃料噴射量Ti’に 相当するパルス幅の信号が送られて、実質的の空燃比が目標空燃比となるように 増減補正された燃料量が機関に噴射供給される。 ステップ5では、かかる燃料噴射量の補正が、所定時間行なわれたか否かが判 断されて、所定時間経過前は、かかる燃料噴射量の補正が継続され、所定時間経 過後に、本フローを終了する。In step 4, a signal having a pulse width corresponding to the corrected fuel injection amount Ti ′ obtained in step 3 is sent to the fuel injection valve 5, and the increase / decrease correction is performed so that the substantial air-fuel ratio becomes the target air-fuel ratio. The injected fuel amount is injected and supplied to the engine. In step 5, it is determined whether or not the correction of the fuel injection amount has been performed for a predetermined time, and the correction of the fuel injection amount is continued before the predetermined time has elapsed, and after the predetermined time has elapsed, the present flow is executed. finish.
【0025】 その後は、通常の空燃比制御に戻って、目標空燃比に応じた燃料噴射量Tiが 噴射供給されるようになる。 本実施例によれば、希薄空燃比運転領域と出力空燃比運転領域との切り換えに 応じて、SCV13の開閉切り換えを行なうものにおいて、該開閉切り換えと同 時に燃料噴射量を増減補正するようにしたので、該開閉切り換えにより生じる壁 流燃料の変化に伴う一時的な空燃比の変動を抑制することができ、機関出力の変 動、さらには燃費、排出有害成分の悪化を抑制することができる。After that, the control returns to the normal air-fuel ratio control, and the fuel injection amount Ti according to the target air-fuel ratio is injected and supplied. According to the present embodiment, in the case where the SCV 13 is opened / closed in accordance with the switching between the lean air-fuel ratio operating region and the output air-fuel ratio operating region, the fuel injection amount is increased / decreased at the same time as the opening / closing switching. Therefore, it is possible to suppress a temporary change in the air-fuel ratio that accompanies a change in the wall flow fuel caused by the switching between the open and close states, and to suppress a change in the engine output, and further a deterioration in fuel consumption and harmful emission components.
【0026】 つづいて、第2の実施例について説明する。 第2の実施例は、図3に示された第1の実施例に対して、SCV13、3方向 切り換え弁15を備えない構成である。そしてまた、第1の実施例のSCV開閉 制御マップを備えず、その代わりに、第2の実施例では燃料噴射タイミング設定 マップを備えている。Next, a second embodiment will be described. The second embodiment differs from the first embodiment shown in FIG. 3 in that the SCV 13 and the three-way switching valve 15 are not provided. Further, the SCV opening / closing control map of the first embodiment is not provided, and instead, the fuel injection timing setting map is provided in the second embodiment.
【0027】 かかる燃料噴射タイミング設定マップは、コントロールユニット30に内蔵さ れたマイクロコンピュータのCPUに設定記憶されていて、予め基本燃料噴射量 Tpで代表される機関負荷と機関回転速度Neとに応じて、言い換えれば希薄空 燃比運転領域と出力空燃比運転領域との切り換えに応じて、大きく切り換わる燃 料噴射タイミングが設定されている。すなわち、前述したように希薄空燃比運転 領域では吸気同期噴射をするような燃料噴射タイミングが、そして出力空燃比運 転領域では早期噴射をするような燃料噴射タイミングが設定されている。かかる 構成が、燃料噴射タイミング設定手段に相当する。The fuel injection timing setting map is set and stored in the CPU of the microcomputer incorporated in the control unit 30, and the map is set in advance according to the engine load represented by the basic fuel injection amount Tp and the engine rotation speed Ne. In other words, the fuel injection timing is set so that the fuel injection timing is switched greatly according to the switching between the lean air-fuel ratio operation region and the output air-fuel ratio operation region. That is, as described above, the fuel injection timing is set so that the intake air synchronous injection is performed in the lean air-fuel ratio operation region, and the fuel injection timing is set such that the early injection is performed in the output air-fuel ratio operation region. Such a configuration corresponds to the fuel injection timing setting means.
