JPH0638097B2 - Insulation deterioration diagnosis method for electric equipment winding - Google Patents
Insulation deterioration diagnosis method for electric equipment windingInfo
- Publication number
- JPH0638097B2 JPH0638097B2 JP63105439A JP10543988A JPH0638097B2 JP H0638097 B2 JPH0638097 B2 JP H0638097B2 JP 63105439 A JP63105439 A JP 63105439A JP 10543988 A JP10543988 A JP 10543988A JP H0638097 B2 JPH0638097 B2 JP H0638097B2
- Authority
- JP
- Japan
- Prior art keywords
- humidity
- insulation
- insulation resistance
- deterioration
- winding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
- Testing Relating To Insulation (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は電気機器巻線の絶縁劣化診断法に関するもので
ある。TECHNICAL FIELD The present invention relates to a method for diagnosing insulation deterioration of electric equipment windings.
[従来の技術] 周知の如く電気機器巻線の絶縁は経年的に絶縁劣化を生
じるものであり、これらの定期的な診断と劣化状況の正
確な把握は装置の安定稼働にとって重要である。[Prior Art] As is well known, insulation of electric device windings causes insulation deterioration over time, and periodic diagnosis of these and accurate grasp of deterioration status are important for stable operation of the apparatus.
巻線の絶縁特性は湿度の影響を受けて大きく変化するこ
とは知られているが、劣化傾向、劣化度合を定量的に診
断する技術は無い。又、実験的理論モードでの寿命推定
も示されているが、フィールドに適用するには諸定数の
設定が複雑で困難である。It is known that the insulation characteristics of the winding change greatly under the influence of humidity, but there is no technology for quantitatively diagnosing the deterioration tendency and the degree of deterioration. Although the estimation of the life in the experimental theoretical mode is also shown, it is difficult to set various constants to apply it to the field.
一般的に採用されているメガー法は、絶縁抵抗値の把握
のみで湿度の影響が加味されてなく測定タイミングによ
り変化が大きく現れ、正確な機器状態の判定が出来ない
のが実情である。このため提案されたものとして特公昭
60-47990号公報、特開昭55-10884号公報がある。前者は
巻線の絶縁組織の一部を微小採取して熱重量比を測定
し、その減量割合から巻線の絶縁劣化を判定するもの
で、後者はコイルに大電流を流し電磁力振動を与え緩み
を検出するものである。In the generally used megger method, the influence of humidity is not taken into consideration only by grasping the insulation resistance value, and the change appears largely depending on the measurement timing, and the actual condition of the equipment cannot be accurately determined. For this reason, as a proposal,
There are JP-A-60-47990 and JP-A-55-10884. The former measures a thermogravimetric ratio by minutely sampling a part of the insulation structure of the winding and judges the insulation deterioration of the winding from the weight reduction ratio.The latter applies a large current to the coil and gives electromagnetic force vibration. It detects looseness.
[発明が解決しようとする課題] しかし、特開昭60-47990号公報の場合は絶縁が相当にダ
メージを受けてコイルが枯れている場合に適用出来るも
のであり、又、特開昭55-10884号公報の場合は巻線に緩
みが存在している場合に適用出来る技術であり、何れも
汚損、吸湿等の環境条件による絶縁劣化判定には不向き
である。[Problems to be Solved by the Invention] However, the method disclosed in JP-A-60-47990 can be applied when the insulation is considerably damaged and the coil is withered. In the case of Japanese Patent No. 10884, it is a technique that can be applied when there is looseness in the winding wire, and neither is suitable for determining insulation deterioration due to environmental conditions such as pollution and moisture absorption.
このため本願発明は、電気機器巻線の絶縁が湿度による
影響を受けて大きく変化しても、絶縁劣化の判定を確実
に実施しうる診断法の提供を目的とする。Therefore, it is an object of the present invention to provide a diagnostic method that can reliably determine insulation deterioration even if the insulation of the electric device winding changes significantly due to the influence of humidity.
