JPH0637386A - Semiconductor laser - Google Patents
Semiconductor laserInfo
- Publication number
- JPH0637386A JPH0637386A JP18679192A JP18679192A JPH0637386A JP H0637386 A JPH0637386 A JP H0637386A JP 18679192 A JP18679192 A JP 18679192A JP 18679192 A JP18679192 A JP 18679192A JP H0637386 A JPH0637386 A JP H0637386A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- width
- active layer
- electrode
- current blocking
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は高出力と長寿命を有する
半導体レーザに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser having high output and long life.
【0002】[0002]
【従来の技術】近年、高出力を有するダブルヘテロ接合
構造の半導体レーザの改良が数多くなされている。その
中で例えば特開平2−224288号公報で開示された
半導体レーザを図7に示す。図7はその半導体レーザの
斜視図である。この図に於て、半導体基板31上に電流
阻止層32が形成され、その表面にストライプ溝33が
形成されている。ストライプ溝33は端面近傍34に於
て電流阻止層32より浅く中央近傍35に於て電流阻止
層32より深く形成されている。電流阻止層32の上に
順次、クラッド層36と活性層37と他のクラッド層3
8とキャップ層39と表面電極40が形成されている。2. Description of the Related Art In recent years, many improvements have been made to semiconductor lasers having a double heterojunction structure having a high output. FIG. 7 shows a semiconductor laser disclosed in, for example, Japanese Patent Laid-Open No. 2-224288. FIG. 7 is a perspective view of the semiconductor laser. In this figure, a current blocking layer 32 is formed on a semiconductor substrate 31, and a stripe groove 33 is formed on the surface thereof. The stripe groove 33 is formed shallower than the current blocking layer 32 near the end face 34 and deeper than the current blocking layer 32 near the center 35. The clad layer 36, the active layer 37, and the other clad layers 3 are sequentially formed on the current blocking layer 32.
8, the cap layer 39 and the surface electrode 40 are formed.
【0003】[0003]
【発明が解決しようとする課題】しかして上述の半導体
レーザでは、端面41が劈開にて分割され易くするため
表面電極40は端面41から少し離れた位置に形成され
ている。そして低出力(10〜50mW)の半導体レー
ザでは上述の構成で問題ない。しかし150mW位の高
出力では、寿命が短くなるという欠点が生じる。本発明
者がこの原因を究明したところ、端面近傍34の活性層
37の温度上昇に起因することが判った。この活性層3
7の温度上昇の特性を図4の破線で示す。これらの図4
と図7に於て端面41から約20μmまでの活性層37
の温度上昇が比較的高い。その理由は端面近傍34のス
トライプ溝33の上方に表面電極40がないので、この
部分での放熱が悪いためである事が判った。In the above semiconductor laser, however, the surface electrode 40 is formed at a position slightly apart from the end surface 41 so that the end surface 41 can be easily divided by cleavage. In the case of a low output (10 to 50 mW) semiconductor laser, there is no problem in the above-mentioned configuration. However, at a high output of about 150 mW, there is a drawback that the life is shortened. The present inventor has investigated the cause of this and found that it is due to the temperature rise of the active layer 37 near the end face 34. This active layer 3
The temperature rise characteristic of No. 7 is shown by the broken line in FIG. These Figure 4
7 and the active layer 37 from the end face 41 to about 20 μm in FIG.
The temperature rise is relatively high. It has been found that the reason is that the surface electrode 40 is not provided above the stripe groove 33 in the vicinity 34 of the end face, so that heat dissipation in this portion is bad.