【0028】 そして、かかる燃料噴射タイミングの設定の切り換えの際に壁流燃料に変化が 生じて実質的な空燃比が一時的に変動するのを防止するために、該燃料噴射タイ ミングの切り換えを徐々に行なうようにしてある。 その他の構成は、第1の実施例と同様であるので、詳細な説明を省略する。 ここで、第2の実施例におけるコントロールユニット30が行なう燃料噴射タ イミング切換制御を、図5に示すフローチャートに基づいて説明する。かかる制 御が、燃料噴射タイミング切換制御手段を構成する。Then, in order to prevent a change in the wall-flow fuel and a temporary change in the substantial air-fuel ratio when the setting of the fuel injection timing is changed, the change of the fuel injection timing is performed. It is done gradually. Other configurations are similar to those of the first embodiment, and detailed description thereof will be omitted. Here, the fuel injection timing switching control performed by the control unit 30 in the second embodiment will be described based on the flowchart shown in FIG. Such control constitutes fuel injection timing switching control means.
【0029】 ステップ11では、各種センサからの信号がコントロールユニット30に読み 込まれ、基本燃料噴射量Tp、機関回転速度Ne等が求められる。 ステップ12では、基本燃料噴射量Tp、機関回転速度Ne等に基づいて、予 めコントロールユニット30に記憶されている燃料噴射タイミング設定マップを 参照して、燃料噴射タイミングの切り換え条件成立か否かを判断する。切り換え 条件が成立すればステップ13へ進み、切り換え条件不成立であれば、本フロー を終了する。In step 11, signals from various sensors are read by the control unit 30, and the basic fuel injection amount Tp, the engine rotation speed Ne, etc. are obtained. In step 12, based on the basic fuel injection amount Tp, the engine rotation speed Ne, etc., the fuel injection timing setting map stored in advance in the control unit 30 is referred to and whether or not the fuel injection timing switching condition is satisfied is determined. to decide. If the switching condition is satisfied, the process proceeds to step 13, and if the switching condition is not satisfied, this flow is ended.
【0030】 ステップ13では、燃料噴射タイミングの切り換え条件が成立した場合で、現 在の燃料噴射タイミングを目標燃料噴射タイミングに切り換える必要があるが、 ここでは、急激な切り換えに伴う壁流燃料の変化を考慮してX回で徐々に切り換 えるようにする。この場合、該切り換えを所定の時間内で行なうのがよいが、前 記所定時間は、ある一定値でもよいし、運転状態等に応じて設定するようにして もよい。In step 13, it is necessary to switch the current fuel injection timing to the target fuel injection timing when the condition for switching the fuel injection timing is satisfied. Here, the change in the wall flow fuel due to the abrupt switching is performed. In consideration of the above, gradually switch over every X times. In this case, the switching is preferably performed within a predetermined time, but the above-mentioned predetermined time may be a certain fixed value or may be set according to the operating state and the like.
【0031】 ステップ14では、現在の燃料噴射タイミングが目標燃料噴射タイミングとな ったか否かを判断する。目標燃料噴射タイミングとなっていない場合には、ステ ップ13へ戻って、徐々に燃料噴射タイミングの変更が繰り返される。目標燃料 噴射タイミングとなった場合には、本フローを終了して、通常の空燃比制御が行 なわれるようになる。In step 14, it is determined whether or not the current fuel injection timing has reached the target fuel injection timing. If the target fuel injection timing has not come, the process returns to step 13 and the fuel injection timing is gradually changed. When the target fuel injection timing is reached, this flow is ended and normal air-fuel ratio control is performed.
【0032】 第2の実施例によれば、希薄空燃比運転領域と出力空燃比運転領域との切り換 えに応じて、大きく燃料噴射タイミングを切り換えるものにおいて、該燃料噴射 タイミングの切り換えを徐々に行なうようにしたので、該燃料噴射タイミングの 急激な切り換えにより生じる壁流燃料の変化に伴う一時的な空燃比の変動を抑制 することができ、機関出力の変動、さらには燃費、排出有害成分の悪化を抑制す ることができる。According to the second embodiment, in the case where the fuel injection timing is largely switched according to the switching between the lean air-fuel ratio operating region and the output air-fuel ratio operating region, the switching of the fuel injection timing is gradually performed. Since this is done, it is possible to suppress temporary fluctuations in the air-fuel ratio due to changes in the wall-flow fuel that occur due to abrupt switching of the fuel injection timing, and it is possible to suppress fluctuations in engine output, fuel consumption, and harmful emission components. Deterioration can be suppressed.