[課題を解決するための手段] 本発明は、電気機器巻線の絶縁劣化を診断するに際し、
湿度がHx1(%)の時の該電気機器巻線について測定した
絶縁抵抗Rx1(MΩ)と、湿度がHx2(%)の時の該電気機
器巻線について測定した絶縁抵抗Rx2(MΩ)から下記
(1)式のmを求め Hx1とRx1が下記(2)式を満足する際に、あるいはHx2
とRx2が下記(3)式を満足する際に該電気機器の絶縁抵
抗には支障となる劣化がないと診断する事を特徴とする
電気機器巻線の絶縁劣化診断法である。[Means for Solving the Problem] The present invention provides a method for diagnosing insulation deterioration of electric device windings.
Insulation resistance Rx 1 (MΩ) measured for the electric equipment winding when the humidity is Hx 1 (%) and insulation resistance Rx 2 (Measured for the electric equipment winding when the humidity is Hx 2 (%) MΩ) to the following
Find m in equation (1) When Hx 1 and Rx 1 satisfy the following equation (2), or Hx 2
And Rx 2 satisfy the following equation (3), it is diagnosed that there is no deterioration that hinders the insulation resistance of the electric device.
log(JEC-54基準)<logRx1+m(log90−logHx1) ………(2) log(JEC-54基準)<logRx2+m(log90−logHx2) ………(3) 但しJEC-54基準=(定格電圧)/(電気機器容量+1000) [作用] 電気機器巻線の絶縁劣化は熱的・機械的からくる経年劣
化と、構造的特徴である裸導体部等の汚損による環境的
劣化に大別出来る。何れも劣化現象が進むと絶縁物は吸
湿し易い状態に置かれる。このため本発明者等は多数の
電気機器の巻線について湿度と絶縁抵抗を詳細に調査し
た結果、両者の間には強い相関があることを知見した。log (JEC-54 standard) <logRx 1 + m (log90-logHx 1 ) ……… (2) log (JEC-54 standard) <logRx 2 + m (log90−logHx 2 ) ……… (3) However JEC-54 Standard = (Rated voltage) / (Electrical equipment capacity + 1000) [Operation] Insulation deterioration of electric equipment windings is due to thermal and mechanical deterioration over time, and environmental deterioration due to contamination of bare conductors, which is a structural feature. It can be roughly divided into In both cases, when the deterioration phenomenon progresses, the insulator is placed in a state of easily absorbing moisture. Therefore, the present inventors have made a detailed investigation on the humidity and the insulation resistance of the windings of many electric devices, and have found that there is a strong correlation between the two.
まず、湿度と絶縁抵抗の関係を説明する。First, the relationship between humidity and insulation resistance will be described.
第4図に湿度と絶縁抵抗の特性図を示す。本発明者等の
新たな知見によると、湿度H(%)の常用対数logHと電
気機器巻線の絶縁抵抗R(MΩ)の常用対数logRの間に
は、湿度Hが30%〜90%の範囲で負の直線状の強い相関
関係がある。この相関関係の傾斜角度mは、下記(1)式
によって求める事ができる。Fig. 4 shows a characteristic diagram of humidity and insulation resistance. According to a new finding of the present inventors, the humidity H is 30% to 90% between the common logarithm logH of the humidity H (%) and the common logarithm logR of the insulation resistance R (MΩ) of the electric device winding. There is a strong negative linear correlation in the range. The inclination angle m of this correlation can be obtained by the following equation (1).
但し、Rx1は湿度がHx1において測定した該電気機器巻
線の絶縁抵抗であり、Rx2は湿度がHx2において測定し
た該電気機器巻線の絶縁抵抗である。尚Hx1とHx2は任
意に測定した測定時の湿度である。 Here, Rx 1 is the insulation resistance of the electric equipment winding measured at a humidity of Hx 1 , and Rx 2 is the insulation resistance of the electric equipment winding measured at a humidity of Hx 2 . Note that Hx 1 and Hx 2 are humidity values at the time of measurement, which are arbitrarily measured.