【0004】更に従来、ストライプ溝33の長手長さは
600μm位であるが、この位の長さの半導体レーザを
高出力で発光させると寿命が短くなる。本発明者がこの
原因を究明したところ、活性層の動作電流密度(半導体
レーザを流れる電流値を活性層の面積で割った値)が比
較的大きいため、発光に寄与しない電流が熱エネルギー
に変わる割合が大きくなり端面破壊を起こす事が判っ
た。以上の2つの欠点により、この半導体レーザを出力
150mWにて雰囲気温度50°Cで連続運転すると、
約400時間後に著しく出力が低下する。故に本発明は
上述の欠点に鑑みてなされたもので、端面近傍の活性層
の温度上昇を抑えかつストライプ溝の長さを最適化する
ことにより、高出力かつ長寿命の半導体レーザを提供す
るものである。Further, conventionally, the longitudinal length of the stripe groove 33 is about 600 μm, but if a semiconductor laser of this length is made to emit light with a high output, the life is shortened. The present inventor has investigated the cause of this, and since the operating current density of the active layer (the value of the current flowing through the semiconductor laser divided by the area of the active layer) is relatively large, the current that does not contribute to light emission is converted into thermal energy. It was found that the ratio increased and the end face was destroyed. Due to the above two drawbacks, when this semiconductor laser is continuously operated at an output of 150 mW and an ambient temperature of 50 ° C.,
The output drops significantly after about 400 hours. Therefore, the present invention has been made in view of the above-mentioned drawbacks, and provides a semiconductor laser of high output and long life by suppressing the temperature rise of the active layer near the end face and optimizing the length of the stripe groove. Is.
【0005】[0005]
【課題を解決するための手段】本発明は上述の課題を解
決するために、半導体基板上に電流阻止層を形成し、端
面近傍で電流が流れず中央近傍で電流が流れる様にスト
ライプ層を形成する。電流阻止層上にクラッド層と活性
層と表面電極を形成する。表面電極として、活性層の巾
全体に広がる中央部電極、およびストライプ溝の上方に
位置しかつストライプ溝の巾より大きく中央部電極の巾
より小さい巾を有する端部電極を形成する。本発明は更
に望しくは、ストライプ溝の長手長さを950乃至14
00μmとするものである。In order to solve the above-mentioned problems, the present invention forms a current blocking layer on a semiconductor substrate and forms a stripe layer so that a current does not flow near the end face but a current flows near the center. Form. A clad layer, an active layer and a surface electrode are formed on the current blocking layer. As the surface electrodes, a central electrode extending over the entire width of the active layer and an end electrode located above the stripe groove and having a width larger than the width of the stripe groove and smaller than the width of the central electrode are formed. More preferably, the present invention sets the longitudinal length of the stripe groove to 950 to 14.
The thickness is 00 μm.
【0006】[0006]
【作用】本発明は上述の様に、ストライプ溝の上方に位
置しかつストライプ溝の巾より大きい端部電極を設け
る。故に端面近傍で温度上昇した活性層はこの端部電極
を通じて放熱し易い。更に望しくはストライプ溝の長手
長さを950乃至1400μmにする事により、活性層
の動作電流密度が小さくなるので、発光エネルギー以外
に変換される熱エネルギーの割合が減るから寿命が長く
なる。As described above, the present invention provides the end electrodes located above the stripe groove and larger than the width of the stripe groove. Therefore, the active layer whose temperature has risen near the end face easily radiates heat through this end electrode. More desirably, by setting the longitudinal length of the stripe groove to be 950 to 1400 μm, the operating current density of the active layer is reduced, and the ratio of thermal energy converted into other than emission energy is reduced, so that the life is extended.
【0007】[0007]
【実施例】以下、本発明の実施例を図1乃至図3に従っ
て説明する。図1は本実施例に係る半導体レーザの斜視
図、図2は図1のAA断面図、図3は図1のBB断面図
である。これらの図に於て、半導体基板1はZnをP型
不純物として添加されたGaAsからなり層厚70μm
である。電流阻止層2はN型不純物を添加されたGaA
sからなり層厚は約1μmであり、半導体基板1上に形
成されている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to FIGS. 1 is a perspective view of a semiconductor laser according to this embodiment, FIG. 2 is a sectional view taken along line AA of FIG. 1, and FIG. 3 is a sectional view taken along line BB of FIG. In these figures, the semiconductor substrate 1 is made of GaAs doped with Zn as a P-type impurity and has a layer thickness of 70 μm.
