JPH0648623B2 - Hydrogen storage electrode - Google Patents
Hydrogen storage electrodeInfo
- Publication number
- JPH0648623B2 JPH0648623B2 JP60230333A JP23033385A JPH0648623B2 JP H0648623 B2 JPH0648623 B2 JP H0648623B2 JP 60230333 A JP60230333 A JP 60230333A JP 23033385 A JP23033385 A JP 23033385A JP H0648623 B2 JPH0648623 B2 JP H0648623B2
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen storage
- alloy
- titanium
- batteries
- manganese
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/383—Hydrogen absorbing alloys
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【発明の詳細な説明】 (イ)産業上の利用分野 本発明は蓄電池の負極として用いられる水素吸蔵電極に
関し、特に高容量を長期にわたつて維持するよう改良さ
れた水素吸蔵電極に関する。TECHNICAL FIELD The present invention relates to a hydrogen storage electrode used as a negative electrode of a storage battery, and more particularly to a hydrogen storage electrode improved to maintain a high capacity for a long period of time.
(ロ)従来の技術 従来からよく用いられる蓄電池としては鉛電池及びニツ
ケル−カドミウム電池があるが、近年これら電池より軽
量で且つ高容量となる可能性があるということで、特に
低圧に於いて負極活物質である水素を可逆的に吸蔵及び
放出することのできる水素吸蔵合金を備えた電極を負極
に用い、水酸化ニツケルなどの金属酸化物からなる正極
活物質を備えた電極を正極に用いた金属−水素アルカリ
蓄電池が注目されている。(B) Conventional technology Lead-acid batteries and nickel-cadmium batteries have been commonly used in the past, but in recent years they are lighter in weight and have a higher capacity than those batteries. An electrode having a hydrogen storage alloy capable of reversibly storing and releasing hydrogen, which is an active material, was used as a negative electrode, and an electrode having a positive electrode active material made of metal oxide such as nickel hydroxide was used as a positive electrode. Metal-hydrogen alkaline storage batteries are receiving attention.
一般にこの種蓄電池に用いられる水素吸蔵合金を備えた
水素吸蔵電極は特公昭58−46827号公報に於いて
提案されているように水素を吸蔵する合金粉末と水素を
吸蔵しない合金粉末との混合物を焼結して焼結多孔体を
作製し、これを水素吸蔵電極とする方法、あるいは特開
昭53−103541号公報に於いて提案されているよ
うに水素を吸蔵する合金粉末とアセチレンブラツク及び
電極支持体とを耐電解液性の粒子状結着剤により相互に
結合させて水素吸蔵電極とする方法によつて作製されて
おり、これら電極に用いる水素吸蔵合金の1つにチタン
−マンガン二元系合金がある。しかしながら、このチタ
ン−マンガン二元系合金を備えた水素吸蔵電極は、水素
吸蔵量が少ないため充分な容量を得ることができず、ま
たサイクル寿命が短く満足できるものではなかつた。In general, a hydrogen storage electrode provided with a hydrogen storage alloy used in this type of storage battery is a mixture of an alloy powder that stores hydrogen and an alloy powder that does not store hydrogen, as proposed in Japanese Patent Publication No. 58-46827. A method of producing a sintered porous body by sintering and using it as a hydrogen storage electrode, or an alloy powder storing hydrogen and acetylene black and an electrode as proposed in JP-A-53-103541. It is manufactured by a method of forming a hydrogen storage electrode by bonding the support and a support with each other by an electrolytic solution resistant particulate binder, and one of the hydrogen storage alloys used for these electrodes is titanium-manganese binary. There are system alloys. However, the hydrogen storage electrode provided with this titanium-manganese binary alloy cannot obtain a sufficient capacity because the hydrogen storage amount is small, and the cycle life is not satisfactory.
(ハ)発明が解決しようとする問題点 本発明の水素吸蔵電極は、チタン−マンガン合金をベー
スとして他の元素を含有させてなる合金を負極に用いる
ことにより、負極の水素吸蔵量の増加やサイクル寿命の
向上をはかろうとするものである。(C) Problems to be Solved by the Invention In the hydrogen storage electrode of the present invention, an alloy containing a titanium-manganese alloy as a base and containing other elements is used for the negative electrode to increase the hydrogen storage capacity of the negative electrode. It is intended to improve the cycle life.