【0033】 なお、本実施例では、燃料噴射タイミングを徐々に変更して、壁流燃料の変化 を抑制して空燃比の変動を防止するようになしたが、本実施例においても第1の 実施例と同様、燃料噴射タイミングの切り換えの際に、燃料噴射量を増減補正す るようにしてもよいのは勿論である。 さらに、希薄空燃比運転領域と出力空燃比運転領域とを切り換える場合に、S CVの開閉切り換えを行い、かつ燃料噴射タイミングの切り換えを行なう場合に も、第1、第2の実施例が適用されるのは勿論、第1の実施例と第2の実施例を 適宜組み合わせて空燃比の変動を抑制することも可能である。In the present embodiment, the fuel injection timing is gradually changed to suppress the change in the wall flow fuel and prevent the air-fuel ratio from changing. Of course, the fuel injection amount may be increased or decreased when the fuel injection timing is switched, as in the embodiment. Further, when switching between the lean air-fuel ratio operating region and the output air-fuel ratio operating region, the first and second embodiments are also applied to the case where the SCV is opened and closed and the fuel injection timing is switched. Of course, it is also possible to suppress variations in the air-fuel ratio by appropriately combining the first embodiment and the second embodiment.
【0034】[0034]
【考案の効果】 以上説明したように、請求項1に記載の考案により、希薄空燃比運転領域と出 力空燃比運転領域との切り換えに応じて、スワールコントロールバルブの開閉切 り換えを行なう際に、該開閉切り換えと同時に燃料噴射を増減補正するようにし たので、該開閉切り換えにより生じる壁流燃料の変化に伴う一時的な空燃比の変 動を抑制することができ、機関出力の変動、さらには燃費、排出有害成分の悪化 を抑制することができる。As described above, according to the invention as set forth in claim 1, when the swirl control valve is opened and closed according to the switching between the lean air-fuel ratio operation region and the output air-fuel ratio operation region. In addition, since the fuel injection is increased / decreased at the same time as the opening / closing switching, it is possible to suppress the temporary change in the air-fuel ratio due to the change in the wall flow fuel caused by the opening / closing switching, and the fluctuation in the engine output, Further, it is possible to suppress deterioration of fuel efficiency and harmful components of exhaust gas.
【0035】 そして、請求項2に記載の考案により、希薄空燃比運転領域と出力空燃比運転 領域との切り換えに応じて、燃料噴射タイミングを切り換える際に、該燃料噴射 タイミングの切り換えを徐々に行なうようにしたので、該燃料噴射タイミングの 急激な切り換えにより生じる壁流燃料の変化に伴う一時的な空燃比の変動を抑制 することができ、機関出力の変動、さらには燃費、排出有害成分の悪化を抑制す ることができる。According to the second aspect of the invention, when the fuel injection timing is switched in response to the switching between the lean air-fuel ratio operation region and the output air-fuel ratio operation region, the fuel injection timing is gradually switched. As a result, it is possible to suppress temporary fluctuations in the air-fuel ratio due to changes in the wall-flow fuel that occur due to abrupt switching of the fuel injection timing, and to fluctuate engine output, as well as fuel consumption and harmful emission components. Can be suppressed.
【図1】 本考案にかかる第1の実施例を示すブロック
図。FIG. 1 is a block diagram showing a first embodiment according to the present invention.
【図2】 本考案にかかる第2の実施例を示すブロック
図。FIG. 2 is a block diagram showing a second embodiment according to the present invention.
【図3】 本考案にかかる第1の実施例の全体構成図。FIG. 3 is an overall configuration diagram of a first embodiment according to the present invention.
【図4】 本考案にかかる第1の実施例の燃料噴射量増
減補正制御を示すフローチャート。FIG. 4 is a flowchart showing a fuel injection amount increase / decrease correction control according to the first embodiment of the present invention.
【図5】 本考案にかかる第2の実施例の燃料噴射タイ
ミング暫時変更制御を示すフローチャート。FIG. 5 is a flowchart showing a fuel injection timing temporary change control according to a second embodiment of the present invention.