Is. The current blocking layer 2 is GaA doped with N-type impurities.
s and has a layer thickness of about 1 μm, and is formed on the semiconductor substrate 1.
【0008】ストライプ溝3は電流阻止層2の表面上に
形成され、端面近傍4に於て電流阻止層2より浅く電流
阻止層2の底面に到らない。ストライプ溝3は中央近傍
5に於て電流阻止層2より深く半導体基板1の中に達っ
している。端面近傍4のストライプ溝3の長手長さは約
20μmであり、ストライプ溝3の全体の長手長さは9
50〜1400μmに形成されている。ストライプ溝3
の巾Cは3〜7μmであり、端面近傍4に於ける巾Cが
中央近傍5に於ける巾Cより少し広く形成されている。The stripe groove 3 is formed on the surface of the current blocking layer 2 and is shallower than the current blocking layer 2 near the end face 4 and does not reach the bottom surface of the current blocking layer 2. The stripe groove 3 extends into the semiconductor substrate 1 deeper than the current blocking layer 2 near the center 5. The longitudinal length of the stripe groove 3 near the end face 4 is about 20 μm, and the entire longitudinal length of the stripe groove 3 is 9 μm.
The thickness is 50 to 1400 μm. Stripe groove 3
Has a width C of 3 to 7 μm, and the width C in the vicinity 4 of the end face is formed slightly wider than the width C in the vicinity 5 of the center.
【0009】クラッド層6はZnをP型不純物として添
加され、アルミ混晶比0.4のGaAlAsからなり層
厚0.5〜0.8μmであり、ストライプ溝3上および
電流阻止層2上に形成されている。The cladding layer 6 has Zn added as a P-type impurity, is made of GaAlAs having an aluminum mixed crystal ratio of 0.4, and has a layer thickness of 0.5 to 0.8 μm, and is formed on the stripe groove 3 and the current blocking layer 2. Has been formed.
【0010】活性層7はアルミ混晶比0.05のGaA
lAsからなり層厚0.1μmであり、発光波長830
nmであり、クラッド層6上に形成されている。他のク
ラッド層8はアルミ混晶比0.4のN型GaAlAsか
らなり層厚4μmであり、活性層7上に形成されてい
る。キャップ層9はN型不純物を添加されたGaAsか
らなり層厚7μmであり、他のクラッド層8上に形成さ
れている。The active layer 7 is made of GaA with an aluminum mixed crystal ratio of 0.05.
made of 1As and having a layer thickness of 0.1 μm and an emission wavelength of 830
and is formed on the clad layer 6. The other clad layer 8 is made of N-type GaAlAs with an aluminum mixed crystal ratio of 0.4, has a layer thickness of 4 μm, and is formed on the active layer 7. The cap layer 9 is made of N-type impurity-added GaAs and has a layer thickness of 7 μm, and is formed on the other clad layer 8.
【0011】表面電極10は金等からなりキャップ層9
上に形成されている。表面電極10は巾狭の端部電極1
1と巾広の中央部電極12から構成されている。中央部
電極12は活性層7の巾全体に広がる様に、すなわちキ
ャップ層9の端から10〜20μmを残してキャップ層
9上に形成されている。端部電極11はストライプ溝3
の略真上のキャップ層9上に形成されている。端部電極
11の巾Dはストライプ溝3の巾Cよりも大きく中央部
電極12の巾よりも小さく設けられている。望しくは端
部電極11の巾Dは8〜100μmに設けると良い。ス
トライプ溝3のストライプ方向に沿う端部電極11の長
さEは20μm位が望しい。何故ならば端部電極11の
長さEが20μmより十分長ければ、中央部電極12の
長さが短かくなり、サブマウント等とダイボンディング
した時に取付が不安定となる。そして通常、端面を劈開
する時に劈開面の位置が長手方向でばらつくが、端部電
極11の長さEが20μmより十分短ければ、中央部電
極12を劈開する恐れがあるからである。The surface electrode 10 is made of gold or the like and the cap layer 9 is formed.
Formed on. The surface electrode 10 is a narrow end electrode 1
1 and a wide central electrode 12. The central electrode 12 is formed on the cap layer 9 so as to extend over the entire width of the active layer 7, that is, 10 to 20 μm is left from the end of the cap layer 9. The end electrodes 11 are stripe grooves 3
Is formed on the cap layer 9 directly above. The width D of the end electrode 11 is larger than the width C of the stripe groove 3 and smaller than the width of the central electrode 12. Desirably, the width D of the end electrode 11 is set to 8 to 100 μm. The length E of the end electrode 11 along the stripe direction of the stripe groove 3 is desired to be about 20 μm. The reason is that if the length E of the end electrode 11 is sufficiently longer than 20 μm, the length of the central electrode 12 becomes short and the attachment becomes unstable when die-bonding to a submount or the like. Usually, the position of the cleavage plane varies in the longitudinal direction when the end face is cleaved, but if the length E of the end electrode 11 is sufficiently shorter than 20 μm, the central electrode 12 may be cleaved.
【0012】前面端面13と後面端面14にはそれぞれ
反射率が5〜30%、50〜95%となる様にコーティ
ングが施こされている。そして表面電極10には所定の
場所に孔15が設けられ、自動ダイボンダー機が前面端
面13と後面端面14を区別して認識できる様になって
いる。半導体基板1の裏面には、金等からなる裏面電極
16が形成されている。これらの各層により半導体レー
ザ17は構成されている。The front end face 13 and the rear end face 14 are coated so that the reflectances are 5 to 30% and 50 to 95%, respectively. The surface electrode 10 is provided with a hole 15 at a predetermined position so that the automatic die bonder machine can recognize the front end face 13 and the rear end face 14 separately. A back surface electrode 16 made of gold or the like is formed on the back surface of the semiconductor substrate 1. The semiconductor laser 17 is composed of these layers.
【0013】サブマウント18が半導体レーザ17と接
続して設けられている。サブマウント18はSi層19
の裏面に金層20と白金層21と金層22とインジュウ
ム層23が順次形成されたものである。半導体レーザ1
7の上にサブマウント18を載置し、その載置面を重点
的に加熱する事によって表面電極10とインジュウム層
23が合金化されている。また逆にサブマウント18の
上に半導体レーザ17を載置しても良い。A submount 18 is provided so as to be connected to the semiconductor laser 17. Submount 18 is Si layer 19
A gold layer 20, a platinum layer 21, a gold layer 22, and an indium layer 23 are sequentially formed on the back surface of the. Semiconductor laser 1
The surface mount 10 and the indium layer 23 are alloyed by placing the submount 18 on the substrate 7 and heating the placing surface intensively. On the contrary, the semiconductor laser 17 may be mounted on the submount 18.
【0014】尚、本実施例の半導体レーザ17では、端
面近傍4で電流阻止層2より浅くかつ中央近傍5で電流
阻止層2より深いストライプ溝3が形成されている。そ
の他にストライプ溝として端面近傍と中央近傍にて一様
に電流阻止層より浅く形成され、端面近傍の活性層上に
高抵抗層が形成されても良い。上述の様に、本発明のス
トライプ層は端面近傍で電流が流れず中央近傍で電流が
流れる様に形成されたものである。In the semiconductor laser 17 of this embodiment, the stripe groove 3 is formed shallower than the current blocking layer 2 near the end face 4 and deeper than the current blocking layer 2 near the center 5. Alternatively, a stripe groove may be formed uniformly shallower than the current blocking layer near the end face and near the center, and the high resistance layer may be formed on the active layer near the end face. As described above, the stripe layer of the present invention is formed so that the current does not flow near the end face and the current flows near the center.
【0015】次に本実施例の半導体レーザに於ける活性
層の温度上昇特性図を図4の実線24にて示す。実線2
4の特性図は端部電極11の巾Dが8μmの場合の測定
値である。実験の結果、この活性層の温度上昇特性は端
部電極11の巾Dのみに依存し、端部電極11の長さE
やストライプ溝3の長さには依存しない事が判った。ま
た端部電極11の巾Dを8μmより大きくする程、端面
近傍4の活性層7の温度上昇は低くなり、寿命が長くな
る。しかし端部電極11の巾Dを大きくし過ぎて中央部
電極12と同じにすると、劈開が困難となり、前面端面
13と後面端面14に段差とか傷が発生し実用に供しな
い。本発明者の実験に依れば、端部電極11の巾Dは最
大100μmまでなら端面は正常であるが、100μm
を越えると端面に傷が発生する事が判った。Next, a temperature rise characteristic diagram of the active layer in the semiconductor laser of this embodiment is shown by a solid line 24 in FIG. Solid line 2
The characteristic diagram of No. 4 is the measured value when the width D of the end electrode 11 is 8 μm. As a result of the experiment, the temperature rise characteristic of the active layer depends only on the width D of the end electrode 11 and the length E of the end electrode 11.
It was found that it did not depend on the length of the stripe groove 3. Further, as the width D of the end electrode 11 is made larger than 8 μm, the temperature rise of the active layer 7 in the vicinity 4 of the end face becomes lower and the life becomes longer. However, if the width D of the end electrode 11 is made too large to be the same as that of the center electrode 12, cleavage becomes difficult, and steps or scratches occur on the front end face 13 and the rear end face 14, which is not practical. According to experiments conducted by the present inventor, if the width D of the end electrode 11 is 100 μm at the maximum, the end face is normal, but 100 μm.
It was found that the scratches were generated on the end surface when it exceeded.
【0016】次に本実施例の半導体レーザに於ける最大
光出力の特性を図5に従って説明する。横軸は共振器
長、すなわちストライプ溝3の長さ(μm)である。縦
軸は最大光出力(mw)である。実験の結果、この特性
は端部電極11の巾Dや長さEには依存しない事が判っ
た。この図より共振器長が950μm以上になると最大
光出力はほとんど飽和する事が判った。Next, the characteristics of the maximum optical output in the semiconductor laser of this embodiment will be described with reference to FIG. The horizontal axis represents the resonator length, that is, the length (μm) of the stripe groove 3. The vertical axis represents the maximum light output (mw). As a result of the experiment, it was found that this characteristic does not depend on the width D or the length E of the end electrode 11. From this figure, it was found that the maximum optical output was almost saturated when the cavity length was 950 μm or more.
【0017】更に本実施例の半導体レーザに於ける動作
電流密度の特性を示す。横軸は共振器長(μm)で、縦
軸は動作電流密度(kA/cm2)(半導体レーザを流
れる電流値を電流が流れている活性層の面積で割った
値)を示す。この図に於て、共振器長が950〜140
0μmの場合、動作電流密度が6kA/cm2より小さ
い事が判かる。そして共振器長が950μm未満又は1
400μmを越えると動作電流密度が大きくなり、発光
に寄与しない電流が熱エネルギーに変わる。この熱エネ
ルギーは端面近傍4のストライプ溝3の下の電流阻止層
2の温度上昇を招き、端面破壊を起こし、寿命が短かく
なる。これに対し、共振器長が950〜1400μmな
らば、出力150mw、雰囲気温度50°Cで連続発振
2000時間を達成することができる。Further, characteristics of operating current density in the semiconductor laser of this embodiment will be shown. The horizontal axis represents the cavity length (μm), and the vertical axis represents the operating current density (kA / cm 2 ) (the value of the current flowing through the semiconductor laser divided by the area of the active layer in which the current flows). In this figure, the resonator length is 950 to 140
It can be seen that in the case of 0 μm, the operating current density is smaller than 6 kA / cm 2 . And the resonator length is less than 950 μm or 1
If the thickness exceeds 400 μm, the operating current density increases, and the current that does not contribute to light emission is converted into heat energy. This thermal energy causes the temperature of the current blocking layer 2 below the stripe groove 3 near the end face 4 to rise, causing the end face to be destroyed and shortening the life. On the other hand, if the resonator length is 950 to 1400 μm, 2000 hours of continuous oscillation can be achieved at an output of 150 mw and an ambient temperature of 50 ° C.
【0018】[0018]
【発明の効果】本発明は上述の様に、ストライプ溝の上
方に位置しかつストライプ溝の巾より大きい端部電極を
設ける。故に端面近傍で温度上昇した活性層はこの端部
電極を通じて放熱し易いので端面破壊を防止できる。そ
して端部電極の巾を中央部電極の巾より小さく設けてい
るので、端面の劈開が容易となるから端面に段差とか傷
が発生しない。As described above, the present invention provides the end electrodes located above the stripe groove and larger than the width of the stripe groove. Therefore, the active layer whose temperature has risen in the vicinity of the end face easily radiates heat through this end electrode, so that the end face can be prevented from being destroyed. Since the width of the end electrode is set smaller than the width of the central electrode, the end face can be easily cleaved so that no step or scratch is generated on the end face.
【0019】本発明は更に望しくは、ストライプ溝の長
手長さを950乃至1400μmに設ける事により、活
性層の動作電流密度が小さくなるので、発光に寄与しな
い電流が変換されて熱エネルギーになる割合が小さくな
る。故に端面近傍のストライプ溝の下の電流阻止層の温
度上昇が小さくなり、端面破壊を防止できるので寿命が
長くなる。More preferably, since the operating current density of the active layer is reduced by providing the longitudinal length of the stripe groove in the range of 950 to 1400 μm, the current not contributing to light emission is converted into thermal energy. The ratio becomes smaller. Therefore, the temperature rise of the current blocking layer under the stripe groove near the end face is reduced, and the end face can be prevented from being destroyed, so that the life is extended.
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明の実施例に係る半導体レーザの斜視図で
ある。FIG. 1 is a perspective view of a semiconductor laser according to an embodiment of the present invention.
【図2】図1のAA断面図である。FIG. 2 is a sectional view taken along line AA of FIG.
【図3】図1のBB断面図である。3 is a cross-sectional view taken along the line BB of FIG.
【図4】活性層の温度上昇の特性図である。FIG. 4 is a characteristic diagram of temperature rise of an active layer.
【図5】本発明の実施例に係る半導体レーザに於ける最
大光出力の特性図である。FIG. 5 is a characteristic diagram of the maximum optical output in the semiconductor laser according to the example of the present invention.
【図6】本発明の実施例に係る半導体レーザに於ける動
作電流密度の特性図である。FIG. 6 is a characteristic diagram of operating current density in the semiconductor laser according to the example of the present invention.
【図7】従来の半導体レーザの斜視図である。FIG. 7 is a perspective view of a conventional semiconductor laser.
【符号の説明】 1 半導体基板 2 電流阻止層 3 ストライプ溝 4 端面近傍 5 中央近傍 6 クラッド層 7 活性層 10 表面電極 11 端部電極 12 中央部電極[Description of Reference Signs] 1 semiconductor substrate 2 current blocking layer 3 stripe groove 4 near end face 5 near center 6 clad layer 7 active layer 10 surface electrode 11 end electrode 12 center electrode
Claims (2)
阻止層と、中央近傍で電流が流れ端面近傍で電流が流れ
ない様に前記電流阻止層に形成されたストライプ溝と、
前記電流阻止層上に形成されたクラッド層と、そのクラ
ッド層上に形成された活性層と表面電極を具備し、その
表面電極が前記活性層の巾全体に広がる中央部電極及び
前記ストライプ溝の上方に位置しかつ前記ストライプ溝
の巾より大きく前記中央部電極の巾より小さい巾を有す
る端部電極からなる事を特徴とする半導体レーザ。1. A semiconductor substrate, a current blocking layer formed on the semiconductor substrate, and a stripe groove formed in the current blocking layer so that a current flows near the center and no current flows near the end faces.
A clad layer formed on the current blocking layer, an active layer formed on the clad layer, and a surface electrode, the surface electrode extending across the entire width of the active layer and the stripe groove. 2. A semiconductor laser comprising an end electrode located above and having a width larger than the width of the stripe groove and smaller than the width of the central electrode.
至1400μmである事を特徴とする請求項1の半導体
レーザ。2. The semiconductor laser according to claim 1, wherein the stripe groove has a longitudinal length of 950 to 1400 μm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18679192A JPH0637386A (en) | 1992-07-14 | 1992-07-14 | Semiconductor laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18679192A JPH0637386A (en) | 1992-07-14 | 1992-07-14 | Semiconductor laser |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0637386A true JPH0637386A (en) | 1994-02-10 |
Family
ID=16194653
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18679192A Pending JPH0637386A (en) | 1992-07-14 | 1992-07-14 | Semiconductor laser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0637386A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007173402A (en) * | 2005-12-20 | 2007-07-05 | Matsushita Electric Ind Co Ltd | Semiconductor laser device |
JP2008141039A (en) * | 2006-12-04 | 2008-06-19 | Rohm Co Ltd | Edge emitting semiconductor laser |
US7643527B2 (en) | 2005-04-13 | 2010-01-05 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor laser |
JP2013225667A (en) * | 2012-03-22 | 2013-10-31 | Nichia Chem Ind Ltd | Semiconductor laser device |
JP2016026410A (en) * | 2010-04-06 | 2016-02-12 | トゥー−シックス レイザー エンタープライズ ゲーエムベーハー | Semiconductor laser diode |
-
1992
- 1992-07-14 JP JP18679192A patent/JPH0637386A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7643527B2 (en) | 2005-04-13 | 2010-01-05 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor laser |
US7920614B2 (en) | 2005-04-13 | 2011-04-05 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor laser |
JP2007173402A (en) * | 2005-12-20 | 2007-07-05 | Matsushita Electric Ind Co Ltd | Semiconductor laser device |
JP2008141039A (en) * | 2006-12-04 | 2008-06-19 | Rohm Co Ltd | Edge emitting semiconductor laser |
JP2016026410A (en) * | 2010-04-06 | 2016-02-12 | トゥー−シックス レイザー エンタープライズ ゲーエムベーハー | Semiconductor laser diode |
JP2013225667A (en) * | 2012-03-22 | 2013-10-31 | Nichia Chem Ind Ltd | Semiconductor laser device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7260130B2 (en) | Semiconductor laser device and method of fabricating the same | |
US7329903B2 (en) | Semiconductor light emitting element having three side surfaces inclined to connect the top and bottom surfaces of the transparent substrate | |
JP4805887B2 (en) | Semiconductor laser device | |
EP2642622B1 (en) | Semiconductor laser device | |
JP2857256B2 (en) | Vertical semiconductor laser | |
KR20030084928A (en) | Surface-Emitting Semiconductor Laser | |
JP4583058B2 (en) | Semiconductor laser element | |
JP2004335530A (en) | Ridge waveguide semiconductor laser | |
JPH0637386A (en) | Semiconductor laser | |
US4914668A (en) | Semiconductor laser including a reflection film | |
US6154476A (en) | Semiconductor laser diode | |
JP3779248B2 (en) | Semiconductor laser element | |
JP3314616B2 (en) | High power semiconductor laser device | |
US6625190B1 (en) | Semiconductor laser device having thickened impurity-doped aluminum-free optical waveguide layers | |
JP2006303299A (en) | Semiconductor laser | |
WO2018158934A1 (en) | Semiconductor laser and method for manufacturing same | |
JPH08153932A (en) | Manufacture of semiconductor laser | |
JPS62296490A (en) | Semiconductor laser device | |
JP2563482B2 (en) | Semiconductor laser array device | |
JP2554025Y2 (en) | Semiconductor laser device | |
JP2007049088A (en) | High power red semiconductor laser | |
JP2815936B2 (en) | Broad area laser | |
JPH10200195A (en) | Semiconductor laser | |
JP2988552B2 (en) | Semiconductor laser device and method of manufacturing the same | |
JP2021132089A (en) | Semiconductor laser device |