(ニ)問題点を解決するための手段 本発明の水素吸蔵電極は、TiMnxで表わされxが1.
5≦x≦2であるチタン−マンガン合金のチタンまたは
マンガンを、Al、Si、Zn、Y、Nb、Hf、Ta
から選ばれる少なくとも一種の元素で、TiMnx1分
子あたり0.4原子以下置換してなる合金を備えたもので
ある。(D) Means for Solving the Problems The hydrogen storage electrode of the present invention is represented by TiMnx and x is 1.
Titanium or manganese of a titanium-manganese alloy satisfying 5 ≦ x ≦ 2 is replaced with Al, Si, Zn, Y, Nb, Hf, Ta.
At least one kind of element selected from the group consisting of TiNx and an alloy formed by substituting 0.4 atom or less per molecule of TiMnx.
(ホ)作 用 ベースとなるチタン−マンガン合金がTiMnxで表わ
されxが1.5≦x≦2であるものとし、且つこの合金の
チタンまたはマンガンをAl、Si、Zn、Y、Nb、
Hf、Taから選ばれる少なくとも一種の合金で、Ti
Mnx1分子あたり0.4原子以下置換してある合金を負
極の水素吸蔵材として用いると、負極である水素吸蔵電
極の寿命が伸び容量で増大する。(E) Operation The base titanium-manganese alloy is represented by TiMnx and x is 1.5 ≦ x ≦ 2, and titanium or manganese of this alloy is Al, Si, Zn, Y, Nb,
At least one alloy selected from Hf and Ta, Ti
When an alloy in which 0.4 atom or less per Mnx molecule is substituted is used as the hydrogen storage material of the negative electrode, the life of the hydrogen storage electrode which is the negative electrode is extended and the capacity is increased.
(ヘ)実施例 市販のチタン、マンガン及びアルミニウムを組成比で、
Ti:Mn:Al=1:1.8:0.2になるよう混合し、ア
ーク溶解炉に入れて加熱、溶解して合金化してTiMn
1.8Al0.2粉末を得ると共に、前記混合、合金化及び粉
砕という操作を行なつて組成が種々異なる各種水素吸蔵
合金粉末を得た。(F) Example Commercially available titanium, manganese, and aluminum in composition ratio,
Ti: Mn: Al = 1: 1.8: 0.2 are mixed, put in an arc melting furnace, heated, melted and alloyed to form TiMn.
1.8Al0.2 powder was obtained, and the operations of mixing, alloying and crushing were performed to obtain various hydrogen storage alloy powders having different compositions.
こうして得られた各種水素吸蔵合金粉末80重量%、導
電材としてのアセチレンブラック10重量%及び結着剤
としてのフッ素樹脂粉末10重量%を混合機で均一に混
合すると共にフッ素樹脂を繊維化し、得られた混練物を
ニツケル金網で包み込み3ton/cm2で加圧成型する
ことにより、外面がニツケル金網で覆われた水素吸蔵電
極を作製した。尚、これら水素吸蔵電極に用いた合金粉
末は夫々約1.5gである。80% by weight of the various hydrogen-absorbing alloy powders thus obtained, 10% by weight of acetylene black as a conductive material, and 10% by weight of fluororesin powder as a binder were uniformly mixed with a mixer and the fluororesin was made into fibers to obtain The kneaded product thus obtained was wrapped in a nickel wire mesh and pressure-molded at 3 ton / cm 2 , whereby a hydrogen storage electrode having an outer surface covered with the nickel wire mesh was produced. The alloy powder used for these hydrogen storage electrodes is about 1.5 g each.
次いで、上記水素吸蔵電極を夫々理論容量が600mA
Hの焼結式ニツケル正極と組み合わせ電解液に水酸化カ
リウム水溶液を用いて密閉型ニツケル−水素アルカリ蓄
電池を種々作製し、負極に用いた水素吸蔵合金の種類に
より第1表に示す如く電池A乃至Iとする。また比較と
して組成の異なるチタン−マンガン二元系合金を負極の
水素吸蔵材として用いた電池を作製し、用いた水素吸蔵
材の種類により第1表に示す如く電池J乃至Mとする。
これら電池を0.1C電流で16時間充電した後、0.2C電
流で放電して電池電圧が1.0Vになつた時点で放電停止
するサイクル条件で充放電を繰り返し行ない電池特性を
測定し、電池(A)乃至(M)の放電容量を第1表に示すと共
に電池(A)乃至(K)のサイクル特性を各電池の初期容量を
夫々100として第1図に示す。Next, the theoretical capacity of each of the hydrogen storage electrodes is 600 mA.