【図6】 本考案にかかる第1の実施例のSCV開閉切
り換えに伴う空燃比の変動を示す図。FIG. 6 is a diagram showing a change in air-fuel ratio due to switching of SCV opening / closing according to the first embodiment of the present invention.
【図7】 本考案にかかる第2の実施例の燃料噴射タイ
ミングの急激な切り換えに伴う空燃比の変動を示す図。FIG. 7 is a diagram showing fluctuations in the air-fuel ratio due to abrupt switching of fuel injection timing according to the second embodiment of the present invention.
1 内燃機関 5 燃料噴射弁 10 エアフローメータ 11 クランク角センサ 13 スワールコントロールバルブ(SCV) 30 コントロールユニット 1 Internal Combustion Engine 5 Fuel Injection Valve 10 Air Flow Meter 11 Crank Angle Sensor 13 Swirl Control Valve (SCV) 30 Control Unit
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F02D 43/00 J 7536−3G U 7536−3G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location F02D 43/00 J 7536-3G U 7536-3G
Claims (2)
燃比よりも薄い希薄空燃比域と、それより濃い空燃比域
とに切り換え設定する目標空燃比設定手段と、 機関吸気系に設けられシリンダ内におけるスワール発生
を制御するスワールコントロールバルブと、 前記空燃比の切り換えに応じて前記希薄空燃比域のとき
には前記スワールコントロールバルブを閉じてスワール
を強化し、それより濃い空燃比域ではスワールコントロ
ールバルブを開くように制御するスワールコントロール
バルブ開閉制御手段と、 を備えた内燃機関の空燃比制御装置において、 前記スワールコントロールバルブの開閉切り換えの際
に、吸気ポート内壁への燃料の付着量の差により発生す
る空燃比の変動を補正すべく燃料噴射量を増減補正する
燃料噴射量増減補正手段を含んで構成したことを特徴と
する内燃機関の空燃比制御装置。1. A target air-fuel ratio setting means for switching and setting a target air-fuel ratio between a lean air-fuel ratio range thinner than a stoichiometric air-fuel ratio and an air-fuel ratio range richer than the theoretical air-fuel ratio according to engine operating conditions, and an engine intake system. And a swirl control valve for controlling swirl generation in the cylinder, and closes the swirl control valve in the lean air-fuel ratio region in response to the switching of the air-fuel ratio to strengthen the swirl, and swirl control in the richer air-fuel ratio region. In an air-fuel ratio control device for an internal combustion engine, which comprises a swirl control valve opening / closing control means for controlling the valve to open, a difference in the amount of fuel adhering to the inner wall of the intake port when switching the opening / closing of the swirl control valve. A fuel injection amount increase / decrease correction method for increasing / decreasing the fuel injection amount to correct the fluctuation of the air-fuel ratio that occurs. An air-fuel ratio control device for an internal combustion engine, characterized in that it is configured to include stages.
