Nothing Special   »   [go: up one dir, main page]

JPH0642573B2 - Laser wavelength stabilization method - Google Patents

Laser wavelength stabilization method

Info

Publication number
JPH0642573B2
JPH0642573B2 JP61061371A JP6137186A JPH0642573B2 JP H0642573 B2 JPH0642573 B2 JP H0642573B2 JP 61061371 A JP61061371 A JP 61061371A JP 6137186 A JP6137186 A JP 6137186A JP H0642573 B2 JPH0642573 B2 JP H0642573B2
Authority
JP
Japan
Prior art keywords
wavelength
laser
light
signal
receiving section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61061371A
Other languages
Japanese (ja)
Other versions
JPS62219586A (en
Inventor
捷海 桜井
浩司 馬場
延夫 竹内
敏行 上野
家郷 佐藤
雅博 椿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meisei Electric Co Ltd
Original Assignee
Meisei Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meisei Electric Co Ltd filed Critical Meisei Electric Co Ltd
Priority to JP61061371A priority Critical patent/JPH0642573B2/en
Publication of JPS62219586A publication Critical patent/JPS62219586A/en
Publication of JPH0642573B2 publication Critical patent/JPH0642573B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/131Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Semiconductor Lasers (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 本発明はレーザ光源を用いた分光計測装置において、光
源光の波長を安定させる方法に関する。
The present invention relates to a method for stabilizing the wavelength of light from a light source in a spectroscopic measurement device using a laser light source.

波長可変レーザを光源とする分光計測装置においては、
波長の制御されたスペクトル幅の狭い光を使用すること
が望ましい。
In a spectroscopic measurement device that uses a wavelength tunable laser as a light source,
It is desirable to use narrow wavelength spectrally controlled light.

波長を制御するにはレーザ発振器自身に波長制御素子を
組込むこともあるが、通常はレーザ発振器に単一モード
発振の機能を持たせ、共振器外で波長を制御する。この
場合、レーザ光を2つに分け、片方を試料測定用に、他
方を波長制御用に使用することが多い。
In order to control the wavelength, a wavelength control element may be incorporated in the laser oscillator itself, but normally, the laser oscillator is provided with a single mode oscillation function, and the wavelength is controlled outside the resonator. In this case, the laser beam is often divided into two, one for measuring the sample and the other for controlling the wavelength.

それに対し、本発明ではレーザ光を分割することなく、
雑音光排除のために用いた受光部の分散素子そのものを
波長制御に用いて、安定化されたスペクトル幅の狭いレ
ーザ光を得る方法である。
On the other hand, in the present invention, without splitting the laser beam,
This is a method of obtaining a stabilized laser beam having a narrow spectral width by using the dispersion element itself of the light receiving section used for eliminating noise light for wavelength control.

本発明と比較するために通常のビームを分割する安定化
法を第1図によって説明する。
A stabilization method for splitting a normal beam will be described with reference to FIG. 1 for comparison with the present invention.

第1図において、波長可変なレーザ光源1からの光はビ
ームスプリッタ2により2つに分けられる。測定用の光
は測定信号用変調器3によって変調され、試料4を通っ
た後、信号検出器7で検出され、信号出力8を与える。
この際、信号検出器7の前に迷光や背景光等の雑音光を
排除するために分散素子6が置かれることが多い。分散
素子6と信号検出器7とで測定信号用受光部5を構成す
る。また測定信号用変調器3は測定信号用変調周波数発
生器9で与えられる周波数νに同期した信号で振幅変
調され、またこの周波数νは信号検出器7の同期検波
周波数として使用されることが多い(測定信号の変調法
にはこの他にレーザ光源を変調するなど種々の方法があ
る)。
In FIG. 1, the light from the laser light source 1 having a variable wavelength is divided into two by a beam splitter 2. The measuring light is modulated by the measuring signal modulator 3, passes through the sample 4, and is detected by the signal detector 7 to give a signal output 8.
At this time, the dispersive element 6 is often placed in front of the signal detector 7 in order to eliminate noise light such as stray light or background light. The dispersive element 6 and the signal detector 7 constitute the measurement signal light receiving section 5. Further, the measurement signal modulator 3 is amplitude-modulated by a signal synchronized with the frequency ν s given by the measurement signal modulation frequency generator 9, and this frequency ν s is used as a synchronous detection frequency of the signal detector 7. (In addition to this, there are various methods such as modulating the laser light source).

ビームスプリッタ2で分割された参照用レーザ光は、波
長基準用分散素子11を通過する。この波長基準用分散
素子11は波長変化に対し透過率が変わる性質を有する
もので構成される。
The reference laser light split by the beam splitter 2 passes through the wavelength reference dispersion element 11. The wavelength reference dispersive element 11 is configured to have a property that the transmittance changes with a change in wavelength.