Various sealed nickel-hydrogen alkaline storage batteries were prepared by using an aqueous solution of potassium hydroxide in combination with a sintered nickel positive electrode of H, and batteries A to A as shown in Table 1 depending on the type of hydrogen storage alloy used for the negative electrode. I. For comparison, batteries using titanium-manganese binary alloys having different compositions as the hydrogen storage material of the negative electrode were prepared, and the batteries J to M are shown in Table 1 depending on the type of the hydrogen storage material used.
After charging these batteries with 0.1C current for 16 hours, discharge them with 0.2C current and stop charging when the battery voltage reaches 1.0V. Repeat charging and discharging under the cycle condition to measure the battery characteristics. 1) to (M) are shown in Table 1, and the cycle characteristics of the batteries (A) to (K) are shown in FIG. 1 with the initial capacity of each battery being 100.
第1表から明らかなように、チタン−マンガン二元系合
金を負極の水素吸蔵材として用いた電池(J)乃至(M)のう
ち、電池(J)及び(K)の放電容量が他の電池(L)及び(M)よ
り大きく、同じチタン−マンガン二元系合金でも組成が
Ti1に対しMn1.5〜2の範囲にある合金を負極の水
素吸蔵材とてし用いると放電容量を増大できることがわ
かる。また、電池(A)乃至(I)は電池(J)及び(K)より更に
放電容量が増大しており、チタン−マンガン二元系合金
のチタンまたはマンガンをAl、Si、Zn、Y、N
b、Hf、Ta、と一部置換して作製した合金を負極の
水素吸蔵材として用いることにより、より一層の効果が
得られている。サイクル特性についても第1図から明ら
かなように、電池(A)乃至(I)は電池(J)及び(K)より向上
しており、チタン−マンガン二元系合金のチタンまたは
マンガンを前記各種元素と一部置換することにより放電
容量と同様サイクル特性も向上している。また、放電容
量では電池(A)(B)(C)及び(G)が、サイクル特性では電池
(D)(E)及び(I)でその効果が顕著に表われている。 As is clear from Table 1, among the batteries (J) to (M) using the titanium-manganese binary alloy as the hydrogen storage material of the negative electrode, the discharge capacities of the batteries (J) and (K) are different from each other. Even if the same titanium-manganese binary alloy, which is larger than batteries (L) and (M), and whose composition is in the range of Mn1.5 to 2 with respect to Ti1, is used as the hydrogen storage material of the negative electrode, the discharge capacity is increased. I know that I can do it. In addition, the batteries (A) to (I) have a larger discharge capacity than the batteries (J) and (K), and the titanium-manganese binary alloy titanium or manganese is Al, Si, Zn, Y, N.
Further effects can be obtained by using the alloy prepared by partially substituting b, Hf, and Ta as the hydrogen storage material of the negative electrode. Regarding the cycle characteristics, as is clear from FIG. 1, the batteries (A) to (I) are superior to the batteries (J) and (K), and the titanium-manganese binary alloy titanium or manganese is added to the above various types. By partially substituting the element, the cycle characteristics as well as the discharge capacity are improved. The batteries (A), (B), (C), and (G) are used for discharge capacity, and batteries are used for cycle characteristics.
The effects are markedly shown in (D), (E) and (I).
更に第2表はTiMn2からなるチタン−マンガン二元
系合金をベースとして、置換する元素量を変化させて作
製した合金を同様に負極の水素吸蔵材に用いて電池を組
み立て、この電池の放電容量を、負極の水素吸蔵合金と
対比させて示したものであり、置換する元素量はベース
となるチタン−マンガン二元系合金1分子あたり0.4原
子以下で放電容量がベースのTiMn2より増大するの
に対し、0.6原子になると逆に減少している。これは置
換する元素量がチタン−マンガン二元系合金1分子あた
り0.4原子を超えると、合金内で置換元素の偏析が起こ
り合金組成が均一にならないためと考えられる。Further, Table 2 shows that a titanium-manganese binary alloy composed of TiMn2 was used as a base, and an alloy produced by changing the amount of substituting elements was similarly used as a hydrogen storage material of the negative electrode to assemble a battery, and the discharge capacity of this battery was In comparison with the hydrogen storage alloy of the negative electrode, the amount of the element to be replaced is 0.4 atom or less per molecule of the base titanium-manganese binary alloy, and the discharge capacity is larger than that of the base TiMn2. On the other hand, when the number of atoms becomes 0.6, it decreases on the contrary. This is presumably because when the amount of the element to be replaced exceeds 0.4 atom per molecule of the titanium-manganese binary alloy, segregation of the replacing element occurs in the alloy and the alloy composition is not uniform.