燃比よりも薄い希薄空燃比域と、それより濃い空燃比域
とに切り換え設定する目標空燃比設定手段を備えた内燃
機関の空燃比制御装置において、 前記空燃比の切り換えに応じて燃料噴射タイミングを切
り換え設定する燃料噴射タイミング設定手段と、 前記燃料噴射タイミングの切り換えの際に、吸気ポート
内壁への燃料の付着量の差により発生する空燃比の変動
を補正すべく燃料噴射タイミングを徐々に切り換える燃
料噴射タイミング切換制御手段と、 を含んで構成したことを特徴とする内燃機関の空燃比制
御装置。2. An internal combustion engine having a target air-fuel ratio setting means for switching and setting a target air-fuel ratio between a lean air-fuel ratio region thinner than a stoichiometric air-fuel ratio and an air-fuel ratio region richer than the stoichiometric air-fuel ratio in accordance with engine operating conditions. In the fuel ratio control device, fuel injection timing setting means for switching and setting the fuel injection timing according to the switching of the air-fuel ratio, and when the fuel injection timing is switched, it is caused by a difference in the amount of fuel adhering to the inner wall of the intake port. An air-fuel ratio control device for an internal combustion engine, comprising: a fuel injection timing switching control means for gradually switching the fuel injection timing to correct the fluctuation of the air-fuel ratio.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8507192U JPH0649737U (en) | 1992-12-10 | 1992-12-10 | Air-fuel ratio controller for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8507192U JPH0649737U (en) | 1992-12-10 | 1992-12-10 | Air-fuel ratio controller for internal combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0649737U true JPH0649737U (en) | 1994-07-08 |
Family
ID=13848394
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8507192U Pending JPH0649737U (en) | 1992-12-10 | 1992-12-10 | Air-fuel ratio controller for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0649737U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017008839A (en) * | 2015-06-23 | 2017-01-12 | トヨタ自動車株式会社 | Control device of internal combustion engine |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6338637A (en) * | 1986-08-04 | 1988-02-19 | Nissan Motor Co Ltd | Air-fuel ratio control device for internal combustion engine |
JPS6326738B2 (en) * | 1981-04-20 | 1988-05-31 | Kuraray Co | |
JPH01163436A (en) * | 1987-12-17 | 1989-06-27 | Toyota Motor Corp | Air-fuel ratio control device for lean combustion internal combustion engine |
JPH01163438A (en) * | 1987-12-17 | 1989-06-27 | Toyota Motor Corp | Air-fuel ratio control device for internal combustion engine |
JPH04112932A (en) * | 1990-09-03 | 1992-04-14 | Nissan Motor Co Ltd | Air-fuel ratio control device for internal combustion engine |
-
1992
- 1992-12-10 JP JP8507192U patent/JPH0649737U/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6326738B2 (en) * | 1981-04-20 | 1988-05-31 | Kuraray Co | |
JPS6338637A (en) * | 1986-08-04 | 1988-02-19 | Nissan Motor Co Ltd | Air-fuel ratio control device for internal combustion engine |
JPH01163436A (en) * | 1987-12-17 | 1989-06-27 | Toyota Motor Corp | Air-fuel ratio control device for lean combustion internal combustion engine |
JPH01163438A (en) * | 1987-12-17 | 1989-06-27 | Toyota Motor Corp | Air-fuel ratio control device for internal combustion engine |
JPH04112932A (en) * | 1990-09-03 | 1992-04-14 | Nissan Motor Co Ltd | Air-fuel ratio control device for internal combustion engine |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017008839A (en) * | 2015-06-23 | 2017-01-12 | トヨタ自動車株式会社 | Control device of internal combustion engine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4469528B2 (en) | Method for operation of an internal combustion engine | |
JPH1047121A (en) | Control device of in-cylinder injection type spark ignition type internal combustion engine | |
EP0924420B1 (en) | Torque controller for internal combustion engine | |
JPH10339215A (en) | Egr control device of engine | |
JP3314294B2 (en) | Control device for internal combustion engine | |
JPH1193731A (en) | Fuel injection control device for cylinder injection internal combustion engine | |
JPH10339148A (en) | Engine intake controller | |
JP2002242713A (en) | Control device for internal combustion engine | |
US6536414B2 (en) | Fuel injection control system for internal combustion engine | |
EP1083325A2 (en) | Control apparatus and method for direct-injection spark-ignition internal combustion engine | |
JPH0649737U (en) | Air-fuel ratio controller for internal combustion engine | |
JPS63117149A (en) | Fuel injection controller for internal combustion engine | |
JPH1122525A (en) | Idle rotation learning control device for engine | |
JP2000257476A (en) | Control unit for in-cylinder injection engine | |
JPH09151771A (en) | Fuel injection control device for direct injection gasoline engine | |
JPH1162658A (en) | Control device for internal combustion engine | |
JP2590823B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JP4206624B2 (en) | Lean combustion engine control system | |
JP3680505B2 (en) | Fuel injection control device for direct-injection spark-ignition internal combustion engine | |
JPH0688562A (en) | Ignition timing controller of internal combustion engine | |
JP3013541B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JPS6011652A (en) | Engine fuel injection device | |
JP2917417B2 (en) | Engine control device | |
JPH01155044A (en) | Electronic control fuel injection system for internal combustion engine | |
JP2001207894A (en) | Direct injection engine control device |