劣化パターンは、直線a,b,cで表することが出来
る。直線aは、湿度によって絶縁劣化が殆ど進行しない
良好な電気機器のパターンを示す。直線cは、小さな湿
度変化で絶縁抵抗が大きく変化する電気機器特有の絶縁
吸湿劣化パターンを示す。直線bは直線a,cの中間
で、湿度が上昇すると絶縁抵抗は徐々に劣化傾向が進ん
でいるパターンを示す。このことは巻線の絶縁物が枯れ
・汚損等で吸湿し、絶縁層内、又は表面で洩れ電流が流
れ易くなり増加するからである。普通、電気機器の絶縁
抵抗値が、晴天の時と曇の時とで100倍も変化するのは
絶縁管理限界であり、その指障として例えばm=−15が
好ましい。The deterioration pattern can be represented by straight lines a, b, and c. A straight line a shows a pattern of a good electric device in which insulation deterioration hardly progresses due to humidity. The straight line c indicates the insulation moisture absorption deterioration pattern peculiar to electric equipment in which the insulation resistance changes greatly with a small change in humidity. The straight line b is between the straight lines a and c, and shows a pattern in which the insulation resistance gradually deteriorates as the humidity rises. This is because the insulating material of the winding absorbs moisture due to withering, stains, etc., and leakage current easily flows in the insulating layer or on the surface, which increases. Normally, it is the insulation control limit that the insulation resistance value of an electric device changes 100 times between fine weather and cloudy weather. For example, m = -15 is preferable as an obstacle.
尚(1)式は、下記(1′)式の如く書き替えることができ
る。The equation (1) can be rewritten as the following equation (1 ').
既に述べた如く、同一の電気機器巻線について(1)式の
関係は湿度が90%の場合にも成立する。従って(1′)式
においてHx2とRx2に替えて湿度90%(H=90)と湿度が
90%の際の絶縁抵抗R90を用いることができ、下記(4)
式が得られる。 As already mentioned, the relation of the equation (1) holds for the same electric equipment winding even when the humidity is 90%. Therefore, in equation (1 '), instead of Hx 2 and Rx 2 , the humidity is 90% (H = 90) and the humidity is
The insulation resistance R90 at 90% can be used, and the following (4)
The formula is obtained.
(4)式を整理すると下記(5)式が得られる。 By rearranging equation (4), the following equation (5) is obtained.
logR90=logRx1+m(log90−logHx1)…(5) また同様に、(1′)式においてHx1とRx1に替えて湿度9
0%(H=90)と湿度が90%の際の絶縁抵抗R90を用い、
(5)式場合と同様に式を整理すると、下記(6)式が得られ
る。logR90 = logRx 1 + m (log90−logHx 1 ) ... (5) Similarly, in the formula (1 ′), Hx 1 and Rx 1 are replaced by humidity 9
Using insulation resistance R90 when 0% (H = 90) and humidity is 90%,
By rearranging the equations as in the case of the equation (5), the following equation (6) is obtained.
logR90=logRx2+m(log90−logRx2)…(6) 以上の如く、湿度がHx1における絶縁抵抗Rx1と、湿度
がHx2における絶縁抵抗Rx2を用いて(1)式によって電
気機器巻線のmを求めておけば、湿度が90%の場合の該
電気機器巻線の絶縁抵抗R90は湿度90%で実測を行わな
くても(5)式あるいは(6)式を用いて容易に算出する事が
できる。 logR90 = logRx 2 + m (log90 -logRx 2) ... (6) As mentioned above, the insulation resistance Rx 1 humidity in Hx 1, humidity of an insulating resistance Rx 2 in Hx 2 (1) electrical equipment up by formula If the m of the wire is calculated, the insulation resistance R90 of the electric equipment winding when the humidity is 90% can be easily calculated by using the equation (5) or the equation (6) without actually measuring the humidity at 90%. It can be calculated.
次に電気機器巻線の具備すべき絶縁抵抗について述べ
る。電気機器例えば直流機の運転に必要な最低絶縁抵抗
として、下記(7)式のJEC-54基準が示されている。Next, the insulation resistance that electric equipment windings should have will be described. The JEC-54 standard of the following formula (7) is shown as the minimum insulation resistance required for the operation of electric equipment such as a DC machine.
尚(7)式で定格電圧(V)とは運転最高電圧を、また電気
機器容量(KW)とは最大容量を指す。JEC-54基準は、特
定の湿度における絶縁抵抗を規定するものではない。し
かし、絶縁抵抗は湿度が上昇すると大幅に低下するため
に、例えば湿度が70%の時にJEC-54基準を満足する電気
機器巻線であっても、湿度が90%の時に使用すると絶縁
抵抗が不十分となる場合がある。 In the equation (7), the rated voltage (V) means the maximum operating voltage, and the electric equipment capacity (KW) means the maximum capacity. The JEC-54 standard does not specify the insulation resistance at a specific humidity. However, since the insulation resistance drops significantly when the humidity rises, for example, even for electric equipment windings that meet the JEC-54 standard when the humidity is 70%, the insulation resistance will increase when the humidity is 90%. It may be insufficient.
本発明では、湿度が90%の場合にもJEC-54基準が達成で
きるように、巻線の絶縁劣化を診断する。即ち、湿度が
90%の場合の絶縁抵抗R90が、下記(8)式を満足するよ
うに診断する。In the present invention, the insulation deterioration of the winding is diagnosed so that the JEC-54 standard can be achieved even when the humidity is 90%. That is, the humidity
Diagnosis is made so that the insulation resistance R90 at 90% satisfies the following expression (8).
JEC-54基準<R90………(8) この(8)式は下記(9)式を満足させる事によって達せられ
る。JEC-54 standard <R90 ......... (8) This equation (8) can be achieved by satisfying the following equation (9).
log(JEC-54基準)<logR90………(9) (5)式あるいは式(6)式のlogR90を(9)式に代入すると下
記(2)式あるいは(3)式が得られる。log (JEC-54 standard) <logR90 ... (9) Substituting logR90 in Eq. (5) or Eq. (6) into Eq. (9) gives Eq. (2) or (3) below.
log(JEC-54基準)<logRx1+m(log90-logHx1)…(2) log(JEC-54基準)<logRx2+m(log90-logHx2)…(3) 多数の電気機器巻線を管理するに際しては、絶縁抵抗の
測定を、湿度が90%の時に集中して行うことは極めて困
難である。一方湿度を無視して測定し絶縁抵抗は、湿度
が90%の場合の該電気機器巻線の安定操業の指針とはな
らない。log (JEC-54 standard) <logRx 1 + m (log90-logHx 1 ) ... (2) log (JEC-54 standard) <logRx 2 + m (log90-logHx 2 ) ... (3) Many electric device windings It is extremely difficult to concentrate the insulation resistance measurement when the humidity is 90%. On the other hand, the insulation resistance measured by ignoring humidity is not a guideline for stable operation of the electric equipment winding when the humidity is 90%.
本発明では定期的にあるいは必要な都度、電気機器巻線
の絶縁抵抗を測定し、測定時の湿度と絶縁抵抗(例えば
Hx1,Rx1)を日常管理として記録しておく。後日に該
電気機器の絶縁抵抗を診断するに際しては、診断時の湿
度と診断時の該電気機器の絶縁抵抗(例えばHx2,Rx2)
を把握し、(1)式と(2)式あるいは(3)式とを用いて、該
電気機器巻線の絶縁抵抗が湿度が90%においてもJEC-54
基準を達成するように診断する事ができる。尚該診断時
のHx2,Rx2は、更に次回の診断の際のHx1,Rx1とし
て使用できる事はいうまでもない。In the present invention, the insulation resistance of the electric equipment winding is measured regularly or whenever necessary, and the humidity and insulation resistance (for example, Hx 1 , Rx 1 ) at the time of measurement are recorded as daily management. When diagnosing the insulation resistance of the electric device at a later date, the humidity at the time of diagnosis and the insulation resistance of the electric device at the time of diagnosis (for example, Hx 2 , Rx 2 )
By using equation (1) and equation (2) or equation (3), the insulation resistance of the electrical equipment winding can be measured according to JEC-54 even when the humidity is 90%.