上記のようにTiMnxで表わされxが1.5以上2.0以下
であるチタン−マンガン合金のチタンまたはマンガンを
Al、Si、Zn、Y、Nb、Hf、Taからなる元素
で、TiMnx1分子あたり0.4原子以下置換してなる
合金を負極の水素吸蔵材として用いると放電容量及びサ
イクル寿命が向上するが、置換する元素を2種以上とし
ても同様の効果が得られる。以下にチタン−マンガン二
元系合金をベースとし、2種の元素で置換した合金を水
素吸蔵材として用いた実施例を示す。 As described above, titanium or manganese of a titanium-manganese alloy represented by TiMnx in which x is 1.5 or more and 2.0 or less is an element composed of Al, Si, Zn, Y, Nb, Hf, and Ta, and 0.4 atom or less per molecule of TiMnx. When the substituted alloy is used as the hydrogen storage material of the negative electrode, the discharge capacity and the cycle life are improved, but the same effect can be obtained even if two or more elements are substituted. The following is an example in which a titanium-manganese binary alloy is used as a base and an alloy substituted with two kinds of elements is used as a hydrogen storage material.
前述と同様の操作でTi0.8Ta0.2Mn1.8Al0.2、T
iMn1.6Al0.2Zn0.2及びTi0.8Ta0.1Hf0.1M
n2からなる合金粉末を作製し、これら合金を負極の水
素吸蔵材として使用して電池を組み立て放電容量及びサ
イクル特性を測定した。こうして作製した電池を夫々負
極に用いた水素吸蔵合金の種類に対応させて第3表に示
すように電池N,O及びPとして、その放電容量を同時
に第3表に示し、またそのサイクル特性を電池(K)と共
に第2図に示す。In the same operation as above, Ti0.8Ta0.2Mn1.8Al0.2, T
iMn1.6Al0.2Zn0.2 and Ti0.8Ta0.1Hf0.1M
Alloy powders made of n2 were prepared, and batteries were assembled using these alloys as the hydrogen storage material of the negative electrode, and the discharge capacity and cycle characteristics were measured. The batteries thus produced were made to correspond to the type of hydrogen storage alloy used for the negative electrode, and as batteries N, O and P shown in Table 3, their discharge capacities are simultaneously shown in Table 3 and their cycle characteristics are shown. It is shown in FIG. 2 together with the battery (K).
(ト)発明の効果 本発明の水素吸蔵電極は、TiMnxで表わされxが1.
5≦x≦2であるチタン−マンガン合金のチタンまたは
マンガンを、Al、Si、Zn、Y、Nb、Hf、Ta
から選ばれる少なくとも一種の元素で、TiMnx1分
子あたり0.4原子以下置換してなる合金を備えたもので
あり、放電容量及びサイクル特性の向上をもたらすもの
であるから、優れた性能の蓄電池を提供することがで
き、その工業的価値は極めて大である。 (G) Effect of the Invention The hydrogen storage electrode of the present invention is represented by TiMnx and x is 1.
Titanium or manganese of a titanium-manganese alloy satisfying 5 ≦ x ≦ 2 is replaced with Al, Si, Zn, Y, Nb, Hf, Ta.
To provide a storage battery having excellent performance, since it is provided with an alloy formed by substituting 0.4 atom or less per molecule of TiMnx with at least one element selected from the following, and it brings about improvement in discharge capacity and cycle characteristics. And its industrial value is extremely high.
第1図及び第2図は本発明の水素吸蔵電極を備えた電池
と比較電池のサイクル特性図である。1 and 2 are cycle characteristic diagrams of a battery provided with the hydrogen storage electrode of the present invention and a comparative battery.
