JPH0638541B2 - Semiconductor laser device - Google Patents
Semiconductor laser deviceInfo
- Publication number
- JPH0638541B2 JPH0638541B2 JP1300487A JP1300487A JPH0638541B2 JP H0638541 B2 JPH0638541 B2 JP H0638541B2 JP 1300487 A JP1300487 A JP 1300487A JP 1300487 A JP1300487 A JP 1300487A JP H0638541 B2 JPH0638541 B2 JP H0638541B2
- Authority
- JP
- Japan
- Prior art keywords
- active layer
- semiconductor laser
- laser device
- layer
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Semiconductor Lasers (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体レーザ素子に関する。TECHNICAL FIELD The present invention relates to a semiconductor laser device.
(従来の技術) 半導体レーザ素子は光ファイバ通信や光情報処理技術に
おいて、その進展を決めるキーデバイスであり、レーザ
利得の大きな素子が求められている。半導体レーザは、
活性層がこの活性層より広い禁制帯幅をもつ半導体層で
挟まれた層構造を半導体基板上に有し、活性層中の電子
単位に電流を注入しキャリヤをためてレーザ発光させる
素子である。第2図はこのような従来の半導体レーザ素
子の一例を示す斜視図である。この素子は、基板10上に
クラッド層11,活性層12,クラッド層13及びキャップ層
14を順次に成長し、電流阻止構造19をイオン注入法で形
成してなる。半導体レーザのレーザ利得の増加を図るに
は、3次元的なバルク電子状態に比べ2次元的電子状態
ではレーザ利得が大きい性質を用い、発光領域である活
性層中の電子が量子化される程薄い膜厚の活性層を形成
することが有効であることが知られている。このような
薄膜の単層あるいは多層の活性層を持つ半導体レーザは
量子井戸レーザと呼ばれ現在盛んに研究されている。こ
れに対し、膜と平行な方向にも膜厚程度のサイズの細線
状構造やドット状構造を形成した場合、それぞれ擬1次
元的及び擬零次元的電子状態が形成される。この場合に
は、2次元的電子状態の場合よりもレーザ利得が更に大
きくなり、従って発振閾電流の減少や、閾電流の温度変
化の減少、発振線幅の減少などを達成できる可能性が理
論的に示されている。そして、実際に半導体の細線構造
形成の試みもアプライド・フィジックス・レターズ(App
l.Phys.Lett.41,635(1982))に記載されているようにペ
トロフ(Petroff)達により、また、半導体のドット状構
造形成の試みもジャーナル・オブ・バキューム・サイエ
ンス・アンド・テクノロジー(J.Voc.Sci.Technol.B4,35
8(1986))に記載されているようにリード(M.A.Reed)達に
より行なわれている。これら従来の試みでは活性層の膜
厚方向については分子ビームエピタキシャル(MBE)成長
法を用いて十分寸法制御されているが、活性層の面内方
向については通常のリソグラフィ法により細線またはド
ット状パターン構造を残すものであった。(Prior Art) A semiconductor laser device is a key device that determines the progress in optical fiber communication and optical information processing technology, and a device having a large laser gain is required. The semiconductor laser is
An element in which an active layer has a layer structure sandwiched between semiconductor layers having a band gap wider than that of the active layer on a semiconductor substrate, and a current is injected into an electron unit in the active layer to accumulate carriers and emit laser light. . FIG. 2 is a perspective view showing an example of such a conventional semiconductor laser device. This device comprises a clad layer 11, an active layer 12, a clad layer 13 and a cap layer on a substrate 10.
14 are sequentially grown, and the current blocking structure 19 is formed by the ion implantation method. In order to increase the laser gain of a semiconductor laser, the property that the laser gain is larger in the two-dimensional electronic state than in the three-dimensional bulk electronic state is used so that the electrons in the active layer, which is the light emitting region, are quantized. It is known that it is effective to form an active layer having a thin film thickness. A semiconductor laser having such a thin-film single layer or multi-layer active layer is called a quantum well laser and is currently being actively studied. On the other hand, when a thin line-shaped structure or a dot-shaped structure having a size of the film thickness is formed in the direction parallel to the film, pseudo one-dimensional and pseudo zero-dimensional electronic states are formed, respectively. In this case, the laser gain becomes larger than that in the case of the two-dimensional electronic state, and therefore, there is a possibility that it is possible to reduce the oscillation threshold current, the temperature change of the threshold current, and the oscillation line width. Indicated In addition, an attempt to actually form a thin wire structure of a semiconductor is also performed by the Applied Physics Letters (App
l.Phys.Lett. 41, 635 (1982) by Petrov (Petroff) who as described in), also attempts dot-like structures formed of a semiconductor Journal of Vacuum Science and Technology ( J.Voc.Sci.Technol. B4 , 35
8 (1986)) by MA Reed et al. In these conventional trials, the thickness direction of the active layer is sufficiently controlled by using the molecular beam epitaxial (MBE) growth method, but the in-plane direction of the active layer is fine line or dot-shaped pattern by the ordinary lithography method. The structure was left behind.
(発明が解決しようとする問題点) 上記のように活性層中に擬零次元電子状態を実現しよう
とすると従来のリソグラフィ技術ではドット状パターン
構造の形成方法や寸法制御が極めて困難であるという点
が問題であった。これに対し、従来のリソグラフィ技術
に頼らないで可能となりうる構造の素子は従来知られて
いなかった。(Problems to be Solved by the Invention) As described above, when it is attempted to realize a pseudo-zero-dimensional electronic state in the active layer, it is extremely difficult to form a dot-shaped pattern structure and control the dimensions by a conventional lithography technique. Was a problem. On the other hand, a device having a structure that can be realized without relying on the conventional lithography technique has not been known.
更に従来のドット状パターン構造を半導体レーザ素子の
活性層に適用した場合、光はドットパターン内に閉じ込
めきれないから、ドットパターンとドットパターンの間
に存在する利得のない領域での光の損失が増加する問題
があった。Furthermore, when the conventional dot-shaped pattern structure is applied to the active layer of the semiconductor laser device, the light cannot be completely confined within the dot pattern, so that there is no loss of light in the non-gain region existing between the dot patterns. There was an increasing problem.
本発明の目的は、上記パターン形成の困難さの問題と、
光の損失の問題とを改善し、擬零次元電子状態の特性を
備え従来型より高利得の半導体レーザ素子を提供するこ
とである。The object of the present invention is to solve the problem of pattern formation,
It is an object of the present invention to provide a semiconductor laser device which has a problem of light loss and which has characteristics of a quasi-zero-dimensional electronic state and which has a higher gain than the conventional type.
(問題点を解決するための手段) 前述の問題点を解決するために本発明が提供する手段
は、発光領域である活性層を含む半導体積層構造を基板
の上に形成した半導体レーザ素子であって、前記活性層
が階段状構造を有し、かつ面内の相直交する2方向のい
ずれの方向にも段差を有することを特徴とする。(Means for Solving Problems) Means provided by the present invention for solving the above problems are semiconductor laser devices in which a semiconductor laminated structure including an active layer which is a light emitting region is formed on a substrate. In addition, the active layer has a stepwise structure and has a step in any of two in-plane orthogonal directions.
(作用) 本発明では上記の手段により擬零次元的電子状態の特性
を備えた半導体レーザ素子を実現している。この発明の
構造において、活性層の膜厚を薄くかつ階段構造のステ
ップ間隔を2方向いずれも100Åオーダ以下にするこ
とにより、擬零次元的電子状態の特性が顕著であり、従
来型より高利得の半導体レーザ素子が得られる。(Operation) In the present invention, the semiconductor laser device having the characteristics of the pseudo-zero-dimensional electronic state is realized by the above means. In the structure of the present invention, when the thickness of the active layer is thin and the step interval of the step structure is 100 Å or less in both directions, the characteristics of the pseudo-zero-dimensional electronic state are remarkable, and the gain is higher than that of the conventional type. The semiconductor laser device of
以下、本発明の実施例について図面を用いて更に詳細に
説明する。Hereinafter, embodiments of the present invention will be described in more detail with reference to the drawings.
(実施例) 第1図は本発明の一実施例を説明する素子概略図であ
る。第1図(a)は本発明の半導体レーザ素子の斜視図
である。本発明の半導体レーザ素子の特徴は、第1図
(b)に斜視図で示したように階段状活性層21を有する
ことである。その他のレーザ素子構造の特徴は第2図に
概略図を示した従来の半導体レーザ素子の構造と基本的
に同じである。すなわち、基板10の上に第1のクラッド
層11,活性層21、第2のクラッド層13,キャップ層14を
有する。(Example) FIG. 1 is a schematic view of an element for explaining an example of the present invention. FIG. 1 (a) is a perspective view of a semiconductor laser device of the present invention. A feature of the semiconductor laser device of the present invention is that it has a stepwise active layer 21 as shown in a perspective view in FIG. The other features of the laser device structure are basically the same as the structure of the conventional semiconductor laser device shown in the schematic view of FIG. That is, the first clad layer 11, the active layer 21, the second clad layer 13, and the cap layer 14 are provided on the substrate 10.
第1図(b)に示すような階段構造の活性層21は高度な
リソグラフィ技術に頼ることなく形成できる。以下、そ
の一形成例について簡単に述べる。まず、通常の砒化ガ
リウム基板面の軸15が結晶軸[001]から傾いた基板を準
備する。基板面の軸15は結晶軸[001]から劈開面の1つ
の軸16のまわりに角度θ1だけ傾け、更に結晶軸[001]の
まわりに角度θ2だけ回転させるものとする。本実施例
の場合軸16は[110]軸、角度θ1と角度θ2はそれぞれ約
2°とした。このような基板の上に例えばMBE成長法を
用い、クラッド層11,活性層21,クラッド層13,キャッ
プ層14をエピタキシャル成長する。このとき、成長層
は、成長表面が第1図(b)のような階段構造を保って
成長する。このような階段状成長の現象は、ステツプ成
長現象としてよく知られており、例えばアプライド・フ
ィジックス・レターズ(Appl.Phys.Lett.45,620(1984))
に記載の実験により確認されている。本実施例でも、ス
テップ段差が約6Å,ステップ間隔が面内の2方向につ
いていずれも約160Åであるステップ成長が確認され
た。The active layer 21 having a staircase structure as shown in FIG. 1 (b) can be formed without resorting to advanced lithography technology. Hereinafter, one example of the formation will be briefly described. First, a substrate is prepared in which the axis 15 of the surface of a normal gallium arsenide substrate is tilted from the crystal axis [001]. The substrate surface axis 15 is tilted from the crystal axis [001] about an axis 16 of the cleavage plane by an angle θ 1 , and further rotated about the crystal axis [001] by an angle θ 2 . In this embodiment, the axis 16 is the [110] axis, and the angles θ 1 and θ 2 are each about 2 °. The cladding layer 11, the active layer 21, the cladding layer 13, and the cap layer 14 are epitaxially grown on such a substrate by using, for example, the MBE growth method. At this time, the growth layer grows with the growth surface maintaining the staircase structure as shown in FIG. The phenomenon of such stepwise growth is well known as the step growth phenomenon, and for example, Applied Physics Letters (Appl. Phys. Lett. 45 , 620 (1984)).
It has been confirmed by the experiment described in. Also in this example, it was confirmed that the step growth was about 6 Å and the step interval was about 160 Å in both in-plane directions.
本実施例での材料組成は、通常のものを採用し、n型砒
化ガリウム基板10の上にアルミニウム組成比が約0.35の
砒化アルミニウムガリウムからなるn型クラッド層11及
びp型クラッド層13,アンドーブの砒化ガリウム活性層
21,p型砒化ガリウムキャップ層14を成長した。その
後、電流阻止構造19をイオン注入法で形成し、最後に電
極を上面と下面に設けた。このように作製された半導体
レーザ素子において、活性層膜厚が同じで階段状構造の
ない通常の量子井戸レーザ素子に比べ、発振閾電流密度
が減少する良好なレーザ特性の改善効果が得られた。ま
た、基板面結晶軸からの傾き角度θ1,θ2ともに1°,
2°,3°と順に増加させ階段構造のステップ間隔を短
くするつれ、上記の改善効果が増加した。As the material composition in this embodiment, a usual material composition is adopted, and an n-type clad layer 11 and a p-type clad layer 13 made of aluminum gallium arsenide having an aluminum composition ratio of about 0.35 are formed on the n-type gallium arsenide substrate 10. Gallium arsenide active layer
21. A p-type gallium arsenide cap layer 14 was grown. After that, the current blocking structure 19 was formed by the ion implantation method, and finally the electrodes were provided on the upper surface and the lower surface. In the semiconductor laser device manufactured in this manner, a favorable effect of improving the laser characteristics in which the oscillation threshold current density is reduced is obtained as compared with the ordinary quantum well laser device having the same active layer thickness and no step structure. . Moreover, both the tilt angles θ 1 and θ 2 from the crystal axis of the substrate surface are 1 °,
The above-described improvement effect increased as the step interval of the staircase structure was shortened by sequentially increasing it to 2 ° and 3 °.
本実施例では、活性層が単一の量子井戸層からなる場合
について述べたが、多層の多重量子井戸や眉間に電子相
互作用のある超格子構造からなる場合も擬零次元効果の
寄与が期待でき本実施例の構造の素子は有効である。ま
た活性層膜厚が量子井戸の場合程薄くない場合でもステ
ップサイズに応じた効果は、ある程度期待できる。本実
施例では砒化ガリウム系のMBE成長の例を述べたが、方
法は他の有機金属気相成長法(MOCVD)や通常の気相成長
エピタキシャル法(VPE)についても、また材料系はイン
ジウムリン砒化ガリウム系や砒化インジウムガリウム系
等他の系についても、有効であることは容易に類推され
る。In this embodiment, the case where the active layer is composed of a single quantum well layer has been described, but the contribution of the pseudo-zero-dimensional effect is also expected when the active layer is composed of multiple quantum well layers or a superlattice structure with electron interaction between the eyebrows. Therefore, the device having the structure of this embodiment is effective. Even if the active layer is not as thin as the quantum well, the effect depending on the step size can be expected to some extent. In this embodiment, an example of MBE growth of gallium arsenide is described, but the method is also applicable to other metal organic chemical vapor deposition (MOCVD) and ordinary vapor phase epitaxy (VPE), and the material system is indium phosphide. It is easily inferred that it is effective for other systems such as gallium arsenide and indium gallium arsenide.
(発明の効果) 以上説明したように本発明の半導体レーザ素子は、活性
層を面内のどの方向にも段差を有する階段構造にしたこ
とにより、同じ膜厚の2次元的電子状態の特性を備えた
従来の半導体量子井戸レーザに比べ更にレーザ利得が高
く、かつ、特別な微細加工プロセスを施さずに形成でき
る方法がある等、光素子の集積化や生産性向上にも適し
ており、高性能の半導体レーザ素子として用いることが
できる。(Effect of the Invention) As described above, in the semiconductor laser device of the present invention, the characteristics of the two-dimensional electronic state of the same film thickness are obtained by forming the active layer into a step structure having a step in any in-plane direction. It has a higher laser gain than the conventional semiconductor quantum well laser, and there is a method that can be formed without performing a special microfabrication process. It can be used as a high performance semiconductor laser device.
【図面の簡単な説明】 第1図(a)は本発明の一実施例を示す斜視図、同図
(b)はこの実施例における活性層を示す斜視図、第2
図は従来の半導体レーザ素子の一例を示す斜視図であ
る。 10……基板、11……クラッド層、12……活性層、13……
クッド層、14……キャップ層、15……基板面の軸、16…
…劈開面の1つの軸、19……電流阻止構造、21……階段
状活性層、θ1……基板面傾け角度、θ2……基板面ずれ
角度。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 (a) is a perspective view showing an embodiment of the present invention, FIG. 1 (b) is a perspective view showing an active layer in this embodiment, and FIG.
FIG. 1 is a perspective view showing an example of a conventional semiconductor laser device. 10 …… Substrate, 11 …… Clad layer, 12 …… Active layer, 13 ……
Good layer, 14 ... Cap layer, 15 ... Substrate surface axis, 16 ...
… One axis of cleavage plane, 19… Current blocking structure, 21 …… Staircase active layer, θ 1 …… Substrate tilt angle, θ 2 …… Substrate misalignment angle.
Claims (1)
造を基板の上に形成した半導体レーザ素子において、前
記活性層が階段状構造を有し、かつ面内の相直交する2
方向のいずれの方向にも段差を有することを特徴とする
半導体レーザ素子。1. A semiconductor laser device in which a semiconductor laminated structure including an active layer which is a light emitting region is formed on a substrate, wherein the active layer has a stepwise structure and is in-plane orthogonal to each other.
A semiconductor laser device having a step in any direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1300487A JPH0638541B2 (en) | 1987-01-21 | 1987-01-21 | Semiconductor laser device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1300487A JPH0638541B2 (en) | 1987-01-21 | 1987-01-21 | Semiconductor laser device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63179592A JPS63179592A (en) | 1988-07-23 |
JPH0638541B2 true JPH0638541B2 (en) | 1994-05-18 |
Family
ID=11821030
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1300487A Expired - Lifetime JPH0638541B2 (en) | 1987-01-21 | 1987-01-21 | Semiconductor laser device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0638541B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2575901B2 (en) * | 1989-11-13 | 1997-01-29 | 新技術事業団 | Quantum structure with grid |
-
1987
- 1987-01-21 JP JP1300487A patent/JPH0638541B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS63179592A (en) | 1988-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3060973B2 (en) | Manufacturing method of gallium nitride based semiconductor laser using selective growth method and gallium nitride based semiconductor laser | |
US6573527B1 (en) | Quantum semiconductor device including quantum dots and a fabrication process thereof | |
JPH0418476B2 (en) | ||
JP2854607B2 (en) | Semiconductor device and semiconductor laser device | |
JP2007194230A (en) | Semiconductor quantum dot device | |
EP0188080B1 (en) | Light-emitting semiconductor device having a super lattice | |
JP2000196193A (en) | Semiconductor device and its manufacture | |
JPH09148556A (en) | Semiconductor device and its manufacture | |
JP3829153B2 (en) | Optical semiconductor device | |
JPH11112102A (en) | Fabrication of optical semiconductor device | |
JPH0638541B2 (en) | Semiconductor laser device | |
US5563094A (en) | Buried reverse bias junction configurations in semiconductor structures employing photo induced evaporation enhancement during in situ epitaxial growth and device structures utilizing the same | |
JPS62144385A (en) | Semiconductor laser and manufacture thereof | |
JPH02101784A (en) | Manufacture of quantum well fine wire and quantum well box and quantum well fine wire laser | |
JP2000223776A (en) | Semiconductor light emitting element | |
Cho | Molecular beam epitaxy from research to manufacturing | |
JP2757258B2 (en) | Superlattice element manufacturing method | |
JPH08181301A (en) | Quantum dot structure and its manufacture | |
JP2833604B2 (en) | Semiconductor laminated structure | |
JP2630273B2 (en) | Distributed feedback semiconductor laser | |
JP2000183327A (en) | Formation of quantum dots, quantum dot structure formed thereby and semiconductor quantum dot laser | |
Ono et al. | Study of Selective MBE Growth on Patterned (001) InP Substrates Toward Realization of< 100>-Oriented InGaAs Ridge Quantum Wires | |
JP3169064B2 (en) | Fabrication method of semiconductor three-dimensional quantum structure | |
JPS62273791A (en) | Manufacture of semiconductor quantum well laser | |
JPH057053A (en) | Fabrication of strain quantum well laser |