Can be diagnosed to meet the criteria. Needless to say, Hx 2 and Rx 2 at the time of the diagnosis can be used as Hx 1 and Rx 1 at the time of the next diagnosis.
本発明者等は、使用中の電気機器巻線について測定した
絶縁抵抗を、下記(10)式の%MgによりJEC-54基準と対比
して調査し、その結果を第3図に示した。The inventors of the present invention investigated the insulation resistance measured on the electric equipment winding in use by the% Mg of the following formula (10) in comparison with the JEC-54 standard, and the results are shown in FIG.
第3図にみられる如く、%Mgは経年数と共に低下するた
めに、電気機器巻線の絶縁劣化の診断は重要である。 As shown in FIG. 3, since% Mg decreases with the lapse of time, it is important to diagnose the insulation deterioration of electric equipment windings.
以上のm値法、%Mg法を組み合わせ、縦軸に湿度との相
関係数m値を取り、横軸に湿度が70%において測定した
絶縁抵抗に基づく%Mgを示し図式化した管理図(以下%M
g−m値管理図と称す)が第1図である。第1図におい
て、H1は%Mgが1の線、H2は降雨時湿度(湿度90%)の際
にも絶縁抵抗がJEC-54基準以上であるために電気機器巻
線が具備すべき%Mgの線を示す。例えばm=−15で%Mg
が42.7の電気機器巻線は、湿度が70%の場合はJEC-54基
準の42.7倍の絶縁抵抗を有するが、降雨時の湿度が90%
の場合には%Mgは1.0となる。従って本発明の方法では
この電気機器巻線の%Mgが42.7以上の範囲を、絶縁抵抗
が良と評価する。Combining the above m-value method and% Mg method, the vertical axis shows the correlation coefficient m value with humidity, and the horizontal axis shows% Mg based on the insulation resistance measured at 70% humidity. Below% M
The gm value control chart) is shown in FIG. In Fig. 1, H 1 is the line with% Mg 1 and H 2 is the electrical equipment winding because the insulation resistance is above the JEC-54 standard even in the case of humidity (90% humidity) during rainfall. The% Mg line is shown. For example, m = -15 and% Mg
The electric equipment winding of 42.7 has an insulation resistance of 42.7 times that of JEC-54 standard when the humidity is 70%, but the humidity during rain is 90%.
In the case of,% Mg becomes 1.0. Therefore, in the method of the present invention, the range where% Mg of this electric device winding is 42.7 or more is evaluated as good insulation resistance.
%Mg−m値管理図は、運転限界指標となる%Mg>1.0を
気候に対して順応性を保つ意味から、平均湿度と降雨時
湿度で区分けし段階的レベル判定を求め、m値法と組み
あわせで絶縁劣化判定が一目で出来る管理図である。更
にプロット部位から容易に絶縁物の劣化パターンが識別
出来る特徴をもっている。例えば、m値の絶縁値が低く
%Mg<1.0付近の領域は導電性塵埃による絶縁劣化パタ
ーンを示し、m値の絶対値が高く%Mg=1.0付近の領域
は吸湿し易い塵埃付着による絶縁劣化パターンと判別出
来、電気機器管理の面で絶縁対策、時期の決定根拠にな
る。The% Mg-m value control chart is obtained by dividing the average humidity and the humidity during rainfall into stepwise level judgments in order to maintain the adaptability of the% Mg> 1.0, which is the operation limit index, to the climate. It is a control chart which can judge insulation deterioration at a glance by combination. Furthermore, it has the feature that the deterioration pattern of the insulator can be easily identified from the plot area. For example, a region with low m-value insulation value around% Mg <1.0 shows insulation deterioration pattern due to conductive dust, and a region with high m-value insulation value near% Mg = 1.0 shows insulation deterioration due to dust adhesion that tends to absorb moisture. It can be discriminated as a pattern, and will be the basis for determining insulation measures and timing in terms of electrical equipment management.
%Mg値は測定時の湿度タイミングにより大きく変化する
が、電気機器の運転上必要な絶縁耐力として、%Mg>1.
0が運転限界指標となり最低必要レベルになる。The% Mg value varies greatly depending on the humidity timing during measurement, but as the dielectric strength required for the operation of electrical equipment,% Mg> 1.
0 is the operation limit index and the minimum required level.
本発明の診断法は全ての電気機器の巻線の絶縁劣化診断
に適用可能であるが、絶縁測定法等は各機器に応じて決
め、特に直流機の場合、測定時には電機子を必ず刷子か
ら浮かした状態でデーターを取り、同時に機内の湿度測
定も冷却風に注意しながら行う必要がある。The diagnostic method of the present invention is applicable to the insulation deterioration diagnosis of the windings of all electric devices, but the insulation measuring method etc. is determined according to each device, especially in the case of a DC machine, the armature must be removed from the brush at the time of measurement. It is necessary to collect the data in a floating state and at the same time measure the humidity inside the machine while paying attention to the cooling air.
絶縁測定は、短時間でなくPI値が安定するまで継続的
に実施し、絶縁抵抗が湿度の影響を受けて変化するのを
排除する必要がある。Insulation measurement must be performed continuously, not for a short time, until the PI value stabilizes, to prevent the insulation resistance from changing under the influence of humidity.
[実施例] 絶縁劣化が相当に進行していると予測される稼働後20
年程度経過した直流機に本診断法を適用し実施した。こ
れらの結果について下記の第1表に示す。[Embodiment] 20 after operation in which insulation deterioration is predicted to progress considerably 20
This diagnostic method was applied to a DC machine that was about a year old. The results are shown in Table 1 below.
比較例としてメガー法によって各湿度での絶縁劣化判定
をした。As a comparative example, the insulation deterioration was determined at each humidity by the Megger method.
第1表を%Mg−m値管理図にプロットすると第2図の様
になる。When Table 1 is plotted on the% Mg-m value control chart, it becomes as shown in Figure 2.
これから、DCM400KWの場合、図から要対策の領
域にあり急速に電機機器巻線の絶縁向上対策を実施すべ
きことを示している。又、DCM950KWの場合に
は、%Mgは1.0 以上であるがm値が大きく降雨時に%Mg
が1.0 を割る要注意の領域にあり継続的監視が必要なこ
とが判る。From the figure, in the case of DCM 400 kW, it is shown from the figure that there is a region requiring countermeasures and that measures for improving the insulation of the electric device winding should be rapidly implemented. In the case of DCM 950 kW,% Mg is 1.0 or more, but the m value is large and% Mg is high when it rains.
Is in the area of caution below 1.0, indicating that continuous monitoring is required.
尚、※1のDCM2250KWは、対策前絶縁レベルがm値
=18,%Mg=0.85で劣化パターンから吸湿し易い
塵埃による絶縁低下と判断し、絶縁向上対策(有機溶剤
による洗浄ワニス処理)を実施した後の数年間の絶縁レ
ベルである。 In addition, * 1 DCM2250KW, insulation level before countermeasure is m value = 18,% Mg = 0.85, and it is judged from the deterioration pattern that the insulation is deteriorated by dust that easily absorbs moisture, and insulation improvement measures (cleaning varnish treatment with organic solvent) It is the insulation level for several years after carrying out.
図からも明らかなように、直流機絶縁の特徴である湿度
変化にも充分対応出来、同時に絶縁抵抗の絶対値レベル
も確認出来る。又、上記第1表から明らかの如く、従
来、一般に目安とされていたメガー法では、測定時の湿
度状態で判定が大きく変わり、適正なる判定が出来ない
ことが判る。As is clear from the figure, it is possible to sufficiently cope with changes in humidity, which is a characteristic of DC machine insulation, and at the same time, to confirm the absolute value level of insulation resistance. Also, as is clear from Table 1 above, it can be seen that with the megger method, which has been generally used as a standard in the past, the judgment greatly changes depending on the humidity condition at the time of measurement, and proper judgment cannot be made.
[発明の効果] 本発明の診断法によれば実機解体の必要がなく、汚損・
経年劣化現象が進むと吸湿し易くなる絶縁特性を数値化
し定量的に把握し、常に使用される電機機器の絶縁事故
未然防止が図れる。[Effects of the Invention] According to the diagnostic method of the present invention, it is not necessary to dismantle the actual machine,
As the deterioration over time progresses, it becomes possible to prevent the occurrence of insulation accidents in electrical equipment that is always used by numerically quantifying and quantitatively grasping the insulation characteristics that facilitate moisture absorption.
又、%Mg−m値管理図から判明する劣化状況に対し、洗
浄方法を有機溶剤又は蒸気洗浄かの選択を行い絶縁向上
対策を講じることで、電機機器の絶縁向上が図られ大幅
な寿命延長が可能である。In addition, if the cleaning method is selected from organic solvent or steam cleaning and measures are taken to improve the insulation against deterioration that is found from the% Mg-m value control chart, the insulation of electrical equipment will be improved and the service life will be greatly extended. Is possible.
この様に本診断法は、電機機器の適性管理を含め、予防
保全のタイミングが明確化されることで、メンテナンス
上での効果は多大である。In this way, the present diagnostic method has a great effect on maintenance by clarifying the timing of preventive maintenance, including appropriate management of electrical equipment.
第1図は%Mg−m値管理図の説明図、第2図は実施例第
1表のデーターの%Mg−m値管理図、第3図は%Mgと経
年数の関係を示す図、第4図は湿度と絶縁抵抗の特性
(m値特性)を示したグラフである。FIG. 1 is an explanatory view of the% Mg-m value control chart, FIG. 2 is a% Mg-m value control chart of the data in Table 1 of the embodiment, and FIG. 3 is a view showing the relationship between% Mg and age. FIG. 4 is a graph showing the characteristics of humidity and insulation resistance (m-value characteristics).
Claims (1)
し、湿度がHx1(%%)の時の該電気機器巻線について測
定した絶縁抵抗Rx1(MΩ)と、湿度がHx2(%)の時の該
電気機器巻線について測定した絶縁抵抗Rx2(MΩ)から
下記(1)式のmを求め Hx1とRx1が下記(2)式を満足する際に、あるいはHx2
とRx2が下記(3)式を満足する際に該電気機器巻線の絶
縁抵抗には支障となる劣化がないと診断する事を特徴と
する電気機器巻線の絶縁劣化診断法。 log(JEC-54基準)<logRx1+m(log90−logHx1)…(2) log(JEC-54基準)<logRx2+m(log90−logHx2)…(3) 但しJEC-54基準=(定格電圧)/(電気機器容量+1000)1. When diagnosing insulation deterioration of an electric equipment winding, the insulation resistance Rx 1 (MΩ) measured for the electric equipment winding when the humidity is Hx 1 (%%) and the humidity Hx 2 ( %), The m of the following equation (1) is obtained from the insulation resistance Rx 2 (MΩ) measured for the electric device winding when When Hx 1 and Rx 1 satisfy the following equation (2), or Hx 2
And Rx 2 satisfy the following expression (3), it is diagnosed that there is no deterioration that hinders the insulation resistance of the electric equipment winding. log (JEC-54 standard) <logRx 1 + m (log90−logHx 1 ) ... (2) log (JEC-54 standard) <logRx 2 + m (log90−logHx 2 )… (3) However, JEC-54 standard = (Rated voltage) / (Electrical equipment capacity +1000)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63105439A JPH0638097B2 (en) | 1988-04-30 | 1988-04-30 | Insulation deterioration diagnosis method for electric equipment winding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63105439A JPH0638097B2 (en) | 1988-04-30 | 1988-04-30 | Insulation deterioration diagnosis method for electric equipment winding |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01277771A JPH01277771A (en) | 1989-11-08 |
JPH0638097B2 true JPH0638097B2 (en) | 1994-05-18 |
Family
ID=14407626
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63105439A Expired - Lifetime JPH0638097B2 (en) | 1988-04-30 | 1988-04-30 | Insulation deterioration diagnosis method for electric equipment winding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0638097B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4500658B2 (en) * | 2004-12-08 | 2010-07-14 | 株式会社トクヤマ | Deterioration diagnosis method for motors |
US7327132B2 (en) * | 2005-08-15 | 2008-02-05 | University Of Denver | Testing procedure for evaluating diffusion and leakage currents in insulators |
JP5321904B2 (en) * | 2009-08-31 | 2013-10-23 | 富士電機株式会社 | Remaining life estimation method, maintenance / update plan creation method, remaining life estimation system and maintenance / update plan creation system |
-
1988
- 1988-04-30 JP JP63105439A patent/JPH0638097B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH01277771A (en) | 1989-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100541996B1 (en) | A dignosis method of insulation of electric apparatus | |
Kimura | Progress of insulation ageing and diagnostics of high voltage rotating machine windings in Japan | |
David et al. | PDC measurements to assess machine insulation | |
JPH0638097B2 (en) | Insulation deterioration diagnosis method for electric equipment winding | |
JP6164022B2 (en) | Interlayer insulation diagnosis method for winding equipment | |
JP2008064580A (en) | Deterioration diagnosis method of electrical apparatus insulation material | |
JP5179587B2 (en) | Diagnostic method for oil-filled electrical equipment, diagnostic device for implementing the diagnostic method, and oil-filled electrical equipment equipped with the diagnostic device | |
CN117647711A (en) | Method for diagnosing local insulation damp of dry type air-core reactor | |
Koch et al. | Moisture diagnostics of power transformers by a fast and reliable dielectric response method | |
JPH09251062A (en) | Method and apparatus for diagnosing insulation of rotary electric machine and rotary electric machine with its apparatus | |
JP3864063B2 (en) | Degradation evaluation method for coil insulation paper | |
JP3720291B2 (en) | Degradation diagnosis method for solid insulation materials | |
Terase et al. | A new AC current testing method for non-destructive insulation tests | |
Berler et al. | On-line monitoring of HV bushings and current transformers | |
Gutten et al. | Frequency Domain Diagnostics of Transformer Insulation | |
JP3521570B2 (en) | Insulation diagnostic method for low-voltage rotating electrical machine windings | |
EP1703293B1 (en) | Method and device for estimating remaining service life of coil | |
JP4500658B2 (en) | Deterioration diagnosis method for motors | |
JPS6047990B2 (en) | Diagnosis method for insulation deterioration of electrical equipment windings | |
JP3853134B2 (en) | Estimating remaining life of power cables | |
JPH068852B2 (en) | Electrical insulation diagnosis method | |
JPH09304467A (en) | Method for diagnosing insulation deterioration of electric insulator | |
Gutten et al. | Analysis of Temperature Dependences of the Loss Factor of Transformer by Method FDS | |
Bulinski et al. | Diagnostic measurements of high voltage polymeric cable insulation | |
Penrose | A review of polarization index and IEEE Std. 43-2000 |