Claims (1)
あるチタン−マンガン合金のチタンまたはマンガンを、
Al、Si、zn、Y、Nb、Hf、Taから選ばれる
少なくとも一種の元素で、TiMnx1分子あたり0.4
原子以下置換してなる合金を備えた水素吸蔵電極。1. A titanium-manganese alloy of titanium-manganese represented by TiMnx, wherein x is 1.5 ≦ x ≦ 2,
At least one element selected from Al, Si, zn, Y, Nb, Hf, and Ta, and 0.4 per molecule of TiMnx.
A hydrogen storage electrode comprising an alloy formed by substituting atoms or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60230333A JPH0648623B2 (en) | 1985-10-16 | 1985-10-16 | Hydrogen storage electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60230333A JPH0648623B2 (en) | 1985-10-16 | 1985-10-16 | Hydrogen storage electrode |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6290850A JPS6290850A (en) | 1987-04-25 |
JPH0648623B2 true JPH0648623B2 (en) | 1994-06-22 |
Family
ID=16906192
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60230333A Expired - Lifetime JPH0648623B2 (en) | 1985-10-16 | 1985-10-16 | Hydrogen storage electrode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0648623B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3322486B2 (en) * | 1994-10-05 | 2002-09-09 | 三洋電機株式会社 | Hydrogen storage alloy with excellent poisoning resistance and regenerative recovery |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5273342A (en) * | 1975-12-16 | 1977-06-20 | Matsushita Electric Ind Co Ltd | Storage battery |
JPS5286127A (en) * | 1976-01-05 | 1977-07-18 | Philips Nv | Electrode for primary * secondary or fuel cell |
JPS5468702A (en) * | 1977-11-11 | 1979-06-02 | Matsushita Electric Ind Co Ltd | Material for preserving hydrogen |
JPS59181464A (en) * | 1983-03-28 | 1984-10-15 | エバレディ−、バッテリ−、カンパニ−、インコ−ポレ−テッド | Isoxazole dielectric adding agent in organic electrolyte of nonaqueous battery using solid anode |
-
1985
- 1985-10-16 JP JP60230333A patent/JPH0648623B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5273342A (en) * | 1975-12-16 | 1977-06-20 | Matsushita Electric Ind Co Ltd | Storage battery |
JPS5286127A (en) * | 1976-01-05 | 1977-07-18 | Philips Nv | Electrode for primary * secondary or fuel cell |
JPS5468702A (en) * | 1977-11-11 | 1979-06-02 | Matsushita Electric Ind Co Ltd | Material for preserving hydrogen |
JPS59181464A (en) * | 1983-03-28 | 1984-10-15 | エバレディ−、バッテリ−、カンパニ−、インコ−ポレ−テッド | Isoxazole dielectric adding agent in organic electrolyte of nonaqueous battery using solid anode |
Also Published As
Publication number | Publication date |
---|---|
JPS6290850A (en) | 1987-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0514017B2 (en) | ||
JPH0821379B2 (en) | Hydrogen storage electrode | |
JP2595967B2 (en) | Hydrogen storage electrode | |
JPH0648623B2 (en) | Hydrogen storage electrode | |
JPS62271349A (en) | Hydrogen occlusion electrode | |
JPS61176067A (en) | Hydrogen occlusion electrode | |
JPH0650634B2 (en) | Hydrogen storage electrode | |
JP2579072B2 (en) | Hydrogen storage alloy electrode | |
JP2962814B2 (en) | Hydrogen storage alloy electrode | |
JPH061695B2 (en) | Hydrogen storage electrode | |
JPS61168870A (en) | Metal-hydrogen alkaline storage battery | |
JP2962813B2 (en) | Hydrogen storage alloy electrode | |
JPH0586622B2 (en) | ||
JPH04187733A (en) | Hydrogen storage alloy electrode | |
JPH0584025B2 (en) | ||
JPH06145849A (en) | Hydrogen storage alloy electrode | |
JPH0794176A (en) | Hydrogen storage electrode | |
JPH063733B2 (en) | Hydrogen storage electrode | |
JPH0815079B2 (en) | Hydrogen storage electrode | |
JPH0652655B2 (en) | Hydrogen storage electrode | |
JPS6276254A (en) | Hydrogen occlusion electrode | |
JPS61176065A (en) | Hydrogen occlusion electrode | |
JPS6276255A (en) | Hydrogen occlusion electrode | |
JP3352479B2 (en) | Hydrogen storage alloy electrode and method for producing the same | |
JPH07103434B2 (en) | Hydrogen storage Ni-based alloy and sealed Ni-hydrogen storage battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |