Nothing Special   »   [go: up one dir, main page]

JPH0639646B2 - Hydrogen storage Ni-Zr alloy and sealed Ni-hydrogen storage battery - Google Patents

Hydrogen storage Ni-Zr alloy and sealed Ni-hydrogen storage battery

Info

Publication number
JPH0639646B2
JPH0639646B2 JP1273406A JP27340689A JPH0639646B2 JP H0639646 B2 JPH0639646 B2 JP H0639646B2 JP 1273406 A JP1273406 A JP 1273406A JP 27340689 A JP27340689 A JP 27340689A JP H0639646 B2 JPH0639646 B2 JP H0639646B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
alloy
hydrogen
negative electrode
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1273406A
Other languages
Japanese (ja)
Other versions
JPH02277738A (en
Inventor
英和 土井
立衛 矢吹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Publication of JPH02277738A publication Critical patent/JPH02277738A/en
Publication of JPH0639646B2 publication Critical patent/JPH0639646B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、MgZn型結晶構造、すなわち六方晶C14
型結晶構造をもった水素吸蔵Ni−Zr系合金、並びにこ
の水素吸蔵Ni−Zr系合金を負極活性物として用いてな
る密閉型Ni−水素蓄電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a MgZn 2 type crystal structure, that is, a hexagonal C14 crystal structure.
The present invention relates to a hydrogen storage Ni-Zr type alloy having a type crystal structure, and a sealed Ni-hydrogen storage battery using the hydrogen storage Ni-Zr type alloy as a negative electrode active material.

〔従来の技術〕[Conventional technology]

一般に、密閉型Ni−水素蓄電池が、水素吸蔵合金を活
性物として用いてなる負極と、Ni正極と、さらにセパ
レータおよびアルカリ電解液で構成され、かつ前記負極
を構成する水素吸蔵合金には、 (a) 室温付近での水素吸蔵・放出能が大きい。
Generally, a sealed Ni-hydrogen storage battery is composed of a negative electrode using a hydrogen storage alloy as an active material, a Ni positive electrode, a separator and an alkaline electrolyte, and the hydrogen storage alloy constituting the negative electrode includes: a) Hydrogen storage / release capacity is high near room temperature.

(b) PCT曲線における室温付近の温度でのプラトー
圧に相当する平衡水素解離圧が比較的低い(5気圧以
下)。
(b) The equilibrium hydrogen dissociation pressure corresponding to the plateau pressure at a temperature near room temperature in the PCT curve is relatively low (5 atm or less).

(c) アルカリ電解液中で耐食性および耐久性(耐劣化
性)がある。
(c) Corrosion resistance and durability (deterioration resistance) in alkaline electrolyte.

(d) 水素酸化能(触媒作用)が大きい。(d) Hydrogen oxidization capacity (catalysis) is large.

(e) 水素の吸蔵・放出の繰返しに伴う微粉化が起り難
い。
(e) It is difficult for pulverization to occur due to repeated storage and release of hydrogen.

(f) 無(低)公害である。(f) No (low) pollution.

(g) 低コストである。(g) Low cost.

以上(a)〜(g)の性質を具備することが望まれ、さらにこ
のような性質を具備した水素吸蔵合金を負極の活物質と
して用いてなる密閉型Ni−水素蓄電池は、大きな放電
容量、長い充・放電サイクル寿命、すぐれた急速充・放
電特性、および低自己放電などの好ましい性能を発揮す
るようになることも良く知られるところである。
It is desired to have the above-mentioned properties (a) to (g), and further, a sealed Ni-hydrogen storage battery using a hydrogen storage alloy having such properties as an active material of a negative electrode has a large discharge capacity, It is also well known that favorable characteristics such as long charge / discharge cycle life, excellent rapid charge / discharge characteristics, and low self-discharge will be exhibited.

したがって、特に密閉型Ni−水素蓄電池の負極を構成
する活物質として用いるのに適した水素吸蔵合金の開発
が盛んに行なわれ、例えば特開昭61−45563号公報に記
載されるMgZn型結晶構造、すなわち六方晶C14型結
晶構造をもった水素吸蔵合金はじめ、多数の水素吸蔵合
金が提案されている。
Therefore, particularly, a hydrogen storage alloy suitable for use as an active material constituting a negative electrode of a sealed Ni-hydrogen storage battery has been actively developed, and for example, MgZn 2 type crystal described in JP-A-61-45563. A number of hydrogen storage alloys have been proposed, including a hydrogen storage alloy having a structure, that is, a hexagonal C14 type crystal structure.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかし、すでに提案されているいずれの水素吸蔵合金も
密閉型Ni−水素蓄電池の負極活物質として用いる場合
に要求される上記の性質をすべて満足して具備するもの
ではなく、より一層の開発が望まれているのが現状であ
る。
However, none of the hydrogen storage alloys that have already been proposed satisfy all of the above properties required when used as a negative electrode active material for a sealed Ni-hydrogen storage battery, and further development is desired. The current situation is that it is rare.

〔課題を解決するための手段〕[Means for Solving the Problems]

そこで、本発明者等は、上述のような観点から、特に密
閉型Ni−水素蓄電池の負極活物質として用いるのに適
した水素吸蔵合金を開発すべく研究を行なった結果、重
量%で(以下%は重量%を示す)、 Zr:10〜37%、Ti:5〜25%、 Mn:4〜20%、W :0.01〜13%、 V :0.1〜15%、Fe:0.051〜5%、 Al:0.01〜4.5%、 を含有し、さらに必要に応じて、 Cr:0.05〜6%、 を含有し、残りがNiと不可避不純物からなる組成を有
する水素吸蔵Ni−Zr系合金は、MgZn型結晶構造
(六方晶C14型結晶構造)をもち、密閉型Ni−水素蓄
電池の負極活物質として用いる場合に要求される上記
(a)〜(g)の性質を十分満足した状態で具備し、したがっ
てこれを負極活物質として用いてなる密閉型Ni−水素
蓄電池は、大きなエネルギー密度と電気容量をもち、か
つ長いサイクル寿命を示すようになるほか、自己放電が
小さくなり、さらに高率充・放電特性にもすぐれ、無公
害および低コストと合わせて、すぐれた性能を発揮する
ようになるという知見を得たのである。
Therefore, the present inventors conducted research to develop a hydrogen storage alloy that is particularly suitable for use as a negative electrode active material of a sealed Ni-hydrogen storage battery from the above viewpoints, and as a result, % Represents% by weight), Zr: 10 to 37%, Ti: 5 to 25%, Mn: 4 to 20%, W: 0.01 to 13%, V: 0.1 to 15%, Fe: 0.051 to 5%, al: from 0.01 to 4.5%, containing, if necessary, Cr: 0.05 to 6%, containing, hydrogen-absorbing Ni-Zr based alloy having a composition balance being Ni and unavoidable impurities, MgZn 2 It has a C-type crystal structure (hexagonal C14-type crystal structure) and is required when used as a negative electrode active material of a sealed Ni-hydrogen battery.
A sealed Ni-hydrogen storage battery, which has the properties (a) to (g) in a sufficiently satisfied state and therefore uses this as a negative electrode active material, has a large energy density and electric capacity and a long cycle life. In addition to the above, we have obtained the knowledge that self-discharge is reduced, and high-rate charge / discharge characteristics are also excellent, and excellent performance is exhibited together with no pollution and low cost.

この発明は上記知見にもとづいてなされたものであっ
て、 Zr:10〜37%、Ti:5〜25%、 Mn:4〜20%、W :0.01〜13%、 V :0.1〜15%、Fe:0.01〜5%、 Al:0.01〜4.5%、 を含有し、さらに必要に応じて、 Cr:0.05〜6%、 を含有し、残りがNiと不可避不純物からなる組成を有
するMgZn型結晶構造、すなわち六方晶C14型結晶構
造をもった水素吸蔵Ni−Zr系合金、およびこの水素吸
蔵Ni−Zr系合金を負極活物質として用いてなる密閉型
Ni−水素蓄電池に特徴を有するものである。
The present invention was made based on the above findings, and Zr: 10-37%, Ti: 5-25%, Mn: 4-20%, W: 0.01-13%, V: 0.1-15%, Fe: 0.01~5%, Al: 0.01~4.5 %, contains, further as necessary, Cr: 0.05 to 6%, containing, MgZn 2 type crystal having the composition balance being Ni and unavoidable impurities It is characterized by a hydrogen-storing Ni-Zr-based alloy having a structure, that is, a hexagonal C14 type crystal structure, and a sealed Ni-hydrogen storage battery using this hydrogen-storing Ni-Zr-based alloy as a negative electrode active material. .

つぎに、この発明の水素吸蔵Ni−Zr系合金において、
成分組成を上記の通りに限定した理由を説明する。
Next, in the hydrogen storage Ni--Zr alloy of the present invention,
The reason why the component composition is limited as described above will be described.

(a) TiおよびZr これらの成分には、共存した状態で合金に望ましい水素
吸蔵・放出特性を具備せしめると共に、室温における平
衡水素解離圧(プラトー圧)を、例えば5気圧以下に低
める作用があるが、その含有量がそれぞれTi:5%未
満およびZr:10%未満では前記作用に所望が効果が得
られず、一方Tiの含有量が25%を越えると、平衡水素
解離圧が例えば5気圧以上に上昇するようになり、大き
な放電容量を確保するためには高い水素解離圧を必要と
するようになって蓄電池として好ましくないものとな
り、またZrの含有量が37%を越えると、放電容量の水
素解離圧依存の点では問題はないが、水素吸蔵・放出能
が低下するようになることから、その含有量を、それぞ
れTi:5〜25%、Zr:10〜37%と定めた。
(a) Ti and Zr These components have the effect of making the alloy have desirable hydrogen absorption / desorption characteristics in the coexisting state, and lowering the equilibrium hydrogen dissociation pressure (plateau pressure) at room temperature to, for example, 5 atm or less. However, if the contents thereof are respectively Ti: less than 5% and Zr: less than 10%, the desired effect cannot be obtained. On the other hand, if the content of Ti exceeds 25%, the equilibrium hydrogen dissociation pressure is, for example, 5 atm. As a result, the hydrogen dissociation pressure becomes high in order to secure a large discharge capacity, which is unfavorable as a storage battery, and when the Zr content exceeds 37%, the discharge capacity is increased. Although there is no problem with respect to the hydrogen dissociation pressure dependency, the hydrogen storage / desorption ability decreases, so the contents were set to Ti: 5 to 25% and Zr: 10 to 37%, respectively.

(b) Mn Mn成分には、水素吸蔵・放出能を向上させ、かつアル
カリ電解液中での合金の耐食性および耐久性を向上させ
るほか、蓄電池の負極活物質としての実用に際して自己
放電を抑制する作用があるが、その含有量が4%未満で
は前記作用に所望の効果が得られず、一方その含有量が
20%を越えると、水素吸蔵・放出特性が損なわれるよう
になることから、その含有量を4〜20%と定めた。
(b) Mn Mn component not only improves hydrogen storage / release capacity, but also improves corrosion resistance and durability of the alloy in alkaline electrolyte, and suppresses self-discharge during practical use as a negative electrode active material for storage batteries. There is an action, but if the content is less than 4%, the desired effect cannot be obtained on the above action, while the content is
If it exceeds 20%, the hydrogen storage / release characteristics will be impaired, so the content was defined as 4 to 20%.

(c) W W成分には、蓄電池を構成するアルカリ電解液に対する
耐食性を一段と向上させると共に、耐久性も向上させ、
さらに蓄電池の負極活物質としての実用に際して自己放
電を抑制する作用があるが、その含有量が0.01%未満で
は前記作用に所望の効果が得られず、一方、その含有量
が13%を越えると、水素吸蔵・放出特性が損なわれるよ
うになることから、その含有量を0.01〜13%と定めた。
(c) In the WW component, the corrosion resistance to the alkaline electrolyte constituting the storage battery is further improved, and the durability is also improved.
Further, it has an effect of suppressing self-discharge in practical use as a negative electrode active material of a storage battery, but if its content is less than 0.01%, the desired effect cannot be obtained, while if its content exceeds 13%. Since the hydrogen absorption / desorption characteristics will be impaired, the content was set to 0.01-13%.

(d) V 上記のように密閉型Ni−水素蓄電池には、室温におけ
る平衡水素解離圧が過度に高くなく(例えば5気圧以
下)、かつ水素吸蔵・放出量ができるだけ大きいことが
望まれるが、V成分には、このような水素吸蔵・放出量
の増大および平衡水素圧の適正化に寄与する作用がある
が、その含有量が 0.1%未満では前記作用に所望の効果
が得られず、一方その含有量が15%を越えると、平衡水
素圧が高くなりすぎるようになるほか、電解液中に溶け
出して、自己放電が助長されるようになることから、そ
の含有量を 0.1〜15%と定めた。
(d) V As described above, in the sealed Ni-hydrogen storage battery, it is desired that the equilibrium hydrogen dissociation pressure at room temperature is not excessively high (for example, 5 atm or less) and the hydrogen storage / release amount is as large as possible. The V component has an action of contributing to such an increase in hydrogen storage / release amount and optimization of the equilibrium hydrogen pressure, but if the content thereof is less than 0.1%, the desired effect cannot be obtained in the above action. If the content exceeds 15%, the equilibrium hydrogen pressure will become too high, and it will dissolve into the electrolyte and promote self-discharge, so the content should be 0.1-15%. I decided.

(e) Fe Fe成分には、蓄電池の負極活物質として用いる場合な
どの粉末化に際して、形成された粉末を整粒化する作用
があるが、その含有量が0.01%未満では前記作用に所望
の効果が得られず、一方その含有量が5%を越えると耐
食性が低下し、蓄電池の自己放電が促進するようになる
ことから、その含有量を0.01〜5%と定めた。
(e) The Fe Fe component has a function of sizing the formed powder when powdered such as when used as a negative electrode active material of a storage battery, but if the content thereof is less than 0.01%, it is desirable for the above-mentioned action. The effect is not obtained, and on the other hand, if the content exceeds 5%, the corrosion resistance decreases and the self-discharge of the storage battery is promoted. Therefore, the content was set to 0.01 to 5%.

(f) Al Al成分には、水素吸蔵・放出能を低下させることな
く、合金の耐食性を一段と向上させ、もって蓄電池の自
己放電を一層抑制する作用があるが、その含有量が0.01
%未満では前記作用に所望の効果が得られず、一方その
含有量が 4.5%を越えると、水素吸蔵・放出能が目立っ
て低下するようになることから、その含有量を0.01〜4.
5%と定めた。
(f) Al The Al component has the effect of further improving the corrosion resistance of the alloy without lowering the hydrogen storage / release capacity and thus further suppressing the self-discharge of the storage battery, but its content is 0.01
When the content is less than 4.5%, the desired effect cannot be obtained, while when the content exceeds 4.5%, the hydrogen storage / release capacity is conspicuously reduced, so the content is 0.01 to 4.
It was set at 5%.

(g) Cr Cr成分には、特にAlとの共存において、合金の耐食性
を一段と向上させる作用があるので、必要に応じて含有
されるが、その含有量が0.05%未満では所望の耐食性向
上効果が得られず、一方その含有量が6%を越えると、
水素吸蔵・放出能が低下するようになることから、その
含有量を0.05〜6%と定めた。
(g) Cr The Cr component has the effect of further improving the corrosion resistance of the alloy, especially in the coexistence with Al, so it is contained if necessary, but if the content is less than 0.05%, the desired corrosion resistance improving effect is obtained. However, if the content exceeds 6%,
Since the hydrogen storage / release capacity decreases, the content thereof is set to 0.05 to 6%.

〔実施例〕〔Example〕

つぎに、この発明の水素吸蔵Ni−Zr系合金を実施例に
より具体的に説明する。
Next, the hydrogen storage Ni--Zr alloy of the present invention will be specifically described with reference to examples.

通常の高周波誘導溶解炉を用い、Ar雰囲気中にてそれ
ぞれ第1表に示される成分組成のNi−Zr合金溶湯を調
製し、銅鋳型に鋳造してインゴットとした後、このイン
ゴットをAr雰囲気中、900〜1000℃の範囲内の所定温度
に5時間保持の条件で焼鈍し、ついでジョークラッシャ
を用い、粗粉砕して直径:2mm以下の粗粒とし、さらに
ボールミルを用いて微粉砕して350mesh以下の粒度とす
ることによりいずれもMgZn型結晶構造をもった本
発明水素吸蔵合金1〜11、比較水素吸蔵合金1〜13、お
よび従来水素吸蔵合金をそれぞれ製造した。
Using a normal high-frequency induction melting furnace, a Ni-Zr alloy melt having the composition shown in Table 1 was prepared in an Ar atmosphere, cast into a copper mold to form an ingot, and the ingot was then placed in an Ar atmosphere. , Annealed at a predetermined temperature within the range of 900 to 1000 ℃ for 5 hours, then coarsely crushed using a jaw crusher to obtain coarse particles with a diameter of 2 mm or less, and then finely crushed using a ball mill to 350 mesh. The hydrogen storage alloys 1 to 11 of the present invention, the comparative hydrogen storage alloys 1 to 13, and the conventional hydrogen storage alloy, each having the MgZn 2 type crystal structure, were produced with the following grain sizes.

ついで、この結果得られた各種の粉末状水素吸蔵合金を
活物質として用い、まず、これにポリビニールアルコー
ル(PVA)の2%水溶液を添加してペースト化した
後、95%の多孔度を有する市販のNiウイスカー不織布
に充填し、乾燥し、さらに加圧して、平面寸法:42mm×
35mmにして、厚さ:0.60〜0.65mmの形状(活物質充填
量:約2.8g)とし、これの一辺にリードとなるNi薄板
を溶接により取付けて負極を製造し、一方正極として同
寸法のNi焼結板を2枚用意し、これを前記負極の両側
に配置し、30%KOH水溶液を装入することにより密閉
型Ni−水素蓄電池を製造した。
Then, various powdered hydrogen storage alloys obtained as a result were used as an active material, and first, a 2% aqueous solution of polyvinyl alcohol (PVA) was added to form a paste, which had a porosity of 95%. Fill a commercially available Ni whisker non-woven fabric, dry, pressurize, plane dimension: 42mm x
The thickness is 35 mm and the thickness is 0.60 to 0.65 mm (active material filling amount: about 2.8 g). A Ni thin plate serving as a lead is welded to one side of this to manufacture a negative electrode. Two Ni sintered plates were prepared, placed on both sides of the negative electrode, and charged with a 30% KOH aqueous solution to manufacture a sealed Ni-hydrogen storage battery.

なお、この結果得られた各種の蓄電池を、いずれも開放
電池とし、かつ正極の容易を負極の容量より著しく大き
くすることにより負極の容量を測定できるようにした。
The various storage batteries obtained as a result were all open batteries, and the capacity of the negative electrode could be measured by making the ease of the positive electrode significantly larger than the capacity of the negative electrode.

また、上記比較水素吸蔵合金1〜13は、これを構成する
成分含有量(第1表に※印を付したもの)が、この発明
の範囲から外れたものである。
Further, in the comparative hydrogen storage alloys 1 to 13, the content of the constituent components (marked with * in Table 1) is outside the scope of the present invention.

つぎに、これらの各種の蓄電池について、充・放電速
度:0.2C、充電電気量:負極容量の130%の条件で充・
放電試験を行ない、1回の充電と放電を1サイクルと
し、100サイクル後、 200サイクル後、および300サイクル後における放電容量
をそれぞれ測定し、さらに上記の各種粉末状水素吸蔵N
i基合金を負極として用い、いずれも正極規制のAAサ
イズ(容量:1000mAh)の密閉型Ni−水素蓄電池をそれ
ぞれ組立て、これについて自己放電試験を行ない、その
結果を第1表に示した。
Next, these various storage batteries were charged / discharged at a charging / discharging rate of 0.2 C and an amount of electricity charged: 130% of the negative electrode capacity.
Perform a discharge test, one charge and discharge as one cycle, after 100 cycles, The discharge capacities after 200 cycles and after 300 cycles were measured, respectively, and further, the above various powdery hydrogen storage N
The i-based alloy was used as the negative electrode, and a sealed type Ni-hydrogen storage battery of AA size (capacity: 1000 mAh) regulated by the positive electrode was assembled in each case, and a self-discharge test was carried out for each, and the results are shown in Table 1.

さらに、詳述すれば第1表に示される粉末状水素吸蔵合
金粉末を用い、平面サイズを90mm×40mm、厚さ:0.60〜
0.65mmとして、容量:1450〜1500mAh(活物質充填量:
約6g)とする以外は、上記の充・放電試験で用いた蓄
電池の負極板と同一の条件で負極板を製造し、一方正極
板は、95%の多孔度を有するNiウイスカー不織布に水
酸化ニッケル〔Ni(OH)〕を活物質として充填
し、乾燥し、さらにプレス加工した後、リードを取付け
て、平面寸法:70mm×40mm、厚さ:0.65〜0.70mmの形状
(容量:1000〜1050mAh)とすることにより製造し、こ
の結果得られた負極板と正極板を、セパレータを介して
うず巻き状にした状態で、電解液と共にケース(これは
端子と兼用)の中に収容した構造の密閉型Ni−水素
蓄電池を製造した。
Furthermore, in detail, the powdery hydrogen storage alloy powder shown in Table 1 is used, the plane size is 90 mm × 40 mm, the thickness: 0.60 ~
As 0.65 mm, capacity: 1450 to 1500 mAh (active material filling amount:
A negative electrode plate was produced under the same conditions as the negative electrode plate of the storage battery used in the above charge / discharge test, except that the amount was about 6 g), while the positive electrode plate was hydrated with Ni whisker nonwoven fabric having a porosity of 95%. Nickel [Ni (OH) 2 ] is filled as an active material, dried, and further pressed, and then a lead is attached, and a shape of plane dimension: 70 mm × 40 mm, thickness: 0.65 to 0.70 mm (capacity: 1000 to 1050 mAh), and the negative electrode plate and positive electrode plate obtained as a result are wound in a spiral shape with a separator between them and housed in a case (also used as a terminal) together with an electrolytic solution. A sealed Ni-hydrogen storage battery was manufactured.

なお、上記の各種密閉型Ni−水素蓄電池において、正
極容量より負極容量を大きくしたのは、正極律則の蓄電
池を構成するためである。
In addition, in the above various sealed Ni-hydrogen storage batteries, the reason why the negative electrode capacity is made larger than the positive electrode capacity is to configure a storage battery of positive electrode law.

また、自己放電試験は、まず室温で 0.2C(200mA)で
7時間充電し、ついで蓄電池を45℃に温度をセットして
ある恒温槽中に開路状態(電池に負荷をかけない状態)
で、1週間放置および2週間放置し、放置後、とり出し
て、室温で 0.2C(200mA)放電を行ない、容量残存率
を求めることにより行なった。
In the self-discharge test, first charge at room temperature 0.2C (200mA) for 7 hours, then open the storage battery in the thermostat with the temperature set to 45 ° C (no load on the battery).
The sample was left for 1 week and 2 weeks, taken out, discharged at 0.2 C (200 mA) at room temperature, and the residual capacity ratio was determined.

さらに、上記の各種の水素吸蔵合金について、一般にH
uey試験と呼ばれている方法を用い、試験片を上記のイ
ンゴットより切り出してプラスチック樹脂に埋め込み、
腐食面をエメリーペーパー#600 で研磨仕上げした状態
で、コールドフィンガー型コンデンサー付三角フラスコ
に装入し、沸騰した30%KOH水溶液中に 144時間保持
の条件でアルカリ電解液腐食試験を行ない、試験後の腐
食減量を測定した。これらの測定結果も第1表に示し
た。
Furthermore, regarding the above various hydrogen storage alloys, in general, H
Using a method called uey test, cut out the test piece from the above ingot and embed it in plastic resin,
After the corroded surface was polished with Emery Paper # 600, put it in an Erlenmeyer flask equipped with a cold finger type condenser, and perform an alkaline electrolyte corrosion test in a boiling 30% KOH aqueous solution for 144 hours. The corrosion weight loss was measured. The results of these measurements are also shown in Table 1.

〔発明の効果〕〔The invention's effect〕

第1表に示される結果から、本発明水素吸蔵合金1〜18
は、いずれも従来水素吸蔵合金に比して、アルカリ電解
液に対してすぐれた耐食性を示し、さらにこれを負極活
物質として用いてなる蓄電池は、いずれも高容量であ
り、かつ従来水素吸蔵合金を用いた蓄電池に比して充・
放電サイクルを繰り返した場合の容量低下が著しく小さ
いという好ましい結果を示すのに対して、比較水素吸蔵
合金1〜13に見られるように、構成成分のうちのいずれ
かの含有量でもこの発明の範囲から外れると、アルカリ
電解液に対する耐食性が低下したり、またこれを蓄電池
の負極活物質として用いた場合には、蓄電池の放電容量
や自己放電に劣化傾向が現われるようになることが明ら
かです。
From the results shown in Table 1, the present invention hydrogen storage alloys 1-18
Are both excellent in corrosion resistance to alkaline electrolytes as compared with conventional hydrogen storage alloys, and storage batteries using this as a negative electrode active material are both high-capacity and conventional hydrogen storage alloys. Compared to storage batteries using
In contrast to the preferable result that the capacity decrease when the discharge cycle is repeated is significantly small, the content of any one of the constituent components falls within the scope of the present invention as seen in Comparative Hydrogen Storage Alloys 1 to 13. If it is out of the range, it is clear that the corrosion resistance to the alkaline electrolyte decreases, and that if it is used as the negative electrode active material of the storage battery, the discharge capacity and self-discharge of the storage battery will tend to deteriorate.

上述のように、この発明の水素吸蔵Ni−Zr系合金は、
アルカリ電解液に対する耐食性にすぐれているほか、特
に密閉型Ni−水素素電池の負極活物質として用いた場
合に、負極活物質に要求される特性をすべて十分満足す
る状態で具備しているので、蓄電池の自己放電が著しく
低減し、さらに長いサイクル寿命に亘って大きな放電容
量が確保されるようになると共に、高価なV成分の含有
量が相対的に低いので、コスト低減に寄与するなど工業
上有用な特性を有するのである。
As described above, the hydrogen storage Ni--Zr alloy of the present invention is
In addition to being excellent in corrosion resistance to alkaline electrolytes, especially when used as a negative electrode active material of a sealed Ni-hydrogen battery, the negative electrode active material has all the properties required in a sufficiently satisfied state. The self-discharge of the storage battery is remarkably reduced, a large discharge capacity can be secured over a longer cycle life, and the content of expensive V component is relatively low, which contributes to cost reduction in the industry. It has useful properties.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】Zr :10〜37%、Ti :5〜25%、 Mn :4〜20%、W :0.01〜13%、 V :0.1〜15%、Fe :0.01〜5%、 Al :0.01〜4.5%、 を含有し、残りがNi と不可避不純物からなる組成(以
上重量%)を有することを特徴とするMgZn型結晶
構造をもった水素吸蔵Ni −Zr 系合金。
1. Zr: 10-37%, Ti: 5-25%, Mn: 4-20%, W: 0.01-13%, V: 0.1-15%, Fe: 0.01-5%, Al: 0.01 Hydrogen storage Ni-Zr-based alloy having a MgZn 2 type crystal structure, characterized in that the hydrogen storage Ni-Zr-based alloy has a composition (up to wt%) of Ni and unavoidable impurities.
【請求項2】Zr :10〜37%、Ti:5〜25%、 Mn :4〜20%、W :0.01〜13%、 V :0.1〜15%、Fe :0.01〜5%、 Al :0.01〜4.5%、 を含有し、残りがNi と不可避不純物からなる組成(以
上重量%)を有するMgZn型結晶構造をもった水素
吸蔵Ni −Zr 系合金を負極活物質として用いてなる密
閉型Ni −水素蓄電池。
2. Zr: 10-37%, Ti: 5-25%, Mn: 4-20%, W: 0.01-13%, V: 0.1-15%, Fe: 0.01-5%, Al: 0.01 to 4.5%, containing, comprising using the remaining hydrogen absorbing Ni -Zr alloy having a MgZn 2 type crystal structure having a composition (% by weight or more) of Ni and inevitable impurities as a negative electrode active material sealed Ni -Hydrogen storage battery.
【請求項3】Zr :10〜37%、Ti :5〜25%、 Mn :4〜20%、W :0.01〜13%、 V :0.1〜15%、Fe :0.01〜5%、 Al :0.01〜4.5%、 を含有し、さらに、 Cr :0.05〜6%、 を含有し、残りがNi と不可避不純物からなる組成(以
上重量%)を有することを特徴とするMgZn型結晶
構造をもった水素吸蔵Ni −Zr 系合金。
3. Zr: 10 to 37%, Ti: 5 to 25%, Mn: 4 to 20%, W: 0.01 to 13%, V: 0.1 to 15%, Fe: 0.01 to 5%, Al: 0.01. to 4.5%, contains further, Cr: 0.05 to 6%, containing, rest with MgZn 2 type crystal structure and having a composition consisting of Ni and inevitable impurities (% by weight or more) Hydrogen storage Ni-Zr alloy.
【請求項4】Zr :10〜37%、Ti :5〜25%、 Mn :4〜20%、W :0.01〜13%、 V :0.1〜15%、Fe :0.01〜5%、 Al :0.01〜4.5%、 を含有し、さらに、 Cr :0.05〜6%、 を含有し、残りがNi と不可避不純物からなる組成(以
上重量%)を有するMgZn型結晶構造をもった水素
吸蔵Ni −Zr 系合金を負極活物質として用いてなる密
閉型Ni −水素蓄電池。
4. Zr: 10-37%, Ti: 5-25%, Mn: 4-20%, W: 0.01-13%, V: 0.1-15%, Fe: 0.01-5%, Al: 0.01 Hydrogen storage Ni-Zr having a MgZn 2 -type crystal structure and containing Cr: 0.05 to 6%, and a balance of Ni and unavoidable impurities (above wt%). A sealed Ni-hydrogen storage battery using a base alloy as a negative electrode active material.
JP1273406A 1989-01-19 1989-10-20 Hydrogen storage Ni-Zr alloy and sealed Ni-hydrogen storage battery Expired - Lifetime JPH0639646B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1044689 1989-01-19
JP1-10446 1989-01-19

Publications (2)

Publication Number Publication Date
JPH02277738A JPH02277738A (en) 1990-11-14
JPH0639646B2 true JPH0639646B2 (en) 1994-05-25

Family

ID=11750377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1273406A Expired - Lifetime JPH0639646B2 (en) 1989-01-19 1989-10-20 Hydrogen storage Ni-Zr alloy and sealed Ni-hydrogen storage battery

Country Status (1)

Country Link
JP (1) JPH0639646B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6384144B2 (en) * 2014-06-23 2018-09-05 株式会社デンソー Electrode active material, electrode and battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0293660B1 (en) * 1987-05-15 1993-06-16 Matsushita Electric Industrial Co., Ltd. Hydrogen storage electrodes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0293660B1 (en) * 1987-05-15 1993-06-16 Matsushita Electric Industrial Co., Ltd. Hydrogen storage electrodes

Also Published As

Publication number Publication date
JPH02277738A (en) 1990-11-14

Similar Documents

Publication Publication Date Title
JP2805994B2 (en) Hydrogen storage Ni-Zr alloy
JP2762717B2 (en) Hydrogen storage Ni-Zr alloy
JP2762715B2 (en) Hydrogen storage Ni-Zr alloy
JP2762699B2 (en) Hydrogen storage Ni-Zr alloy
JP2762667B2 (en) Hydrogen storage Ni-Zr alloy
JP2762663B2 (en) Hydrogen storage Ni-Zr alloy
JPH0639646B2 (en) Hydrogen storage Ni-Zr alloy and sealed Ni-hydrogen storage battery
JP2762713B2 (en) Hydrogen storage Ni-Zr alloy
JP2762702B2 (en) Hydrogen storage Ni-Zr alloy
JP2762701B2 (en) Hydrogen storage Ni-Zr alloy
JP2806013B2 (en) Hydrogen storage Ni-Zr alloy
JP2762700B2 (en) Hydrogen storage Ni-Zr alloy
JP2806012B2 (en) Hydrogen storage Ni-Zr alloy
JP2762669B2 (en) Hydrogen storage Ni-Zr alloy
JP2806011B2 (en) Hydrogen storage Ni-Zr alloy
JP2806010B2 (en) Hydrogen storage Ni-Zr alloy
JP2762662B2 (en) Hydrogen storage Ni-Zr alloy
JP2847931B2 (en) Hydrogen storage Ni-Zr alloy
JP2762668B2 (en) Hydrogen storage Ni-Zr alloy
JP2762671B2 (en) Hydrogen storage Ni-Zr alloy
JPH0675398B2 (en) Sealed alkaline storage battery
JP2762714B2 (en) Hydrogen storage Ni-Zr alloy
JPH0639647B2 (en) Hydrogen storage Ni-Zr alloy and sealed Ni-hydrogen storage battery
JPH07103434B2 (en) Hydrogen storage Ni-based alloy and sealed Ni-hydrogen storage battery
JPH0639645B2 (en) Hydrogen storage Ni-Zr alloy and sealed Ni-hydrogen storage battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080525

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080525

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090525

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 16