第1図では半導体レーザのように駆動電流値によって発
振波長が変化する場合を考える。発振波長はバイアス電
源16からのバイアス電流と変調電源17からの変調電
流との和(測定信号用の変調は電流のオン−オフ等の振
幅変調であり、周波数の変調には寄与しない)で決ま
る。変調電源17の変調周波数νは参照信号用変調周
波数発生器18で与えられる。
FIG. 1 considers a case where the oscillation wavelength changes depending on the drive current value like a semiconductor laser. The oscillation wavelength is determined by the sum of the bias current from the bias power supply 16 and the modulation current from the modulation power supply 17 (the modulation for the measurement signal is amplitude modulation such as on / off of the current and does not contribute to the frequency modulation). . The modulation frequency ν M of the modulation power supply 17 is given by the reference signal modulation frequency generator 18.

変調周波数νで周波数変調されたレーザ光は波長基準
用分散素子11を通った後、参照光検出器12において
変調周波数νで同期検波される。この波長基準用分散
素子11と参照光検出器12とで参照信号用受光部10
を構成する。参照光検出器12の出力である参照信号出
力13は基準器14からの信号と比較器15で比較さ
れ、その差が0(零)となるように、バイアス電源16
にフィードバックされ、波長が安定化される。
The laser light frequency-modulated at the modulation frequency ν M passes through the wavelength reference dispersion element 11 and is then synchronously detected at the modulation frequency ν M in the reference light detector 12. The wavelength reference dispersive element 11 and the reference light detector 12 serve as a reference signal light receiving unit 10.
Make up. The reference signal output 13 which is the output of the reference light detector 12 is compared with the signal from the standard device 14 by the comparator 15, and the bias power supply 16 is set so that the difference becomes 0 (zero).
And the wavelength is stabilized.

本発明はレーザ光を測定用と参照用とに分けず、同一の
レーザ光で共用するものである。以下第2図を用いてそ
の実施例を説明する。
The present invention does not divide the laser light for measurement and reference, but uses the same laser light in common. The embodiment will be described below with reference to FIG.

第2図において、変調電源22とバイアス電源32との
和の電流によって駆動されるレーザ光源21からの光は
分割されることなく測定試料23を通過し、外部雑音光
25とともに分散素子26に入射する。分散素子26と
光検出器27とで受光部33を構成する。ここで、分散
素子26は第1図の測定信号用受光部5の分散素子6と
同図の参照信号用受光部10の波長基準用分散素子11
の両者の性格を兼ね備えるもので、波長の変化に対して
透過率が変化する性質を有する。ただし、測定信号用に
も使用されるので透過率が良いことが必要で、原子・分
子の吸収線のように吸収型のものは使用できない。
In FIG. 2, the light from the laser light source 21 driven by the sum current of the modulation power supply 22 and the bias power supply 32 passes through the measurement sample 23 without being split, and is incident on the dispersion element 26 together with the external noise light 25. To do. The dispersive element 26 and the photodetector 27 form a light receiving unit 33. Here, the dispersive element 26 is the dispersive element 6 of the measurement signal photoreceptive section 5 of FIG. 1 and the wavelength reference dispersive element 11 of the reference signal photoreceptive section 10 of FIG.
Both of them have the characteristics, and have the property of changing the transmittance with respect to the change of the wavelength. However, since it is also used for measurement signals, it needs to have good transmittance, and absorption type such as absorption lines of atoms and molecules cannot be used.

レーザ光は変調周波数発生器24で与えられる周波数ν
で周波数変調されているので、分散素子26を通過し
た光は光検出器27の検出信号の中からνで変調を受
けた変調成分出力29を測定信号出力28と別に取出す
ことができる。
The laser light has a frequency ν given by the modulation frequency generator 24.
Since the light is frequency-modulated by M , the light passing through the dispersive element 26 can take out the modulation component output 29 modulated by ν M from the detection signal of the photodetector 27 separately from the measurement signal output 28.

一例として、変調成分出力29として変調周波数ν
位相検波の1次微分成分を用いると(第4図参照)、分
散素子26を通過した光の変調成分出力29は周波数偏
移に比例した出力値を示すので、基準器30によって与
えられる基準値と比較器31で比較してバイアス電源3
2へのフィードバック信号を与え、発振周波数が安定化
される。
As an example, when the first-order differential component of the phase detection of the modulation frequency ν M is used as the modulation component output 29 (see FIG. 4), the modulation component output 29 of the light passing through the dispersive element 26 is an output proportional to the frequency deviation. Since it indicates the value, the bias power supply 3 is compared by the comparator 31 with the reference value given by the reference device 30.
A feedback signal to 2 is applied to stabilize the oscillation frequency.

なお通常、レーザ光源21からの光を測定信号用変調周
波数発生器35によって与えられる周波数信号νによ
って測定信号用変調器34で振幅変調し、光検出器27
でその周波数νの同期成分を検出して感度の向上を図
る。また本実施例では、レーザ光源21はレーザ駆動
(励起)電流に対し発振波長が第3図のように単調に変
化するものとしている。また第2図の分散素子26は、
第4図(a)のような狭帯域幅の分光透過特性を有するも
のとする。
Normally, the light from the laser light source 21 is amplitude-modulated by the measurement signal modulator 34 by the frequency signal ν S given by the measurement signal modulation frequency generator 35, and the photodetector 27
Then, the synchronization component of the frequency ν S is detected to improve the sensitivity. Further, in this embodiment, the laser light source 21 is such that the oscillation wavelength monotonously changes with respect to the laser driving (excitation) current as shown in FIG. Further, the dispersive element 26 shown in FIG.
It is assumed that it has a narrow band spectral transmission characteristic as shown in FIG.

第2図で、変調電源22によって周波数νで周波数変
調を受けた光が、第4図(a)の透過特性をもつ分散素子
26に入射すると、その透過光の周波数νの1次微分
信号はバイアス電流値で決められる波長に対応する第4
図(b)のような分散曲線を与える。この1次微分信号値
と基準値との差が偏移となる。この偏移を0(零)とす
るようにバイアス電源32にフィードバック信号を与え
るようにすることにより、レーザ光源波長を基準値で決
まる波長に安定化する。
In FIG. 2, when the light that has been frequency-modulated by the modulation power source 22 at the frequency ν M enters the dispersive element 26 having the transmission characteristics shown in FIG. 4 (a), the first-order derivative of the frequency ν M of the transmitted light. The signal is the fourth signal corresponding to the wavelength determined by the bias current value.
The dispersion curve as shown in Figure (b) is given. The difference between the primary differential signal value and the reference value is the deviation. By providing a feedback signal to the bias power supply 32 so that this deviation becomes 0 (zero), the laser light source wavelength is stabilized at a wavelength determined by the reference value.

本発明は次の長所を有する。The present invention has the following advantages.

1)ビームを2つに分けないので、光量を100%有効に利
用できる。
1) Since the beam is not divided into two, the light quantity can be used 100% effectively.

2)測定用、参照用の区別がないので、単一の分散素子
を、測定、波長安定の両方に使用可能である。その結
果、測定、参照両分散素子の中心波長のずれを心配する
必要がなく、狭帯域の透過型分散素子を用いることがで
きる。分散素子としては必要なスペクトル幅に応じてプ
リズム、回折格子、干渉フィルタ、ファブリペローエタ
ロンを数100cm-1から数KHzの範囲で任意に選ぶことがで
きる。
2) Since there is no distinction between measurement and reference, a single dispersive element can be used for both measurement and wavelength stabilization. As a result, it is not necessary to worry about the deviation of the center wavelengths of the measurement and reference dispersive elements, and a narrow band transmission type dispersive element can be used. As the dispersive element, a prism, a diffraction grating, an interference filter, or a Fabry-Perot etalon can be arbitrarily selected in the range of several 100 cm -1 to several KHz depending on the required spectral width.

3)分散素子にスペクトル幅の狭いものを用いることがで
きるので、容易に外部散乱光を排除することができる。
3) Since a dispersion element having a narrow spectrum width can be used, external scattered light can be easily eliminated.

4)受光部が単一なので装置構成が簡単化される。なお、
波長掃引する場合には何らかの方法で分散素子(第2図
26)の中心波長を掃引すればよい。
4) The single light-receiving unit simplifies the device configuration. In addition,
When the wavelength is swept, the central wavelength of the dispersive element (FIG. 26) can be swept by some method.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来の波長安定化方法を説明するシステム構成
図、第2図は本発明の波長安定化方法を説明するシステ
ム構成図、第3図は本発明においてレーザ光源半導体素
子の駆動(励起)電流値に対して発振波長が単調である
場合の関係を示す特性図、第4図(a)、(b)は本発明にお
いて分散素子の波長特性(a)図と変調信号に対する基準
信号の偏移との関係(b)図を示す特性図である。
FIG. 1 is a system configuration diagram for explaining a conventional wavelength stabilization method, FIG. 2 is a system configuration diagram for explaining the wavelength stabilization method of the present invention, and FIG. 3 is a driving (excitation) of a laser light source semiconductor element in the present invention. ) A characteristic diagram showing the relationship when the oscillation wavelength is monotonic with respect to the current value. FIGS. 4 (a) and 4 (b) show the wavelength characteristic (a) diagram of the dispersive element and the reference signal for the modulation signal in the present invention. FIG. 7 is a characteristic diagram showing a relationship (b) with a shift.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 椿 雅博 茨城県北相馬郡守谷町大字守谷甲249の1 明星電気株式会社守谷工場内 (56)参考文献 特開 昭61−30088(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Masahiro Tsubaki, Inventor, Masahiro Tsubaki, Moriya, Moriya-machi, Kita-Soma-gun, Ibaraki 1 249 Moriya Ko, Meisei Electric Co., Ltd. Moriya Plant (56) Reference Japanese Patent Laid-Open No. 61-30088 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】波長変調を伴うレーザ光源と、試料空間を
通過したレーザ光に対し波長の変化に対して透過率が変
化する性質の狭帯域分散素子を有する受光部と、該受光
部から出力される変調信号の検出値を基準値と比較して
得た当該検出値の前記基準値からの偏移量によってレー
ザ動作点を変えるフィードバック部からなり、前記試料
空間を通過した前記レーザ光源からのレーザ光の全量を
前記受光部の狭帯域分散素子に入射することにより、レ
ーザ発振波長を前記受光部の前記狭帯域分散素子に固有
な波長に固定するとともに、外部からの雑音光を排除す
るレーザ波長安定化方法。
1. A laser light source with wavelength modulation, a light receiving section having a narrow band dispersion element whose transmittance changes with respect to a change in wavelength of a laser beam passing through a sample space, and an output from the light receiving section. The detection value of the modulated signal is compared with a reference value and consists of a feedback unit that changes the laser operating point by the amount of deviation from the reference value of the detection value, from the laser light source that has passed through the sample space. A laser that fixes the laser oscillation wavelength to a wavelength unique to the narrow band dispersion element of the light receiving section by making all of the laser light incident on the narrow band dispersion element of the light receiving section and eliminates noise light from the outside. Wavelength stabilization method.
JP61061371A 1986-03-19 1986-03-19 Laser wavelength stabilization method Expired - Lifetime JPH0642573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61061371A JPH0642573B2 (en) 1986-03-19 1986-03-19 Laser wavelength stabilization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61061371A JPH0642573B2 (en) 1986-03-19 1986-03-19 Laser wavelength stabilization method

Publications (2)

Publication Number Publication Date
JPS62219586A JPS62219586A (en) 1987-09-26
JPH0642573B2 true JPH0642573B2 (en) 1994-06-01

Family

ID=13169244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61061371A Expired - Lifetime JPH0642573B2 (en) 1986-03-19 1986-03-19 Laser wavelength stabilization method

Country Status (1)

Country Link
JP (1) JPH0642573B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3694291B2 (en) * 2002-11-21 2005-09-14 倉敷紡績株式会社 Blood glucose level non-invasive measurement device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6130038A (en) * 1984-07-23 1986-02-12 Nec Corp Etching method

Also Published As

Publication number Publication date
JPS62219586A (en) 1987-09-26

Similar Documents

Publication Publication Date Title
US6909732B2 (en) Method and apparatus for controlling optical wavelength based on optical frequency pulling
US7027743B1 (en) System and method for optical heterodyne detection of an optical signal including optical pre-selection that is adjusted to accurately track a local oscillator signal
JPH027587A (en) Variable frequency light source
US7062166B2 (en) First and second derivative processing of wavelength multiplexed optical signals
CA1311368C (en) Laser-doppler-anemometer
US4436425A (en) Signal waveform detector using synthetic FM demodulation
US6201820B1 (en) Optically modulated laser beam transceiver
EP0908710B1 (en) Apparatus and method for measuring characteristics of light
JPH0642573B2 (en) Laser wavelength stabilization method
WO2022230217A1 (en) Optical frequency comb generator control device
JPH08101066A (en) Optical spectrum measuring apparatus
JPH02244782A (en) Frequency stabilized semiconductor laser driver
EP4123257B1 (en) Phase tuning and phase stabilization of multiple interferometers
JPH05264446A (en) Gas detector
Mueller et al. Direction sensitive Laser Doppler Velocimeter using the optical frequency shift of two stabilized laser diodes
JPH067099B2 (en) Gas sensor using tunable etalon
JPH026236B2 (en)
JP3223521B2 (en) Optical frequency standard and optical frequency standard calibration device
JPH067100B2 (en) Gas concentration pressure detection method using tunable etalon
JPH10256636A (en) Practical frequency stabilizer of yag-shg laser
JP4277099B2 (en) Optical pulse generator
JP2664255B2 (en) Optical spectrum analyzer
JP2888267B2 (en) Automatic control circuit of optical narrow band filter
JPH03135086A (en) Variable frequency light source
JPH0964486A (en) Laser light source device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term